Completion of a Metric Space

Definition. A completion of a metric space (X, d) is a pair consisting of a complete metric space (X^*, d^*) and an isometry $\varphi \colon X \to X^*$ such that $\varphi[X]$ is dense in X^* .

Theorem 1. Every metric space has a completion.

Proof. Let (X, d) be a metric space. Denote by $\mathcal{C}[X]$ the collection of all Cauchy sequences in X. Define a relation \sim on $\mathcal{C}[X]$ by

$$(x_n) \sim (y_n) \iff \lim_{n \to \infty} d(x_n, y_n) = 0.$$

It is easy to see that this is an equivalence relation on C[X]. Let X^* be the set of all equivalence classes for \sim :

$$X^* = \{ [(x_n)] : (x_n) \in \mathcal{C}[X] \}.$$

Define $d^*: X^* \times X^* \to [0, \infty)$ by

$$d^*([(x_n)], [(y_n)]) = \lim_{n \to \infty} d(x_n, y_n),$$

where $[(x_n)], [(y_n)] \in X^*$. To show that d^* is well-defined, let (x'_n) and (y'_n) be two Cauchy sequences in X such that $(x_n) \sim (x'_n)$ and $(y_n) \sim (y'_n)$. Then

$$\lim_{n \to \infty} d(x_n, x_n') = \lim_{n \to \infty} d(y_n, y_n') = 0.$$

By the triangle inequality,

$$d(x_n, y_n) \le d(x_n, x'_n) + d(x'_n, y'_n) + d(y'_n, y_n)$$
 and $d(x'_n, y'_n) \le d(x'_n, x_n) + d(x_n, y_n) + d(y_n, y'_n)$.

Hence,

$$|d(x_n, y_n) - d(x'_n, y'_n)| \leq d(x_n, x'_n) + d(y_n, y'_n) \longrightarrow 0.$$

Since both $(d(x_n, y_n))$ and $(d(x'_n, y'_n))$ are convergent, this shows that

$$\lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(x'_n, y'_n).$$

Thus d^* is well-defined.

Next, we show that d^* is a metric on X^* . Let $[(x_n)], [(y_n)], [(z_n)] \in X^*$. Then

$$d^*([(x_n)],[(y_n)]) = 0 \Leftrightarrow \lim_{n \to \infty} d(x_n,y_n) = 0 \Leftrightarrow (x_n) \sim (y_n) \Leftrightarrow [(x_n)] = [(y_n)].$$

Also,

$$d^*([(x_n)], [(y_n)]) = \lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(y_n, x_n) = d^*([(y_n)], [(x_n)]).$$

Since $d(x_n, z_n) \le d(x_n, y_n) + d(y_n, z_n)$,

$$\lim_{n \to \infty} d(x_n, z_n) \le \lim_{n \to \infty} d(x_n, y_n) + \lim_{n \to \infty} d(y_n, z_n).$$

Thus

$$d^*([(x_n)], [(z_n)]) \le d^*([(x_n)], [(y_n)]) + d^*([(y_n)], [(z_n)]).$$

Hence d^* is a metric on X^* .

For each $x \in X$, let $\hat{x} = [(x, x, \dots)] \in X^*$, the equivalence classes of the constant sequence (x, x, \dots) . Define $\varphi \colon X \to X^*$ by $\varphi(x) = \hat{x}$. Then for any $x, y \in X$,

$$d^*(\varphi(x), \varphi(y)) = d^*(\hat{x}, \hat{y}) = \lim_{n \to \infty} d(x, y) = d(x, y).$$

Hence φ is an isometry from X into X^* . To show that $\varphi[X]$ is dense in X^* , let $x^* = [(x_n)] \in X^*$ and let $\varepsilon > 0$. Since (x_n) is a Cauchy sequence, there exists an $N \in \mathbb{N}$ such that for any $m, n \geq N, d(x_m, x_n) < \frac{\varepsilon}{2}$. Let $z = x_N$. Then $\hat{z} \in \varphi[X]$ and

$$d^*(x^*, \hat{z}) = \lim_{n \to \infty} d(x_n, z) = \lim_{n \to \infty} d(x_n, x_N) \le \frac{\varepsilon}{2} < \varepsilon.$$

Thus $\hat{z} \in B_{d^*}(x^*, \varepsilon) \cap \varphi[X]$. Hence, $\varphi[X]$ is dense in X^* .

Finally we show that (X^*, d^*) is complete. To establish this, we apply the following lemma of which proof is left as an exercise:

Lemma. Let (X, d) be a metric space and A a dense subset such that every Cauchy sequence in A converges in X. Prove that X is complete.

Hence, it suffices to show that every Cauchy sequence in the dense subspace $\varphi[X]$ converges in X^* . Let (\widehat{z}_k) be a Cauchy sequence in $\varphi[X]$, where each \widehat{z}_k is represented by the Cauchy sequence (z_k, z_k, \ldots) . Since φ is an isometry,

$$d(z_n, z_m) = d^*(\widehat{z}_n, \widehat{z}_m)$$
 for each m, n .

Hence, (z_1, z_2, z_3, \dots) is a Cauchy sequence in X. Let $z^* = [(z_1, z_2, z_3, \dots)] \in X^*$. To show that (\widehat{z}_k) converges to z^* , let $\varepsilon > 0$. Then there is an $N \in \mathbb{N}$ such that $d(z_k, z_n) < \frac{\varepsilon}{2}$ for any $k, n \geq N$. Hence, for each $k \geq N$,

$$d^*(\widehat{z}_k, z^*) = \lim_{n \to \infty} d(z_k, z_n) \le \frac{\varepsilon}{2} < \varepsilon.$$

This shows that (\hat{z}_k) converges to a point z^* in X^* and that X^* is complete. \square

Theorem 2. A completion of a metric space is unique up to isometry. More precisely, if $\{\varphi_1, (X_1^*, d_1^*)\}$ and $\{\varphi_2, (X_2^*, d_2^*)\}$ are two completions of (X, d), then there is a unique isometry f from X_1^* onto X_2^* such that $f \circ \varphi_1 = \varphi_2$.

Proof. Since φ_1 is an isometry, φ_1 is 1-1. Thus $\varphi_1^{-1} \colon \varphi_1[X] \to X$ is an isometry from $\varphi_1^{-1}[X]$ onto X. Since φ_2 is an isometry from X onto $\varphi_2[X] \subseteq X_2^*$, it follows that $\varphi_2 \circ \varphi_1^{-1} \colon \varphi_1[X] \to \varphi_2[X]$ is a surjective isometry. Let $h = \varphi_2 \circ \varphi_1^{-1}$. Then

$$h \circ \varphi_1 = (\varphi_2 \circ \varphi_1^{-1}) \circ \varphi_1 = \varphi_2 \circ (\varphi_1^{-1} \circ \varphi_1) = \varphi_2 \circ i_X = \varphi_2.$$

Hence there exists a unique isometry f from X_1^* into X_2^* which is an extension of h. For each $x \in X$,

$$f \circ \varphi_1(x) = f(\varphi_1(x)) = h(\varphi_1(x)) = h \circ \varphi_1(x) = \varphi_2(x).$$

Thus $f \circ \varphi_1 = \varphi_2$. Similarly, there exists a unique isometry g from X_2^* into X_1^* such that $g \circ \varphi_2 = \varphi_1$. Therefore

$$g \circ f \circ \varphi_1 = g \circ \varphi_2 = \varphi_1$$
 and $f \circ g \circ \varphi_2 = f \circ \varphi_1 = \varphi_2$.

Hence $g \circ f = i_{\varphi_1[X]}$ and $f \circ g = i_{\varphi_2[X]}$. Since $\varphi_1[X]$ is dense in X_1^* , we have $g \circ f = i_{X_1^*}$. Similarly, $f \circ g = i_{X_2^*}$. Thus $f = g^{-1}$. Hence, f is a unique isometry from X_1^* onto X_2^* such that $f \circ \varphi_1 = \varphi_2$.