2.4 Bases and Dimensions

Let V be a vector space over F. A subset $B \subset V$ is a basis for V if B is linearly independent and $\text{Span } B = V$.

Theorem 2.4.1. Let $B = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ be a basis for V. Then
$$\forall \vec{v} \in V, \exists! a_1, \ldots, a_n \in F, \vec{v} = a_1\vec{v}_1 + \cdots + a_n\vec{v}_n.$$

Proof. Let $\vec{v} \in V$. Since $\text{Span } B = V$,
$$\vec{v} = a_1\vec{v}_1 + \cdots + a_n\vec{v}_n$$
for some $a_1, \ldots, a_n \in F$. For uniqueness, let $b_1, \ldots, b_n \in F$ be such that
$$\vec{v} = b_1\vec{v}_1 + \cdots + b_n\vec{v}_n.$$

Then
$$a_1\vec{v}_1 + \cdots + a_n\vec{v}_n = b_1\vec{v}_1 + \cdots + b_n\vec{v}_n$$
$$(a_1 - b_1)\vec{v}_1 + \cdots + (a_n - b_n)\vec{v}_n = \vec{0}.$$

Since $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is linearly independent, we have
$$a_1 - b_1 = \cdots = a_n - b_n = 0,$$
so $a_i = b_i$ for all $i \in \{1, \ldots, n\}$. \qed

Lemma 2.4.2. If S is a linearly independent subset of V, then $\forall \vec{u} \in V \smallsetminus \text{Span } S, S \cup \{\vec{u}\}$ is linearly independent.

Proof. If $V = \text{Span } S$, then $V \smallsetminus S = \emptyset$ and the statement is vacuously true. Assume that $\text{Span } S \subset V$ and let $\vec{u} \in V \smallsetminus \text{Span } S$.

We shall show that $S \cup \{\vec{u}\}$ is linearly independent.

Let $c_1, \ldots, c_n \in F$ and $\vec{u}_1, \ldots, \vec{u}_n \in S$ be such that
$$c\vec{u} + c_1\vec{u}_1 + \cdots + c_n\vec{u}_n = \vec{0}.$$

If $c \neq 0$, then
$$\vec{u} = -\frac{1}{c}(c_1\vec{u}_1 + \cdots + c_n\vec{u}_n)$$
is in $\text{Span } S$, which is a contradiction. Thus, $c = 0$, so
$$c_1\vec{u}_1 + \cdots + c_n\vec{u}_n = \vec{0}.$$

But S is linearly independent, we get $c_1 = \cdots = c_n = 0$. \qed
Theorem 2.4.3. Let V be a vector space over F.

(1) If B is a linearly independent subset of V which is maximal with respect to the property of being linearly independent (i.e., $\forall B \subseteq S, S \neq B \Rightarrow S$ is not linearly independent), then B is a basis of V.

(2) If B is a spanning set for V which is minimal with respect to the property of spanning (i.e., $\forall S \subseteq B, S \neq B \Rightarrow \text{Span} \ S \not\subseteq V$), then B is a basis of V.

Proof. (1) Assume that B is a maximal linearly independent subset of V.

It remains to prove that $\text{Span} \ B = V$. Let $\vec{v} \in V \setminus \text{Span} \ B$.

By Lemma 2.4.2, $B \cup \{\vec{v}\}$ is linearly independent which contradicts the maximality of B. Hence, $\text{Span} \ B = V$.

(2) Let B be a minimal spanning set for V.

We shall prove that B is linearly independent.

Let $c_1, \ldots, c_n \in F$ and $\vec{v}_1, \ldots, \vec{v}_n \in B$ be such that

$$c_1\vec{v}_1 + \cdots + c_n\vec{v}_n = \vec{0}.$$

Assume that $c_i \neq 0$ for some i. Then

$$\vec{v}_i = -\frac{1}{c_i} (c_1\vec{v}_1 + \cdots + c_{i-1}\vec{v}_{i-1} + c_{i+1}\vec{v}_{i+1} + \cdots + c_n\vec{v}_n) \in \text{Span}(B \setminus \{v_i\}).$$

Thus, $V = \text{Span} \ B = \text{Span}(B \setminus \{v_i\})$ which contradicts the minimality of B.

Hence, B is linearly independent.

\[\square \]

Theorem 2.4.4. Let V be a vector space over F. If V has a finite spanning set $\{\vec{v}_1, \ldots, \vec{v}_m\}$, then any linearly independent set in V has $\leq m$ elements.

Proof. Assume that $\text{Span} \{\vec{v}_1, \ldots, \vec{v}_m\} = V$.

Let S be a linearly independent subset of V. Assume that $|S| > m$.

Let $T = \{\vec{u}_1, \ldots, \vec{u}_{m+1}\} \subseteq S \subseteq V$.

Since $\text{Span} \{\vec{v}_1, \ldots, \vec{v}_m\} = V$, we have

$$\vec{u}_1 = c_{11}\vec{v}_1 + c_{21}\vec{v}_2 + \cdots + c_{m1}\vec{v}_m$$
$$\vec{u}_2 = c_{12}\vec{v}_1 + c_{22}\vec{v}_2 + \cdots + c_{m2}\vec{v}_m$$
$$\vdots$$
$$\vec{u}_{m+1} = c_{1m+1}\vec{v}_1 + c_{2m+1}\vec{v}_2 + \cdots + c_{m,m+1}\vec{v}_m$$

for some $c_{ij} \in F$ for all $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, m+1\}$.

By Theorem 1.2.7, the matrix equation

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1,m+1} \\ c_{21} & c_{22} & \cdots & c_{2,m+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{m,m+1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{m+1} \end{bmatrix} = \vec{0}_m$$

has a nontrivial solution $\vec{x} \neq \vec{0}_{m+1}$. Note that

$$x_1\vec{u}_1 + x_2\vec{u}_2 + \cdots + x_{m+1}\vec{u}_{m+1}$$
$$= x_1(c_{11}\vec{v}_1 + c_{21}\vec{v}_2 + \cdots + c_{m1}\vec{v}_m) + x_2(c_{12}\vec{v}_1 + c_{22}\vec{v}_2 + \cdots + c_{m2}\vec{v}_m)$$
$$+ \cdots + x_{m+1}(c_{1,m+1}\vec{v}_1 + c_{2,m+1}\vec{v}_2 + \cdots + c_{m,m+1}\vec{v}_m)$$
$$= (x_1c_{11} + x_2c_{12} + \cdots + x_{m+1}c_{1,m+1})\vec{v}_1 + (x_1c_{21} + x_2c_{22} + \cdots + x_{m+1}c_{2,m+1})\vec{v}_2$$
$$+ \cdots + (x_1c_{m1} + x_2c_{m2} + \cdots + x_{m+1}c_{m,m+1})\vec{v}_m$$
$$= \vec{0}$$

which contradicts S is linearly independent. Hence, $|S| \leq m$.

\[\square \]
Corollary 2.4.5. If the vector space V has a finite spanning set $\{\vec{v}_1, \ldots, \vec{v}_m\}$, then

1. $\{\vec{v}_1, \ldots, \vec{v}_m\}$ has a subset which is a basis for V,
2. any linearly independent set in V can be extended to a basis for V,
3. V has a basis,
4. any two bases for V have the same finite number of elements, necessarily $\leq m$.

In this case, we say that V is finite-dimensional, and the number of elements in a basis is called the dimension of V, written $\dim V$. If V has no finite spanning set, we say that V is infinite-dimensional.

Proof. (1) Let $\mathcal{S} = \{S \subseteq \{\vec{v}_1, \ldots, \vec{v}_m\} : \text{Span} = V\}$. Since $\{\vec{v}_1, \ldots, \vec{v}_m\} \in \mathcal{S}$, \mathcal{S} is a nonempty finite set partially ordered by \subseteq. Then \mathcal{S} has a minimal element, say B.

By Theorem 2.4.3 (2), B is a basis for V.

(2) Let A be a linearly independent subset of V.

If $\text{Span} A = V$, then A is a basis for V. If not, let $\vec{v} \in V \setminus \text{Span} A$ and $A_1 = A \cup \{\vec{v}\}$. By Lemma 2.4.2, A_1 is linearly independent.

If $\text{Span} A_1 = V$, then A_1 is a basis for V. If not the case, we continue the same process, we get A_k which is linearly independent.

Theorem 2.4.4 assures that the process must stop at A_k, where $|A_k| \leq m$ and A_k is a basis for V.

(3) Since \emptyset is linearly independent, \emptyset can be extended to a basis for V by (2). Hence, V has a basis.

(4) Assume that B_1 and B_2 are bases for V. By Theorem 2.4.4, $|B_1|$ and $|B_2|$ are finite. Since $\text{Span} B_1 = V$ and B_2 is linearly independent, we have $|B_2| \leq |B_1|$ by Theorem 2.4.4. Interchange the roles of B_1 and B_2, we get $|B_1| \leq |B_2|$. Hence, $|B_1| = |B_2|$. \qed

Remark. The above proof is valid for a “finite” dimensional vector space. For a general (finite/infinite dimensional) vector space V, consider

$\mathcal{S} = \{S \subseteq V : S$ is linearly independent$\}$.

Then $\emptyset \in \mathcal{S}$. Partially order \mathcal{S} by \subseteq. We can show that every chain in \mathcal{S} has an upper bound. By Zorn’s lemma, \mathcal{S} has a maximal element, say B. By Theorem 2.4.3 (1), B is a basis of V. Hence, every vector space has a basis.
Example 2.4.1. Extend \{(1, 1, 1)\} to a basis of \(\mathbb{R}^3\).

Remark. If \(\vec{e}_i\) is the \(i\)th column of the identity matrix \(I_m\), then \(\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_m\}\) is a basis for \(F^m\), called the standard basis, and so \(\dim F^m = m\).

Corollary 2.4.6. If \(V\) is a vector space with \(\dim V = n\), then:
1. any spanning set of \(n\) elements is a basis of \(V\)
2. any linearly independent set of \(n\) elements is a basis of \(V\)
3. if \(W\) is an \(n\)-dimensional subspace of \(V\), then \(W = V\).

Proof. Let \(S = \{\vec{v}_1, \ldots, \vec{v}_n\}\) be a set of \(n\) vectors in \(V\).
1. Assume that \(\text{Span} \, S = V\). Then \(S\) has a subset which is a basis for \(V\) by Corollary 2.4.5 (1). But \(\dim V = n\), so we have \(S\) is a basis for \(V\).
2. Assume that \(S\) is linearly independent. Then \(S\) can be extended to a basis for \(V\) by Corollary 2.4.5 (2). Again \(\dim V = n\) implies \(S\) is a basis for \(V\).
3. Assume that \(W\) is a subspace of \(V\) and \(\dim W = n\) with basis \(B = \{\vec{w}_1, \ldots, \vec{w}_n\}\). Then \(B \subseteq V\) and \(B\) is linearly independent.
 But \(|B| = n = \dim V\), by (2), \(B\) is a basis for \(V\). Hence, \(W = \text{Span} \, B = V\). \(\square\)

Corollary 2.4.7. If \(V\) is a finite-dimensional vector space and \(U\) is a proper subspace of \(V\), then \(U\) is finite-dimensional and \(\dim U < \dim V\).

Proof. Assume that \(U\) is a proper subspace of \(V\).
Let \(B\) be a basis of \(U\). Then \(B\) is linearly independent.
By Corollary 2.4.5 (2), \(B\) can be extended to a basis \(C\) for \(V\).
If \(B = C\), then \(U = V\) by Corollary 2.4.6.
Hence, \(|B| < |C|\), so \(\dim U < \dim V\). \(\square\)
Theorem 2.4.8. If W_1 and W_2 are finite dimensional subspaces of a vector space V over a field F, then $W_1 + W_2$ is finite dimensional and

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$$

Proof. Let $\mathcal{B} = \{\vec{u}_1, \ldots, \vec{u}_r\}$ be a basis for $W_1 \cap W_2$.

Extend \mathcal{B} to a basis $\mathcal{B}_1 = \{\vec{u}_1, \ldots, \vec{u}_r, \vec{v}_1, \ldots, \vec{v}_n\}$ for W_1 and to a basis $\mathcal{B}_2 = \{\vec{u}_1, \ldots, \vec{u}_r, \vec{w}_1, \ldots, \vec{w}_m\}$ for W_2.

Then $\dim W_1 = r + n$, $\dim W_2 = r + m$ and $\dim(W_1 \cap W_2) = r$.

We shall show that $\mathcal{B}' = \mathcal{B}_1 \cup \mathcal{B}_2 = \{\vec{u}_1, \ldots, \vec{u}_r, \vec{v}_1, \ldots, \vec{v}_n, \vec{w}_1, \ldots, \vec{w}_m\}$ is a basis for $W_1 + W_2$. This implies that

$$\dim(W_1 + W_2) = r + n + m = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$$

as desired.

By Exercise Set II · 8, we have

$$\text{Span}(\mathcal{B}_1 \cup \mathcal{B}_2) = \text{Span} \mathcal{B}_1 + \text{Span} \mathcal{B}_2 = W_1 + W_2.$$

Next, we prove linearly independence.

Let $c_1, \ldots, c_r, d_1, \ldots, d_n, e_1, \ldots, e_m \in F$ be such that

$$c_1 \vec{v}_1 + \cdots + c_r \vec{v}_r + d_1 \vec{v}_1 + \cdots + d_n \vec{v}_n + e_1 \vec{w}_1 + \cdots + e_m \vec{w}_m = \vec{0}.$$

Then

$$c_1 \vec{v}_1 + \cdots + c_r \vec{v}_r + d_1 \vec{v}_1 + \cdots + d_n \vec{v}_n = -e_1 \vec{w}_1 - \cdots - e_m \vec{w}_m.$$

so $-e_1 \vec{w}_1 - \cdots - e_m \vec{w}_m \in W_1 \cap W_2$.

Since $W_1 \cap W_2 = \text{Span}\{\vec{u}_1, \ldots, \vec{u}_r\}$, there exist $c'_1, \ldots, c'_r \in F$ such that

$$-e_1 \vec{w}_1 - \cdots - e_m \vec{w}_m = c'_1 \vec{u}_1 + \cdots + c'_r \vec{u}_r.$$

Thus,

$$(c_1 - c'_1) \vec{v}_1 + \cdots + (c_r - c'_r) \vec{v}_r + d_1 \vec{v}_1 + \cdots + d_n \vec{v}_n = \vec{0}.$$

Since \mathcal{B}_1 is linearly independent, $c_i = c'_i$ for all $i = 1, \ldots, r$ and $d_j = 0$ for all $j \in \{1, \ldots, n\}$. Therefore,

$$c_1 \vec{v}_1 + \cdots + c_r \vec{v}_r + e_1 \vec{w}_1 + \cdots + e_m \vec{w}_m = \vec{0}.$$

Since \mathcal{B}_2 is linearly independent, $c_i = 0$ for all $i = 1, \ldots, r$ and $e_k = 0$ for all $k \in \{1, \ldots, m\}$. Hence, $\mathcal{B}_1 \cup \mathcal{B}_2$ is linearly independent. \qed
Example 2.4.2. Consider two subspaces of \mathbb{R}^5

$$W_1 = \left\{ \begin{bmatrix} a \\ a-b \\ b \\ a+b \\ 0 \end{bmatrix} \in \mathbb{R}^5 : a, b \in \mathbb{R} \right\}$$

and

$$W_2 = \left\{ \begin{bmatrix} c \\ d \\ 0 \\ e \\ d-e \end{bmatrix} \in \mathbb{R}^5 : c, d, e \in \mathbb{R} \right\}.$$

Find bases for W_1, W_2 and $W_1 \cap W_2$. Determine the dimension of $W_1 + W_2$.

Theorem 2.4.9. [Universal Mapping Property]

Let $B = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ be a basis of V.

If $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n \in W$ (not necessarily distinct), then there exists a unique linear transformation $T : V \to W$ such that $T(\vec{v}_i) = \vec{w}_i$ for all $i \in \{1, 2, \ldots, n\}$.

Proof. By Theorem 2.4.1, for each $\vec{v} \in V$ can be expressed uniquely in the form

$$\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n,$$

for some $c_1, c_2, \ldots, c_n \in F$, so if $T : V \to W$ is to be linear, we must define

$$T(\vec{v}) = T(c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n) = c_1 T(\vec{v}_1) + c_2 T(\vec{v}_2) + \cdots + c_n T(\vec{v}_n)$$

for all $\vec{v} \in V$.

Then T is linear and $T(\vec{v}_i) = \vec{w}_i$ for all $i \in \{1, 2, \ldots, n\}$.

Finally, if $U : V \to W$ is another linear transformation such that $U(\vec{v}_i) = \vec{w}_i$ for all $i \in \{1, 2, \ldots, n\}$, then

$$U(\vec{v}) = U(c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n) = c_1 U(\vec{v}_1) + c_2 U(\vec{v}_2) + \cdots + c_n U(\vec{v}_n)$$

because U is linear,

$$= c_1 \vec{w}_1 + c_2 \vec{w}_2 + \cdots + c_n \vec{w}_n$$

$$= T(\vec{v})$$

for all $\vec{v} \in V$, and hence $U = T$. \qed
Example 2.4.3. (1) Find a linear transformation \(T \) that satisfies the following conditions
(a) \(T : \mathbb{C} \rightarrow \mathbb{R}^2[x] \) with \(T(1-i) = 2x^2 \) and \(T(1+i) = 1-x \),
(b) \(T : \mathbb{R}^2[x] \rightarrow \mathbb{R}^2 \) with
\[
T(1) = (0, 1), \quad T(1-x) = (0, 1) \quad \text{and} \quad T(x+x^2) = (1, 1).
\]

(2) Let \(T : \mathbb{R}_1[x] \rightarrow \mathbb{R}^3 \) be a linear transformation with
\[
T(2-x) = (1, -1, 1) \quad \text{and} \quad T(1+x) = (0, 1, -1).
\]
Find \(T(-1+2x) \).

Let \(V \) and \(W \) be vector spaces over a field and \(T : V \rightarrow W \) a linear transformation. The rank of \(T \), denoted by \(\text{rank} \ T \), is \(\dim(\text{im} \ T) \) and the nullity of \(T \), denoted by \(\text{nullity} \ T \), is \(\dim(\ker \ T) \).

Theorem 2.4.10. Let \(V \) and \(W \) be vector spaces over a field \(F \) and \(T : V \rightarrow W \) a linear transformation. If \(V \) is finite dimensional, then
\[
\text{rank} \ T + \text{nullity} \ T = \dim V.
\]

Proof. Let \(B = \{\vec{u}_1, \ldots, \vec{u}_k\} \) be a basis for \(\ker T \).
Extend \(B \) to a basis \(B' = \{\vec{u}_1, \ldots, \vec{u}_k, \vec{v}_1, \ldots, \vec{v}_m\} \) for \(V \). Then \(T(B') = \{\vec{0}_W, T(\vec{v}_1), \ldots, T(\vec{v}_m)\} \).
By Exercise Set II - 19, we have
\[
\text{im} \ T = \text{Span} \ T(B') = \text{Span} \{T(\vec{v}_1), \ldots, T(\vec{v}_m)\}.
\]
We shall prove that the set \(\{T(\vec{v}_1), \ldots, T(\vec{v}_m)\} \) is linear independent and hence it is a basis for \(\text{im} \ T \). Let \(c_1, \ldots, c_m \in F \) be such that
\[
c_1T(\vec{v}_1) + \cdots + c_mT(\vec{v}_m) = \vec{0}_m.
\]
Then
\[
T(c_1\vec{v}_1 + \cdots + c_m\vec{v}_m) = \vec{0}_m,
\]
so \(c_1\vec{v}_1 + \cdots + c_m\vec{v}_m \in \ker T \). Thus,
\[
c_1\vec{v}_1 + \cdots + c_m\vec{v}_m = d_1\vec{u}_1 + \cdots + d_k\vec{u}_k
\]
for some \(d_1, \ldots, d_k \in F \), so
\[
c_1\vec{v}_1 + \cdots + c_m\vec{v}_m + (-d_1)\vec{u}_1 + \cdots + (-d_k)\vec{u}_k = \vec{0}_V.
\]
Since \(B' \) is linearly independent, we get
\[
c_1 = \cdots = c_m = d_1 = \cdots = d_k = 0.
\]
Hence, \(\{T(\vec{v}_1), \ldots, T(\vec{v}_m)\} \) is linear independent. Therefore,
\[
\text{rank} \ T + \text{nullity} \ T = \dim(\text{im} \ T) + \dim(\ker \ T) = m + k = \dim V
\]
as desired. \(\square \)
Theorem 2.4.11. Let V and W be finite dimensional and $T : V \to W$ a linear transformation and $\dim V = \dim W$. Then T is 1-1 \iff T is onto.

Proof. Let T be a linear transformation.

\[T \text{ is 1-1 } \iff \ker T = \{ \vec{0}_V \} \]
\[\iff \text{nullity } T = 0 \]
\[\iff \rank T = \dim V \]
\[\iff \rank T = \dim W \]
\[\iff \dim(\im T) = \dim W \]
\[\iff \im T = W \]
\[\iff T \text{ is onto.} \]

Hence, T is 1-1 \iff T is onto. \hfill \square

Corollary 2.4.12. If V is finite dimensional, S and T are linear transformations from V to V, and $T \circ S$ is the identity map, then $T = S^{-1}$.

Proof. We shall prove that S is 1-1. Let $\vec{x} \in V$ be such that $S(\vec{x}) = \vec{0}_V$.

Since $T \circ S$ is the identity map, we have

\[\vec{x} = (T \circ S)(\vec{x}) = T(\vec{0}_V) = \vec{0}_V. \]

By Theorem 2.3.5, S is 1-1. Thus, S is onto by Theorem 2.4.11.

Hence, S is invertible and $T = S^{-1}$. \hfill \square

From Theorem 2.4.1, we know that the representation of a given vector $\vec{v} \in V$ in terms of a given basis is unique. Let V be an n-dimensional vector space over a field F with an ordered basis $B = \{ \vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n \}$ and $\vec{v} \in V$.

Then

\[\forall \vec{v} \in V, \exists! (c_1, \ldots, c_n) \in F^n, \vec{v} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \cdots + c_n \vec{u}_n. \]

The vector $[\vec{v}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in F^n$ is called the *coordinate vector of \vec{v} relative to the ordered basis B*.

A one-to-one linear transformation from V onto W is called an isomorphism. If there exists an isomorphism from V onto W, then we say that V is isomorphic to W and we write $V \cong W$. Note that \cong is an equivalence relation.

Theorem 2.4.13. If V is an n-dimensional vector space over F, then $V \cong F^n$.

Proof. Let $B = \{ \vec{u}_1, \ldots, \vec{u}_n \}$ be an ordered basis for V.

Define $T : V \to F^n$ by

\[\vec{v} = c_1 \vec{u}_1 + \cdots + c_n \vec{u}_n \mapsto \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = [\vec{v}]_B. \]

Let $\vec{v}, \vec{w} \in V$ and $a \in F$.

Then $\vec{v} = c_1 \vec{u}_1 + \cdots + c_n \vec{u}_n$ and $\vec{w} = d_1 \vec{u}_1 + \cdots + d_n \vec{u}_n$, so

\[[\vec{v} + \vec{w}]_B = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [\vec{v}]_B + [\vec{w}]_B \]

and

\[[a \vec{v}]_B = \begin{bmatrix} ac_1 \\ \vdots \\ ac_n \end{bmatrix} = a \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = a[\vec{v}]_B. \]

Hence, T is a linear transformation.
Next, we shall show that \(T \) is onto. Let \(\vec{v} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{F}^n \). Choose \(\vec{v} = c_1 \vec{u}_1 + \cdots + c_n \vec{u}_n \in V \). Then \(T(\vec{v}) = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \).

Since \(\dim V = n = \dim \mathbb{F}^n \), we have \(T \) is 1-1 by 2.4.11. Therefore, \(T \) is an isomorphism and \(V \cong \mathbb{F}^n \).

Corollary 2.4.14. If \(V \) and \(W \) are finite dimensional, then

\[
\dim V = \dim W \iff V \cong W.
\]

Let \(A \) be an \(m \times n \) matrix. When \(A \) is row reduced to a matrix \(B \), the column of \(B \) are often totally different from the columns of \(A \). However, the equation \(A\vec{x} = \vec{0} \) and \(B\vec{x} = \vec{0} \) have exactly the same set of solutions. That is, the column of \(A \) have exactly the same linear dependence relationships as the column of \(B \). We conclude this result in

Theorem 2.4.15. Elementary row operations on a matrix do not effect the linear dependence relations among the columns of the matrix. Moreover, the pivot columns of a matrix form a basis for \(\text{Col} A \). Hence, \(\dim(\text{Col} A) = \text{rank} A \).

For an \(m \times n \) matrix \(A \), \(\dim(\text{Nul} A) \), denoted by \(\text{nullity} A \), is called the **nullity of \(A \)**.

Recall that \(T : \vec{x} \to A\vec{x} \) is a linear transformation from \(\mathbb{F}^n \) to \(\mathbb{F}^m \).

Corollary 2.4.16. Let \(A \) be an \(m \times n \) matrix. Then

\[
\text{nullity} A + \text{rank} A = n.
\]

Proof. It follows from Theorem 2.4.10. \(\square \)
Theorem 2.4.17. Each $m \times n$ matrix A is row equivalent to a unique reduced echelon matrix U.

Proof. The row reduction algorithm shows that there exists at least one such matrix U. Suppose that A is row equivalent to matrices U and V in reduced echelon form. The leftmost nonzero entry in a row of U is a “leading 1”.

The pivot columns of U and V are precisely the nonzero columns that are not linearly dependent on the columns to their left. (This condition is satisfied automatically by a first column if it is nonzero.) Since U and V are row equivalent (both being row equivalent to A), their columns have the same linear dependence relations. Hence, the pivot columns of U and V appear in the same locations. If there are r such columns, then since U and V are in reduced echelon form, their pivot columns are the first r columns of the $m \times m$ identity matrix. Thus, corresponding pivot columns of U and V are equal.

Finally, consider any nonpivot column of U, say column j. This column is either zero or a linear combination of the pivot columns to its left (because those pivot columns are a basis for the space spanned by the columns to the left of column j). Either case can be expressed by writing $U\vec{x} = \vec{0}$ for some \vec{x} whose jth entry is 1. Then $V\vec{x} = \vec{0}$, too, which says that column j of V is either zero or the same linear combination of the pivot columns of V to its left. Since corresponding pivot columns of U and V are equal, columns j of U and V are also equal. This holds for all nonpivot columns, so $V = U$, which proves that U is unique. \qed