
Parallel Algorithms
GUY E. BLELLOCH and BRUCE M. MAGGS

Carnegie Mellon University ^guyb@xgate.scandal.cs.cmu.edu&

As more computers have incorporated
some form of parallelism, the emphasis
in algorithm design has shifted from
sequential algorithms to parallel algo-
rithms, that is, algorithms in which
multiple operations are performed si-
multaneously. As a consequence, our
understanding of parallel algorithms
has increased remarkably over the past
ten years. The most important develop-
ments in the field have occurred in
three broad areas: parallel models of
computation, parallel algorithmic tech-
niques, and parallel complexity theory.
This chapter surveys these three areas.
So many parallel algorithms have now
been designed that a chapter of this
length cannot cover even a small frac-
tion of them. Hence this article does not
discuss individual algorithms in any de-
tail.1

PARALLEL MODELS OF COMPUTATION

Developing a standard parallel model of
computation for analyzing algorithms
has proven difficult because different
parallel computers tend to vary signifi-
cantly in their organizations. In spite of
this difficulty, useful parallel models
have emerged, along with a deeper un-
derstanding of the modeling process. In
this section we describe three important
principles that have emerged.
Work-efficiency. In designing a par-

allel algorithm, it is more important to
make it efficient than to make it asymp-
totically fast. The efficiency of an algo-

rithm is determined by the total num-
ber of operations, or work, that it
performs. On a sequential machine, an
algorithm’s work is the same as its
time. On a parallel machine, the work is
simply the processor-time product.
Hence an algorithm that takes time t on
a P-processor machine performs work
W 5 Pt. In either case, the work
roughly captures the actual cost to per-
form the computation, assuming that
the cost of a parallel machine is propor-
tional to the number of processors in the
machine. We call an algorithm work-
efficient (or just efficient) if it performs
the same amount of work, to within a
constant factor, as the fastest known
sequential algorithm. For example, a
parallel algorithm that sorts n keys in
O(=n log n) time using =n processors
is efficient because the work O(n log n)
is as good as any (comparison-based)
sequential algorithm. However, a sort-
ing algorithm that runs in O(log n) time
using n2 processors is not efficient. The
first algorithm is better than the sec-
ond—even though it is slower—because
its work, or cost, is smaller. Of course,
given two parallel algorithms that per-
form the same amount of work, the
faster one is generally better.

Emulation. The notion of work-effi-
ciency leads to another important obser-
vation: a model can be useful without
mimicking any real or even realizable
machine. Instead, it suffices that any
algorithm that runs efficiently in the
model can be translated into an algo-
rithm that runs efficiently on real ma-
chines. As an example, consider the
widely used parallel random-access ma-
chine (PRAM) model. In the PRAM

1 The interested reader should consult Bertsekas
and Tsitsiklis [1989], JáJá [1992], Karp and Ram-
achandran [1990], Kumar et al. [1994], Leighton
[1992], and Reif [1995].

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



model, a set of processors shares a sin-
gle memory system. In a single unit of
time, each processor can perform an
arithmetic, logical, or memory access
operation. This model has often been
criticized as unrealistically powerful,
primarily because no shared-memory
system can perform memory accesses as
fast as processors can execute local
arithmetic and logical operations. The
important observation, however, is that
for a model to be useful we require only
that algorithms that are efficient in the
model can be mapped to algorithms that
are efficient on realistic machines, not
that the model is realistic. In particular,
any algorithm that runs efficiently in a
P-processor PRAM model can be trans-
lated into an algorithm that runs effi-
ciently on a P/L-processor machine with
a latency L memory system,2 a much
more realistic machine. In the trans-
lated algorithm, each of the P/L proces-
sors emulates L PRAM processors. The
latency is “hidden” because a processor
has useful work to perform while wait-
ing for a memory access to complete.
Although the translated algorithm is a
factor of L slower than the PRAM algo-
rithm, it uses a factor of L fewer proces-
sors, and hence is equally efficient.

Modeling Communication. To get the
best performance out of a parallel ma-
chine, it is often helpful to model the
communication capabilities of the ma-
chine, such as its latency, explicitly.
The most important measure is the
communication bandwidth. The band-
width available to a processor is the
maximum rate at which it can commu-
nicate with other processors or the
memory system. Because it is more dif-
ficult to hide insufficient bandwidth
than large latency, some measure of
bandwidth is often included in parallel
models. Sometimes the specific topology
of the communication network is mod-
eled as well. Although including this

level of detail in the model often compli-
cates the design of parallel algorithms,
it is essential for designing the low-level
communication primitives for the ma-
chine. In addition to modeling basic
communication primitives, other opera-
tions supported by hardware, including
synchronization and concurrent mem-
ory accesses, are often modeled, as well
as operations that mix computation and
communication, such as fetch-and-add
and scans. A final consideration is
whether the machine supports shared
memory, or whether all communication
relies on passing messages between the
processors.

ALGORITHMIC TECHNIQUES

A major advance in parallel algorithms
has been the identification of funda-
mental algorithmic techniques. Some of
these techniques are also used by se-
quential algorithms but play a more
prominent role in parallel algorithms,
whereas others are unique to parallel-
ism. Here we list some of these tech-
niques with a brief description of each.

Divide-and-Conquer. Divide-and-con-
quer is a natural paradigm for parallel
algorithms. After dividing a problem
into two or more subproblems, the sub-
problems can be solved in parallel. Typ-
ically the subproblems are solved recur-
sively and thus the next divide step
yields even more subproblems to be
solved in parallel. For example, suppose
we want to compute the convex-hull of a
set of n points in the plane (i.e., com-
pute the smallest convex polygon that
encloses all the points). This can be
implemented by splitting the points into
the leftmost n/2 and rightmost n/2, re-
cursively finding the convex hull of each
set in parallel, and then merging the
two resulting hulls. Divide-and-conquer
has proven to be one of the most power-
ful techniques for solving problems in
parallel with applications ranging from
linear systems to computer graphics
and from factoring large numbers to
n-body simulations.

2 The latency of a memory system is the time from
when a processor makes a request to the memory
system to when it receives the result.

52 • Guy E. Blelloch and Bruce M. Maggs

ACM Computing Surveys, Vol. 28, No. 1, March 1996



Randomization. The use of random
numbers is ubiquitous in parallel algo-
rithms. Intuitively, randomness is help-
ful because it allows processors to make
local decisions which, with high proba-
bility, add up to good global decisions.
For example, suppose we want to sort a
collection of integer keys. This can be
accomplished by partitioning the keys
into buckets, then sorting within each
bucket. For this to work well, the buck-
ets must represent nonoverlapping in-
tervals of integer values and contain
approximately the same number of
keys. Randomization is used to deter-
mine the boundaries of the intervals.
First each processor selects a random
sample of its keys. Next all the selected
keys are sorted together. Finally these
keys are used as the boundaries. Such
random sampling is also used in many
parallel computational geometry, graph,
and string-matching algorithms. Other
uses of randomization include symme-
try-breaking, load-balancing, and rout-
ing algorithms.

Parallel Pointer Manipulations. Many
of the traditional sequential techniques
for manipulating lists, trees, and graphs
do not translate easily into parallel
techniques. For example, techniques
such as traversing the elements of a
linked list, visiting the nodes of a tree in
postorder, or performing a depth-first
traversal of a graph appear to be inher-
ently sequential. Fortunately, each of
these techniques can be replaced by ef-
ficient parallel techniques. These paral-
lel techniques include pointer jumping,
the Euler-tour technique, ear decompo-
sition, and graph contraction. For exam-
ple, one way to label each node of an
n-node list (or tree) with the label of the
last node (or root) is to use pointer
jumping. In each pointer-jumping step
each node in parallel replaces its
pointer with that of its successor (or
parent). After at most log n steps, every
node points to the same node, the end of
the list (or root of the tree).

Others. Other useful techniques in-
clude finding small graph separators for

partitioning data among processors to
reduce communication, hashing for bal-
ancing load across processors and map-
ping addresses to memory, and iterative
techniques as a replacement for direct
methods for solving linear systems.

These techniques have led to efficient
parallel algorithms in most problem ar-
eas for which efficient sequential algo-
rithms are known. In fact, some of the
techniques originally developed for par-
allel algorithms have led to improve-
ments in sequential algorithms.

PARALLEL COMPLEXITY THEORY

Researchers have developed a theory of
the parallel complexity of computational
problems analogous to the theory of NP-
completeness. A problem is said to be-
long to the class NC (Nick’s Class) if it
can be solved in time polylogarithmic in
the size of the problem using at most a
polynomial number of processors. The
class NC in parallel complexity theory
plays the role of P in sequential com-
plexity, that is, the problems in NC are
thought to be tractable in parallel. Ex-
amples of problems in NC include sort-
ing, finding minimum-cost spanning
trees, and finding convex hulls. A prob-
lem is said to be P-complete if it can be
solved in polynomial time and if its in-
clusion in NC would imply that NC 5
P. Hence the notion of P-completeness
plays the role of NP-completeness in
sequential complexity. (And few believe
that NC 5 P.) Examples of P-complete
problems include finding a maximum
flow and finding a lexicographically
minimum independent set of nodes in a
graph. Much early work in parallel algo-
rithms aimed at showing that certain
problems belonged to the class NC
(without considering the issue of effi-
ciency). This work tapered off, however,
as the importance of work-efficiency be-
came evident. Also, even if a problem is
P-complete, there may be efficient (but
not necessarily polylogarithmic time)
parallel algorithms for solving it. For
example, several efficient and highly

Parallel Algorithms • 53

ACM Computing Surveys, Vol. 28, No. 1, March 1996



parallel algorithms are known for solv-
ing the maximum flow problem, which
is P-complete.

CURRENT AND FUTURE DIRECTIONS

Recently the emphasis of research on
parallel algorithms has shifted to prag-
matic issues. The theoretical work on
algorithms has been complemented by
extensive experimentation. This experi-
mental work has yielded insights into
how to build parallel machines [Almasi
and Gottlieb 1994], how to make paral-
lel algorithms perform well in practice
[Sabot 1995], how to model parallel ma-
chines more accurately, and how to ex-
press parallel algorithms in parallel
programming languages.
Two effective parallel programming

paradigms have emerged: control-paral-
lel programming and data-parallel pro-
gramming. In a control-parallel pro-
gram, multiple independent processes
or functions may execute simulta-
neously on different processors and
communicate with each other. Some of
the most successful control-parallel pro-
gramming systems are Linda, MPI, and
PVM. In each step of a data-parallel
program an operation is performed in
parallel across a set of data. Successful
data-parallel programming languages
include *Lisp, NESL, and HPF. Al-
though the data-parallel programming
paradigm might appear to be less gen-
eral than the control-parallel paradigm,
most parallel algorithms found in the
literature can be expressed more natu-
rally using data-parallel constructs.
There has also been a focus on solving

problems from applied domains, includ-

ing computational biology, astronomy,
seismology, fluid dynamics, scientific vi-
sualization, computer-aided design, and
database management. Interesting al-
gorithmic problems arising from these
domains include generating meshes for
finite element analysis, solving sparse
linear systems, solving n-body prob-
lems, pattern matching, ray tracing,
and many others.
Commodity personal computers with

multiple processors have begun to ap-
pear on the market. As this trend con-
tinues, we expect the use of parallel
algorithms to increase dramatically.

REFERENCES

ALMASI, G. AND GOTTLIEB, A. 1994. Highly Par-
allel Computing. Benjamin/Cummings, Red-
wood City, CA.

BERTSEKAS, D. P. AND TSITSIKLIS, J. N. 1989.
Parallel and Distributed Computation: Nu-
merical Methods. Prentice Hall, Englewood
Cliffs, NJ.

JÁJÁ, J. 1992. An Introduction to Parallel Algo-
rithms. Addison-Wesley, Reading, MA.

KARP, R. M. AND RAMACHANDRAN, V. 1990.
Parallel algorithms for shared memory ma-
chines. In Handbook of Theoretical Computer
Science—Volume A: Algorithms and Complex-
ity, J. Van Leeuwen, Ed., MIT Press, Cam-
bridge, MA.

KUMAR, V., GRAMA, A., GUPTA, A., AND KARYPIS,
G. 1994. Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms. Ben-
jamin/Cummings, Redwood City, CA.

LEIGHTON, F. T. 1992. Introduction to Parallel
Algorithms and Architectures: Arrays, Trees,
and Hypercubes. Morgan-Kaufmann, San Ma-
teo, CA.

REIF, J. H., ED. 1993. Synthesis of Parallel Al-
gorithms. Morgan-Kaufmann, San Mateo, CA.

SABOT, G. W. 1995. High Performance Comput-
ing: Problem Solving with Parallel and Vector
Architectures. Addison-Wesley, Reading, MA.

54 • Guy E. Blelloch and Bruce M. Maggs

ACM Computing Surveys, Vol. 28, No. 1, March 1996


