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Chapter 1
Divisibility Theory in the Integers

LetN denote the set of positive integers and let Z be the set of integers.

1.1 The Division Algorithm and GCD

Theorem 1.1.1. [Well-Ordering Principle] Every nonempty set S of nonnegative integers contains a
least element; that is, there is some integer a in S such that a ≤ b for all b ∈ S.

Theorem 1.1.2. [Division Algorithm] Given integers a and b, with b > 0, there exist unique integers q
and r satisfying

a = qb + r, where 0 ≤ r < b.

The integers q and r are called, respectively, the quotient and remainder in the division of a by b.

Proof. Existence: Let S = {a− xb : x ∈ Z and a− xb ≥ 0} ⊆N∪ {0}. We shall show that S , ∅. Since
b ≥ 1, we have |a|b ≥ |a|, so

a − (−|a|)b = a + |a|b ≥ a + |a| ≥ 0,

Then a − (−|a|)b ∈ S, so S , ∅. By the well-ordering principle, S contains a least element, call it r.
Then a − qb = r for some q ∈ Z. Since r ∈ S, r ≥ 0 and a = qb + r. It remains to show that r < b.
Suppose that r ≥ b. Thus,

0 ≤ r − b = a − qb − b = a − (q + 1)b,

so r − b ≤ r and r − b ∈ S. This contradicts the minimality of r. Hence, r < b.
Uniqueness: Let q, q′, r, r′ ∈ Z be such that

a = qb + r and a = q′b + r′,

where 0 ≤ r, r′ < b. Then
(q − q′)b = r′ − r.

Since 0 ≤ r, r′ < b, we have |r′ − r| < b, so b|q − q′| = |r′ − r| < b. This implies that 0 ≤ |q − q′| < 1,
hence q = q′ which also forces r = r′. �

Corollary 1.1.3. If a and b are integers, with b , 0, then there exist unique integers q and r such that

a = qb + r, where 0 ≤ r < |b|.
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2 Divisibility Theory in the Integers Y. Meemark

Proof. It suffices to consider the case in which b < 0. Then |b| > 0 and Theorem 1.1.2 gives q′, r ∈ Z
such that

a = q′|b| + r, where 0 ≤ r < |b|.

Since |b| = −b, we may take q = −q′ to arrive at

a = qb + r, where 0 ≤ r < |b|

as desired. �

Example 1.1.1. Show that
a(a2 + 2)

3
is an integer for all a ≥ 1.

Solution. By the division algorithm, every a ∈ Z is of the form

3q or 3q + 1 or 3q + 2, where q ∈ Z.

We distinguish three cases.

(1) a = 3q. Then
a(a2 + 2)

2
=

3q((3q)2 + 2)
3

= q((3q)2 + 2) ∈ Z.

(2) a = 3q + 1. Then
a(a2 + 2)

2
=

(3q + 1)((3q + 1)2 + 2)
3

= (3q + 1)(3q2 + 2q + 1) ∈ Z.

(3) a = 3q + 2. Then
a(a2 + 2)

2
=

(3q + 2)((3q + 2)2 + 2)
3

= (3q + 2)(3q2 + 2q + 2) ∈ Z.

Hence,
a(a2 + 2)

3
is an integer. �

Definition. An integer b is said to be divisible by an integer a , 0, in symbols a | b, if there exists
some integer c such that b = ac. We write a - b to indicate that b is not divisible by a.

There is other language for expressing the divisibility relation a | b. One could say that a is a
divisor of b, that a is a factor of b or that b is a multiple of a. Notice that there is a restriction on
the divisor a: whenever the notation a | b is employed, it is understood that a , 0.

An even number is an integer divisible by 2 and an odd number is an integer not divisible
by 2.

It will be helpful to list some immediate consequences.

Theorem 1.1.4. For integers a, b and c, the following statements hold:

(1) a | 0, 1 | a, a | a.

(2) a | 1 if and only if a = ±1.

(3) If a | b, then a | (−b), (−a) | b and (−a) | (−b).

(4) If a | b and c | d, then ac | bd.

(5) If a | b and b | c, then a | c.

(6) (a | b and b | a) if and only if a = ±b.
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(7) If a | b and b , 0, then |a| ≤ |b|.

(8) If a | b and a | c, then a | (bx + cy) for arbitrary integers x and y.

Proof. Exercises. �

Theorem 1.1.5. A positive integer n always divides the product of n consecutive integers.

Proof. Let a be an integer. By the division algorithm, there exist q, r ∈ Z such that

a = nq + r, where 0 ≤ r < n.

Thus, n | (a − r) and 0 ≤ r < n, so n divides a(a − 1)(a − 2) . . . (a − n + 1). �

Definition. Let a and b be given integers, with at least one of them different from zero. The
greatest common divisor (gcd) of a and b, denoted by gcd(a, b), is the positive integer d satisfying

(1) d | a and d | b,

(2) for all c ∈ Z, if c | a and c | b, then c ≤ d.

Example 1.1.2. gcd(−12, 30) = 6 and gcd(8, 15) = 1.

Remarks. (1) If a , 0, then gcd(a, 0) = |a|.

(2) gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

(3) If a | b, then gcd(a, b) = |a|.

Theorem 1.1.6. Given integers a and b, not both of which are zero, there exist integers x and y such that

gcd(a, b) = ax + by.

Proof. Assume that a , 0. Consider the set

S = {au + bv : au + bv > 0 and u, v ∈ Z}.

Since |a| = au + b · 0, where we choose u = 1 or −1 according as a is positive or negative, we have
S , ∅. By the well-ordering principle, S contains the least element d. Since d ∈ S, there exist
integers x and y for which d = ax + by > 0. We shall claim that d = gcd(a, b).

The division algorithm gives q, r ∈ Z such that a = qd+ r, where 0 ≤ r < d. Assume that r , 0.
Then

0 < r = a − qd = a − q(ax + by) = a(1 − qx) + b(−qy).

This implies that r ∈ S which contradicts the minimality of d. Thus, d | a. Similarly, we can show
that d | b.

Now, let c ∈ Z be such that c | a and c | b. Then c | (ax + by), so c | d. Thus, c ≤ |c| ≤ |d| = d.
Hence, d = gcd(a, b). �

Corollary 1.1.7. Let a and b be integers not both zero and let d = gcd(a, b). Then the set

T = {au + bv : u, v ∈ Z}

is precisely the set of all multiples of d. That is, T = dZ.
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Proof. Let u, v ∈ Z. Since d | a and d | b, d | (au+bv), so T ⊆ dZ. Conversely, let q ∈ Z. By Theorem
1.1.6, there exist x, y ∈ Z such that d = ax + by. Then

dq = (ax + by)q = a(xq) + b(yq) ∈ T.

Hence, dZ ⊆ T. �

Corollary 1.1.8. Let a and b be integers, not both zero. For a positive integer d, d = gcd(a, b) if and only
if (1) d | a and d | b, and (2) if c | a and c | b, then c | d.

Proof. It suffices to show that if d = gcd(a, b), c | a and c | b, then c | d. By Theorem 1.1.6, there
exist x, y ∈ Z such that d = ax + by. Since c | a and c | b, we have c | d. �

Definition. Two integers a and b, not both of which are zero, are said to be relatively prime
whenever gcd(a, b) = 1.

Theorem 1.1.9. Let a and b be integers, not both zero. Then a and b are relatively prime if and only if
there exist integers x and y such that 1 = ax + by.

Proof. It follows directly from Theorem 1.1.6 and the definition of gcd. �

Corollary 1.1.10. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

Proof. By Theorem 1.1.6, there exist x, y ∈ Z such that d = ax + by, so

1 = (a/d)x + (b/d)y.

Since a/d and b/d are integers, by Theorem 1.1.9, gcd(a/d, b/d) = 1. �

Corollary 1.1.11. If a | c and b | c, with gcd(a, b) = 1, then ab | c.

Proof. Write c = aq and c = bq′ for some integers q and q′. Since gcd(a, b) = 1, there exist x, y ∈ Z
such that 1 = ax + by. Then c = acx + bcy = a(bq′)x + b(aq)y = ab(q′x + qy), so ab | c �

Corollary 1.1.12. If a | bc, with gcd(a, b) = 1, then a | c.

Proof. Since gcd(a, b) = 1, we have 1 = ax + by for some x, y ∈ Z. Then c = acx + bcy. Since a | bc,
a | c. �

Remark. If gcd(a, b) > 1, the above corollaries are false. For example,
(1) 6 | 18 and 9 | 18 but 54 - 18, (2) 6 | 4 · 3 but 6 - 4.

Remark. Observe that gcd(a,gcd(b, c)) = gcd(gcd(a, b), c). The greatest common divisor of three
integers a, b and c is denoted by gcd(a, b, c) is defined by the relation

gcd(a, b, c) = gcd(gcd(a, b), c).

Similarly, the gcd of n integers a1, a2, . . . , an is defined inductively by the relation

gcd(a1, a2, . . . , an) = gcd(gcd(a1, a2, . . . , an−1), an).

Again, this number is independent on the order in which the ai appear. Moreover, there exist
integers x1, x2, . . . , xn such that

gcd(a1, a2, . . . , an) = a1x1 + a2x2 + · · · + anxn.
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Definition. If gcd(ai, a j) = 1 whenever i , j, the number a1, a2, . . . , an are said to be pairwise
relatively prime or relatively prime in pairs.

Exercise 1.1. 1. Use the division algorithm to show that the fourth power of any integer is of the form
either 5k or 5k + 1.

2. If a is an odd integer, show that 8 | (a2 − 1).

3. If a and b are both odd integers, then 16 | (a4 + b4 − 2).

4. Prove the following statements.
(i) If c | ab and d = gcd(c, a), then c | db.
(ii) If a | bc, then a | gcd(a, b) gcd(a, c).
(iii) If gcd(a, c) = 1 and gcd(b, c) = d, then gcd(ab, c) = d.
(iv) If gcd(a, b) = 1, then gcd(a2, b2) = 1.

5. Given an odd integer a, show that a2 + (a + 2)2 + (a + 4)2 + 1 is divisible by 12.

6. Let a,m and n be positive integers. If r is the remainder when m divides n, prove that ar − 1 is the
remainder when am − 1 divides an − 1. Deduce that if m | n, then (am − 1) | (an − 1).

7. Given integers a and b, prove that
(i) there exist integers x and y for which c = ax + by if and only if gcd(a, b) | c, and
(ii) if there exist integers x and y for which ax + by = gcd(a, b), then gcd(x, y) = 1.

1.2 The Fundamental Theorem of Arithmetic

Definition. An integer p > 1 is called a prime number, or simply a prime, if its only positive
divisors are 1 and p. An integer greater than 1 which is not a prime is termed composite.

Example 1.2.1. 2, 3, 5, 11, 2011 are primes. 6, 8, 12, 2554 are composite numbers.

Remark. Let p be a prime. Then p does not divide a if and only if gcd(p, a) = 1.

Theorem 1.2.1. If p is a prime and p | ab, then p | a or p | b.

Proof. Assume that p | ab and p - a. Then gcd(p, a) = 1, so p | b by Corollary 1.1.12. �

Corollary 1.2.2. If p is a prime and p | a1a2 . . . an, then p | ak for some k, where 1 ≤ k ≤ n.

Corollary 1.2.3. If p, q1, q2, . . . , qn are all primes and p | q1q2 . . . qn, then p = qk for some k, where
1 ≤ k ≤ n.

Theorem 1.2.4. [Fundamental Theorem of Arithmetic] Every positive integer n > 1 can be expressed
as a product of primes; this representation is unique, apart from the order in which the factors occur.

Proof. Expressible: Assume on the contrary that there exists an integer n > 1 which is not a product
of primes. By the well-ordering principle, there is a smallest n0 such that n0 is not a product of
primes. Then n0 is composite, so there exist integers 1 < d1, d2 < n0 such that n0 = d1d2. Since
d1, d2 < n0, d1 and d2 are products of primes, and so is n0. This gives a contradiction. Hence,
every positive integer n > 1 can be expressed as a product of primes.

Uniqueness: Assume that
n = p1p2 . . . ps = q1q2 . . . qt,
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where 1 ≤ s ≤ t and pi and q j are prime such that

p1 ≤ p2 ≤ · · · ≤ ps and q1 ≤ q2 ≤ · · · ≤ qt.

Corollary 1.2.3 tells us that p1 = qk for some k ∈ {1, . . . , t}. It makes p1 ≥ q1. Similarly, q1 = pl for
some l ∈ {1, . . . , s}. Then q1 ≥ p1, so p1 = q1. Thus,

p2 . . . ps = q2 . . . qt.

Now, repeat the process to get p2 = q2, and we obtain

p3 . . . ps = q3 . . . qt.

Continue in this manner. If s < t, we would get

1 = qs+1qs+2 . . . qt,

which is impossible. Hence, s = t and

p1 = q1, p2 = q2, . . . , ps = qs

as desired. �

Corollary 1.2.5. Any positive integer n > 1 can be written uniquely in a canonical form

n = pk1
1 pk2

2 . . . p
kr
r ,

where, for i = 1, 2, . . . , r, each ki is a positive integer and each pi is a prime, with p1 < p2 < · · · < pr.

Corollary 1.2.6. Any positive integer n > 1 has a prime divisor.

Theorem 1.2.7. [Euclid] There are an infinite number of primes.

Proof. Assume that there are only finite numbers of primes, say p1, p2, . . . , ps. Consider

n = p1p2 . . . ps + 1 > 1.

By Corollary 1.2.6, there exists a prime p such that p | n. Thus, p = pi for some i ∈ {1, 2, . . . , s}.
Since p | n and p | p1p2 . . . ps, we have p | 1, which is a contradiction. �

Corollary 1.2.8. A composite number a > 1 always possesses a prime divisor p satisfying p ≤
√

a.

In particular, in testing the primality of a specify integer a > 1, it therefore suffices to divide a
by those primes not exceeding

√
a, e.g., 149 is a prime because

√
149 < 13 and 2, 3, 5, 7, 11 are not

divisors of 149.

Proof of Corollary 1.2.8. Let a be a composite number. Then there exist 1 < d1, d2 < a such that
a = d1d2. If d1 >

√
a and d2 >

√
a, then d1d2 > a, a contradiction. Thus, d1 ≤

√
a or d2 ≤

√
a.

Assume that d1 ≤
√

a. By Corollary 1.2.6, there is a prime p such that p | d1. Hence, p ≤
√

a and
p | a. �
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Remark. The so-called sieve of Eratosthenes is an algorithm for single out the primes from
among the set of integers k with |k| ≤ n, for arbitrary n > 0. It depends on Corollary 1.2.8. First,
the smallest integer larger than 1, namely 2, must be a prime, and now we know all the primes
with p ≤ 2. Suppose we know all the primes p with 1 < p < n. Then the primes in the set of m
with n < m ≤ n2 are the integers left in this set after eliminating all the multiples of those known
primes.

Example 1.2.2. Find all primes less than 100.

Solution. Write
2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100.

Eliminate all even numbers except 2. Since
√

100 = 10, delete all multiples of 3, 5 and 7. All
numbers left are primes less than 100. �

A Mersenne number is a number Mp = 2p − 1, where p is a prime. If Mp itself is a prime, then
it is called a Mersenne prime. Note that numbers of the form 2n − 1, where n is composite, can
never be prime because, for n = kl with 1 < k, l < n, we have

2n − 1 = (2k − 1)(2k(l−1) + 2k(l−2) + · · · + 1).

However, not all primes p yield Mersenne primes, the first exception being p = 11, because
211−1 = 2047 = 23 ·89. Mersenne primes are useful in discovering large primes, e.g., 243,112,609−1
is a prime with 12, 978, 189 digits.

Exercise 1.2. 1. (i) Prove that gcd(a, a + k) | k for all integers a and k not both zero.
(ii) Prove that gcd(a, a + p) = 1 or p for every integer a and prime p.

2. If p is a prime, p | (ra − b) and p | (rc − d) for some r ∈ Z, then p | (ad − bc).

3. If p is a prime, prove that
√

p is irrational.

4. If p ≥ 5 is a prime, show that p2 + 2 is composite.

5. Let p be the least prime factor of n where n is composite. Prove that if p > n1/3, then n/p is prime.

6. Twin primes are pairs of primes which differ by two (such as 3 and 5, 11 and 13, etc). Prove that
the sum of twin primes greater than 3 is divisible by 12.

7. Prove that every n ≥ 12 is the sum of two composite numbers.

8. Prove that if 2m + 1 is an odd prime, then there exists n ∈N ∪ {0} such that m = 2n.

9. For each n ∈N, let Fn = 22n
+ 1. Let m,n ∈N. Prove that if m , n, then gcd(Fm,Fn) = 1.
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1.3 The Euclidean Algorithm and Linear Diophantine Equations

Lemma 1.3.1. If a = qb + r, then gcd(a, b) = gcd(b, r) = gcd(b, a − bq).

Proof. Let d = gcd(a, b). Then d | a and d | b. We shall show that d = gcd(b, r). Since d | a and d | b,
d | (a − bq), so d | r. Next, let c ∈ Z be such that c | b and c | r. Then c | a, so c is a common divisor
of a and b. Thus, c ≤ d. Hence, d = gcd(b, r) = gcd(b, a − bq). �

Theorem 1.3.2. [Euclidean Algorithm] Let a and b be positive integers, with b ≤ a. Repeatedly
applications of the division algorithm to a and b give

a = bq1 + r1, where 0 < r1 < b

b = r1q2 + r2, where 0 < r2 < r1

r1 = q3r2 + r3, where 0 < r3 < r2

...

rn−2 = qnrn−1 + rn, where 0 < rn < rn−1

rn−1 = qn+1rn.

Then rn = gcd(a, b).

Proof. Since rn | rn−1, we repeatedly have

rn = gcd(rn, rn−1) = gcd(rn−2, rn−1) = · · · = gcd(r1, r2) = gcd(b, r1) = gcd(a, b)

as desired. �

Remark. For expressing gcd(a, b) in the form ax + by, we fall back the Euclidean algorithm.
Starting with the next-to-last equation arising from the algorithm, we write

rn = rn−2 − qnrn−1.

Now solve the preceding equation in the algorithm for rn−1 and substitute to obtain

rn = rn−2 − qn(rn−3 − qn−1rn−2)

= (1 + qnqn−1)rn−2 + (−qn)rn−3.

This represents rn as a linear combination of rn−2 and rn−3. Continuing backwards through the
system of equations, we successively eliminate the remainders rn−1, rn−2, . . . , r2, r1 until a stage is
reached where rn = gcd(a, b) is expressed as a linear combination of a and b.

Example 1.3.1. Find the gcd(a, b) and express it as a linear combination of a and b.
(1) a = 70 and b = 15 (2) a = 1770 and b = 234

Let a, b ∈ Z and d = gcd(a, b). Consider the linear Diophantine equation

ax + by = c. (1.3.1)

Theorem 1.3.3. (1) The equation (1.3.1) has a solution in integers if and only if d | c.
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(2) If (x0, y0) is any particular integer solution of (1.3.1), then all other solutions are given by

x = x0 + (b/d)t and y = y0 − (a/d)t

for varying integers t.

Proof. (1) Assume that Eq. (1.3.1) has a solution, say (x1, y1). Then ax1 + by1 = c. Since d | a and
d | b, we have d | c. Conversely, suppose that d | c. Since gcd(a, b) = d, there exist x, y ∈ Z such
that ax + by = d. In addition, since d | c, c = dq for some q ∈ Z. Then

a(xq) + b(yq) = dq = c.

Hence, (xq, yq) is a desired solution.
(2) Assume that d | c and ax0 + by0 = c, and let (x, y) be any other solution of (1.3.1). Then

ax + by = c. This gives
a(x − x0) + b(y − y0) = 0, (1.3.2)

so
a
d

(x − x0) = −b
d

(y − y0),

which implies a
d | b

d (y0 − y). Since gcd( a
d ,

b
d ) = 1, we have a

d | (y0 − y). Thus, there exists t ∈ Z such
that y0 − y = a

d t, that is,

y = y0 −
a
d

t.

Put this y into (1.3.2), we get
a(x − x0) + b(− a

d
t) = 0,

so
x = x0 +

b
d

t.

Note that if (x0, y0) is a solution of ax + by = c, then

a
(
x0 +

b
d

t
)
+ b

(
y0 −

a
d

t
)
= ax0 + by0 = c

for all integers t, and hence

x = x0 + (b/d)t and y = y0 − (a/d)t

are solution of (1.3.1) for all t ∈ Z. �

Corollary 1.3.4. If gcd(a, b) = 1 and if (x0, y0) is a particular integer solution of the linear Diophantine
equation ax + by = c, then all solutions are given by

x = x0 + bt and y = y0 − at

for integer values of t.

Example 1.3.2. Determine all solutions in integers (if any) of the following Diophantine equations:
(1) 70x + 15y = 5 (2) 1770x + 234y = 18 (3) 33x + 121y = 919
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Example 1.3.3. Determine all solutions in positive integers of the Diophantine equation 21x +
49y = 903.

Example 1.3.4. Solve: Divide 100 into two summands such that one is divisible by 7 and the
other by 11.

Definition. The least common multiple (lcm) of two nonzero integers a and b, denoted by
lcm(a, b) or [a, b], is the positive integer m satisfying

(1) a | m and b | m,

(2) if a | c and b | c, with c > 0, then m ≤ c.

Remarks. (1) If c is a common multiple of a and b, then lcm(a, b) | c.

(2) If a | b, then lcm(a, b) = |b|.

Theorem 1.3.5. For positive integers a and b,

gcd(a, b) lcm(a, b) = ab.

Proof. Let d = gcd(a, b) and m = lcm(a, b). Since d | a, d | ab, so we have m = ab
d ∈ Z. We shall

show that m = lcm(a, b). Since d | a and d | b, there exist r, s ∈ Z such that a = dr and b = ds. Then

m =
ab
d
=

(dr)(ds)
d

= drs = as = rb,

so a | m and b | m.
Next, let c > 0 be such that a | c and b | c. Then there exist u, v ∈ Z such that c = au and c = bv.

Since d = gcd(a, b), d = ax + by for some integers x and y. Thus,

c
m
=

cd
ab
=

c(ax + by)
ab

=
cax + cby

ab
=

bvax
ab
+

auby
ab
= av + bu ∈ Z,

which gives m | c. But m, c > 0, so m ≤ c. Hence, m = [a, b]. �

Corollary 1.3.6. Given positive integers a and b, lcm(a, b) = ab if and only if gcd(a, b) = 1.

Proof. It follows from Theorem 1.3.5. �

Lemma 1.3.7. Let n > 1 be factored as n = pk1
1 pk2

2 . . . p
kr
r for some primes pi and r, ki ∈ N for all

i ∈ {1, 2, . . . , r}. Then for d ∈N,

d | n⇔ d = pa1
1 pa2

2 . . . p
ar
r , where 0 ≤ ai ≤ ki for all i ∈ {1, 2, . . . , r}.

Hence, {d ∈N : d | n} = {pa1
1 pa2

2 . . . p
ar
r : 0 ≤ ai ≤ ki for all i ∈ {1, 2, . . . , r}}.

Proof. Assume that d | n. If d = 1, then d = p0
1p0

2 . . . p
0
r . Suppose that d > 1. If a prime p divides d,

then p | n, so p = pi for some i ∈ {1, 2, . . . , n}. This implies that d = pd1
1 pd2

2 · · · p
dr
r for some di ∈N∪{0}

for all i ∈ {1, 2, . . . , r}. Since d | n, we have n = cd for some c ∈ N which also means that c | n.
Thus, c = pc1

1 pc2
2 · · · p

cr
r for some ci ∈N ∪ {0} for all i ∈ {1, 2, . . . , r}. Hence,

pk1
1 pk2

2 . . . p
kr
r = n = pc1+d1

1 pc2+d2
2 . . . pcr+dr

r ,

so ki = ci + di for all i. This forces that ki ≥ di for all i. The converse of the statement is clear. �
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Theorem 1.3.8. Let a and b be two integers greater than 1 factored as

a = pa1
1 pa2

2 . . . p
ar
r and b = pb1

1 pb2
2 . . . p

br
r ,

where for i = 1, 2, . . . , r, each pi is a prime with p1 < p2 < · · · < pr, each ai and bi are nonnegative integers,
and each ai or bi are positive. Then we have

gcd(a, b) = pd1
1 pd2

2 . . . p
dr
r , where di = min{ai, bi} for all i = 1, 2, . . . , r

and
lcm(a, b) = pc1

1 pc2
2 . . . p

cr
r , where ci = max{ai, bi} for all i = 1, 2, . . . , r.

Proof. Let d = pd1
1 pd2

2 . . . p
dr
r , where di = min{ai, bi} for all i = 1, 2, . . . , r. We shall show that

d = gcd(a, b). Since di ≤ ai and di ≤ bi for all i, d | a and d | b. Next, let c | a and c | b. Write

c = pn1
1 pn2

2 . . . pnr
r

for some ni ≤ ai and ni ≤ bi for all i ∈ {1, . . . , r}. Thus, ni ≤ min{ai, bi} = di for all i ∈ {1, . . . , r}.
Hence, c ≤ d.

Now, let m = pc1
1 pc2

2 . . . p
cr
r , where ci = max{ai, bi} for all i. We proceed to show that m = lcm(a, b).

Since ci = max{ai, bi}, we have ai ≤ ci and bi ≤ ci for all i, so a | m and b | m. Finally, let c > 0 and
a | c and b | c. Write

c = pm1
1 pm2

2 . . . pmr
r t

for some mi ≥ ai and mi ≥ bi for all i ∈ {1, . . . , r} and gcd(t, p1p2 . . . pr) = 1. Thus, mi ≥ max{ai, bi} = ci

for all i, so m ≤ c. �

Example 1.3.5. Let a, b, c ∈N. Prove that gcd(lcm(a, b), c) = lcm(gcd(a, c), gcd(b, c)).

Solution. Let
a = pa1

1 . . . p
ar
r , b = pb1

1 . . . p
br
r , and, c = pc1

1 . . . p
cr
r ,

where for i = 1, . . . , r, each pi is a prime with p1 < p2 < · · · < pr, each ai, bi, ci ∈ N ∪ {0}, and each
ai, bi or ci is positive. By Theorem 1.3.8, we have

d = gcd(lcm(a, b), c) = pd1
1 . . . p

dr
r and, e = lcm(gcd(a, c),gcd(b, c)) = pe1

1 . . . p
er
r ,

where di = min{max{ai, bi}, ci} and ei = max{min{ai, ci},min{bi, ci}}. Thus, to prove the result, it
suffices to show that

D = min{max{α, β}, γ} = max{min{α, γ},min{β, γ}} = E

for all α, β, γ ∈N ∪ {0}. We distinguish six cases as follows.

D E D E
α ≤ β ≤ γ β β α ≤ γ ≤ β γ γ

β ≤ α ≤ γ α α β ≤ γ ≤ α γ γ

γ ≤ α ≤ β α α γ ≤ β ≤ α β β

Hence, D = E. �
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Remark. It is similar to the gcd, we have lcm(a, lcm(b, c)) = lcm(lcm(a, b), c). The least common
multiple of three nonzero integers a, b and c is denoted by lcm(a, b, c) is defined by

lcm(a, b, c) = lcm(lcm(a, b), c).

Consequently, the lcm of n nonzero integers a1, a2, . . . , an is defined inductively by the relation

lcm(a1, a2, . . . , an) = lcm(lcm(a1, a2, . . . , an−1), an).

Exercise 1.3. 1. Find the gcd(a, b), express it as a linear combination of a and b and compute lcm(a, b).
(i) a = 741 and b = 715 (ii) a = 12075 and b = 4655

2. Determine all solutions in integers (if any) of the following Diophantine equations:
(i) 741x + 715y = 130 (ii) 2072x + 1813y = 2849 (iii) 117x + 143y = 919

3. Determine all solutions in integers of 39x + 42y + 54z = 6.

4. Determine all solutions in positive integers of the Diophantine equation 20x + 21y = 2010.

5. If a and b are relatively prime positive integers, prove that there are no positive integers x and y
such that ab = ax + by.

6. Find the prime factorization of the integers 1224, 3600 and 10140 and use them to compute
gcd(1224, 3600, 10140) and lcm(1224, 3600, 10140).

7. Let a, b, c and d be integers with ab and cd not both 0. Write (·, ·) for gcd(·, ·). Show that

(ab, cd) = (a, c)(b, d)
(

a
(a, c)

,
d

(b, d)

) (
c

(a, c)
,

b
(b, d)

)
.



Chapter 2
The Theory of Congruences

2.1 Basic Properties of Congruence

Definition. Let m be a fixed positive integer. Two integers a and b are said to be congruent
modulo m, symbolized by

a ≡ b (mod m) or a ≡ b mod m

if m divides the difference a − b; that is, provided that a − b = km for some integer k. The number
m is called the modulus of the congruence. When m - (a − b), then we say that a is incongruent
to b modulo m and in this case we write a . b (mod m).

Remark. If m | a, we may write a ≡ 0 (mod m).

Theorem 2.1.1. The congruence is an equivalence relation. That is, we have:

(1) a ≡ a (mod m) (reflexivity),

(2) a ≡ b (mod m) implies b ≡ a (mod m) (symmetry),

(3) a ≡ b (mod m) and b ≡ c (mod m) imply b ≡ c (mod m) (transitivity).

Theorem 2.1.2. If a ≡ b (mod m) and c ≡ d (mod m), then we have:

(1) ax + cy ≡ bx + dy (mod m) for all integers x and y,

(2) ac ≡ bd (mod m),

(3) an ≡ bn (mod m) for every positive integer n, and

(4) f (a) ≡ f (b) (mod m) for every polynomial f with integer coefficients.

Example 2.1.1. Let N = a0+ a110+ · · ·+ an−110n−1+ an10n be the decimal expansion of the positive
integer N, 0 ≤ ak < 10, and let

S = a0 + a1 + · · · + an and T = a0 − a1 + a2 − · · · + (−1)nan.

Then we have:

13
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(1) 3 | N if and only if 3 | S and 9 | N if and only if 9 | S,

(2) 11 | N if and only if 11 | T.

Proof. Since 10 ≡ 1 (mod 3), we have

3 | N ⇔ N ≡ 0 (mod 3)⇔ a0 + a1 + · · · + an ≡ 0 (mod 3)⇔ 3 | S.

The others statements are exercises. �

Theorem 2.1.3. If c > 0, then a ≡ b (mod m) if and only if ac ≡ bc (mod mc).

Proof. It follows from m | (a − b)⇔ mc | (a − b)c⇔ mc | (ac − bc). �

Theorem 2.1.4. If ac ≡ bc (mod m), then a ≡ b (mod
m

gcd(m, c)
).

Proof. Since m | (a−b)c,
m

gcd(m, c)

∣∣∣∣∣ (a − b)
c

gcd(m, c)
. By Theorem 1.1.12, we have

m
gcd(m, c)

∣∣∣∣∣ (a−b)

because gcd
(

m
gcd(m,c) ,

c
gcd(m,c)

)
= 1. �

Corollary 2.1.5. If ac ≡ bc (mod m) and gcd(m, c) = 1, then a ≡ b (mod m).

Corollary 2.1.6. Let p be a prime. If ac ≡ bc (mod p) and p - c, then a ≡ b (mod p).

Theorem 2.1.7. If a ≡ b (mod m), then gcd(a,m) = gcd(b,m). In other words, numbers which are
congruent modulo m have the same gcd with m.

Proof. Assume that a ≡ b (mod m). Then a − b = mk for some k ∈ Z. Thus, gcd(a,m) =
gcd(b +mk,m) = gcd(b,m) by Lemma 1.3.1. �

Theorem 2.1.8. For each integer a, there exists a unique integer r, with 0 ≤ r < m, such that a ≡ r
(mod m).

Proof. Let a ∈ Z. By the division algorithm, there exist unique q, r ∈ Z such that a = mq+ r, where
0 ≤ r < m. Then a ≡ r (mod m). �

Theorem 2.1.9. If a ≡ b (mod m) and 0 ≤ |a − b| < m, then a = b.

Proof. Since m | (a − b), m ≤ |a − b| unless a − b = 0. �

Corollary 2.1.10. We have a ≡ b (mod m) if and only if a and b give the same remainder when divided
by m.

Proof. It follows from Theorems 2.1.8 and 2.1.9. �

Theorem 2.1.11. If a ≡ b (mod m) and a ≡ b (mod n), where gcd(m,n) = 1, then a ≡ b (mod mn).

Proof. Since gcd(m, n) = 1, we have m | (a − b) and n | (a − b) implies mn | (a − b) by Corollary
1.1.11. �

Definition. Consider a fixed modulus m > 0. We denote by [a]m the set of all integers x such that
x ≡ a (mod m) and we call [a]m the residue class of a modulo m. That is,

[a]m = {x ∈ Z : x ≡ a (mod m)} = {a +mq : q ∈ Z} = a +mZ.



Y. Meemark 2.1 Basic Properties of Congruence 15

Since · ≡ · (mod m) is an equivalence relation onZ, for a ∈ Z, the residue class of a modulo m
is just the equivalence class of a with respect to this relation.

Properties of equivalence classes give the following theorem.

Theorem 2.1.12. For a given modulus m > 0 and a, b ∈ Z we have:

(1) [a]m = [b]m if and only if a ≡ b (mod m),

(2) [a]m ∩ [b]m = ∅ or [a]m = [b]m,

(3)
∪
x∈Z

[x]m = Z,

(4) two integers x and y are in the same residue class if and only if x ≡ y (mod m), and

(5) the m residue classes [0]m, [1]m, . . . , [m − 1]m are disjoint and their union is the set of all integers.

Definition. A set of m representatives, one from each of the residue classes [0]m, [1]m, . . . , [m−1]m

is called a complete residue system modulo m. That is, the set of integers {a1, a2, . . . , am} is a
complete residue system modulo m if

(1) ai . a j (mod m) whenever i , j;

(2) for each integer x, there is an i ∈ {1, 2, . . . ,m} such that x ≡ ai (mod m).

Example 2.1.2. {0, 1, . . . ,m − 1} is a complete residue system modulo m.
{−12,−4, 11, 13, 22, 82, 91} is a complete residue system modulo 7.

Remarks. Let m be a positive integer.

(1) Let S = {a1, a2, . . . , am} ⊆ Z. Then S is a complete residue system if and only if ai . a j (mod m)
whenever i , j.

(2) If m is odd, then
{
0,±1,±2, . . . ,±m−1

2

}
is a complete residue system modulo m.

(3) If m is even, then
{
0,±1,±2, . . . ,±m−2

2 , m
2

}
is a complete residue system modulo m.

Theorem 2.1.13. Assume that gcd(k,m) = 1. If {a1, a2, . . . , am} is a complete residue system modulo m,
so is {ka1, ka2, . . . , kam}.

Proof. Assume that kai ≡ ka j (mod m) for some i , j. Since gcd(k,m) = 1, ai ≡ a j (mod m), so
{a1, . . . , am} is not a complete residue system modulo m. �

Exercise 2.1. 1. Prove that 7 | (32n+1 + 2n+2) for all n ∈Nwithout using mathematical induction.

2. Let N = an10n + an−110n−1 + · · · + a110 + a0 be the decimal expansion of the positive integer N. Prove
that 2k | N if and only if 2k | (ak10k + · · · + a110 + a0) for all k ∈N.

3. (i) Find the remainders when 250 and 4165 are divided by 7.
(ii) What is the remainder when the sum 15 + 25 + · · · + 995 + 1005 is divided by 4.

4. (i) For any integer a, prove that the units digit of a2 is 0, 1, 4, 5, 6 or 9.
(ii) Find all positive integers n for which 1! + 2! + 3! + · · · + n! is a perfect square.

5. If {a1, a2, . . . , ap} is a complete residue system modulo an odd prime p, prove that p divides a1 + a2 +

· · · + ap.
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2.2 Linear Congruences

Consider a linear congruence

ax ≡ b (mod m). (2.2.1)

Note that ax +my = b has a solution⇔ ax ≡ b mod m has a solution.

Theorem 2.2.1. Let d = gcd(a,m).

(1) ax ≡ b (mod m) has a solution if and only if d | b.

(2) If d | b and x0 is its solution, then it has d mutually incongruent solutions modulo m given by
x = x0 + (m/d)t, where t = 0, 1, . . . , d − 1.

Proof. (1) follows from Theorem 1.3.3 (1). To prove (2), assume that d | b and ax ≡ b (mod m). By
Theorem 1.3.3 (2), x = x0 +

m
d t, t ∈ Z, are solutions of (2.2.1). Let x = x0 +

m
d t and x′ = x0 +

m
d t′ for

some t, t′ ∈ Z. Then

x ≡ x′ (mod m)⇔ m
d t ≡ m

d t′ (mod m)⇔ t ≡ t′ (mod m
gcd( m

d ,m) = d).

Since {0, 1, . . . , d−1} is a complete residue system modulo d, x = x0+(m/d)t, where t ∈ {0, 1, . . . , d−1}
are incongruent solutions modulo m. �

Corollary 2.2.2. If gcd(a,m) = 1, then the linear congruence ax ≡ b (mod m) has a unique solution
modulo m. The solution of ax ≡ 1 (mod m) is called the inverse of a modulo m.

Example 2.2.1. Find a complete set of mutually incongruent solutions (if any) of
(1) 21x ≡ 11 (mod 7) (2) 15x ≡ 9 (mod 12)

Example 2.2.2. Find the inverse of 201 modulo 251.

Theorem 2.2.3. [Chinese Remainder Theorem] Assume that m1,m2, . . . ,mr are pairwise relatively
prime positive integers: gcd(mi,mk) = 1 if i , k. Let b1, b2, . . . , br be arbitrary integers. Then the system
of congruences

x ≡ b1 (mod m1)

x ≡ b2 (mod m2)
...

x ≡ br (mod mr)

has exactly one solution modulo the product m1m2 · · ·mr.

Proof. For each i, let m′i = m/mi, where m = m1m2 . . .mr. Since m1,m2, . . . ,mr are pairwise
relatively prime, gcd(m′i ,mi) = 1 for all i. Then for each i ∈ {1, 2, . . . , r}, m′i yi ≡ 1 (mod mi) for
some yi ∈ Z. Choose

x = b1m′1y1 + b2m′2y2 + · · · + brm′ryr ∈ Z.

Thus, x ≡ bim′i yi ≡ bi (mod mi) for all i ∈ {1, 2, . . . , r}.



Y. Meemark 2.2 Linear Congruences 17

To prove the uniqueness, let x1 and x2 be solutions of the system. Then

x1 ≡ bi (mod mi) and x2 ≡ bi (mod mi)

for all i. Thus, x1 ≡ x2 (mod mi) for all i ∈ {1, . . . , r}. Since m1,m2, . . . ,mr are pairwise relatively
prime, x1 ≡ x2 (mod m1m2 . . .mr) by Theorem 2.1.11. �

Example 2.2.3. Solve the following system of linear congruences.

(1)
x ≡ 2 (mod 3)

2x ≡ 3 (mod 5)
3x ≡ 4 (mod 7)

(2)
x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Theorem 2.2.4. Let m1 and m2 be positive integers and d = gcd(m1,m2). For integers b1 and b2, the
congruences

x ≡ b1 (mod m1) and x ≡ b2 (mod m2)

admit a simultaneous solution if and only if d | (b1 − b2). Moreover, if a solution exists, then it is unique
modulo lcm(m1,m2).

Proof. Assume that x0 is a solution. Then

x0 ≡ b1 (mod m1) and x0 ≡ b2 (mod m2),

so

x0 ≡ b1 (mod d) and x0 ≡ b2 (mod d)

since d | m1 and d | m2. Hence, b1 ≡ b2 (mod d). Conversely, suppose that d | (b1 − b2). That is,
b1−b2 = dk for some k ∈ Z. Since d = gcd(m1,m2), there are integers s and t such that d = m1s+m2t.
Thus,

b1 − b2 = dk = m1ks +m2kt,

so

m2kt ≡ (b1 − b2) (mod m1).

This gives m2kt + b2 ≡ b1 (mod m1). Choose x0 = m2kt + b2. Then

x0 ≡ b1 (mod m1) and x0 ≡ b2 (mod m2).

Finally, the uniqueness follows from the fact that m1 | c and m2 | c implies lcm(m1,m2) | c. �

Example 2.2.4. Solve the following system of linear congruences.

(1)
x ≡ 7 (mod 10)
x ≡ 4 (mod 12)

(2)
x ≡ 6 (mod 8)
x ≡ 2 (mod 12)

Remark. Assume that gcd(m,n) = 1. Let {a1, . . . , am} be a complete residue system modulo m,
{b1, . . . , bn} be a complete residue system modulo n and {c1, . . . , cmn} be a complete residue system
modulo mn. By the Chinese remainder theorem, the pair

x ≡ ai (mod m) and x ≡ b j (mod n)
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has a unique solution ck modulo mn. Conversely, let k ∈ {1, 2, . . . ,mn}. Then ck is a solution of

x = ck ≡ ai (mod m) and x = ck ≡ b j (mod n)

for some i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Thus, there is a 1-1 correspondence between x ≡ ai (mod m)
x ≡ b j (mod n)

: i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}
 and {c1, . . . , cmn}.

Exercise 2.2. 1. Solve the following linear congruences (if possible).
(i) 25x ≡ 15 (mod 29) (ii) 36x ≡ 42 (mod 102) (iii) 140x ≡ 132 (mod 301)

2. Solve the following system of linear congruences (if possible).

(i)
x ≡ 1 (mod 10)
x ≡ 3 (mod 15)

(ii)
x ≡ 2 (mod 6)
x ≡ 11 (mod 15)

3. (i) Solve the system x ≡ 5 (mod 6), x ≡ 4 (mod 11), x ≡ 3 (mod 17).
(ii) Find the smallest integer a > 2 such that 2 | a, 3 | (a + 1), 4 | (a + 2) and 5 | (a + 3).

4. If x ≡ a (mod n), prove that either x ≡ a (mod 2n) or x ≡ a + n (mod 2n).

2.3 Reduced Residue Systems

Definition. Let m be a positive integer. A subset S of a complete residue system modulo m is
called a reduced residue system modulo m if for a ∈ Z with gcd(a,m) = 1, there exists an r ∈ S
such that a ≡ r (mod m).

Remark. If {a1, a2, . . . , am} is a complete residue system modulo m, then

S = {ai : i ∈ {1, . . . ,m} and gcd(ai,m) = 1}

is a reduced residue system modulo m.

Example 2.3.1. (1) {1, 5, 7, 11} is a reduced residue system modulo 12.

(2) {1, 2, . . . , p − 1} is a reduced residue system modulo a prime p.

(3) {r ∈ Z : 0 ≤ r < m and gcd(r,m) = 1} is a reduced residue system modulo m.

Definition. Let m be a positive integer. Define the Euler’s totient ϕ(m) by

ϕ(m) = |{r ∈ Z : 0 ≤ r < m and gcd(r,m) = 1}|.

E.g., ϕ(12) = 4. Note that ϕ(1) = 1 and ϕ(m) ≤ m − 1 for all m ≥ 2. Clearly, if p is a prime, then
ϕ(p) = p − 1. Moreover, ϕ(m) = m − 1 if and only if m is a prime.

Theorem 2.3.1. If p is a prime, then ϕ(pk) = pk − pk−1 = pk−1(1 − 1/p) for every k ∈N.

Proof. Consider the pk−1-row-list of integers from 1 to pk:

1 2 3 . . . p
p + 1 p + 2 p + 3 . . . 2p
...

...
...

...

(pk−1 − 1)p + 1 (pk−1 − 1)p + 2 (pk−1 − 1)p + 3 . . . pk.
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Note that for 1 ≤ a ≤ pk, gcd(a, pk) = 1 ⇔ p - a. Thus, we eliminate only the last column, so
ϕ(pk) = pk − pk−1. �

Remarks. (1) By Theorem 2.1.7, a reduced residue system modulo m consists of ϕ(m) integers.
Moreover, from Theorem 2.1.8, any ϕ(m) incongruent integers relatively prime to m form a
reduced residue system modulo m.

(2) gcd(a, c) = 1 = gcd(b, c)⇔ gcd(ab, c) = 1.

Theorem 2.3.2. If gcd(a,m) = 1 and {r1, r2, . . . , rϕ(m)} is a reduced residue system modulo m, then
{ar1, ar2, . . . , arϕ(m)} is also a reduced residue system.

Proof. Since gcd(ri,m) = 1 for all i and gcd(a,m) = 1, gcd(ari,m) = 1 for all i ∈ {1, . . . , ϕ(m)}.
Assume that ari ≡ ar j (mod m) for some i, j ∈ {1, . . . ,m}. Since (a,m) = 1, we have ri ≡ r j (mod m)
by Corollary 2.1.5, so i = j. Hence, ar1, ar2, . . . , arϕ(m) are ϕ(m) incongruent integers relatively
prime to m, and so they form a reduced residue system modulo m. �

Theorem 2.3.3. [Euler] Assume that gcd(a,m) = 1. Then we have aϕ(m) ≡ 1 (mod m).

Proof. Let {r1, r2, . . . , rϕ(m)} be a reduced residue system modulo m. By Theorem 2.3.2, we have
{ar1, ar2, . . . , arϕ(m)} is a reduced residue system. Then from Theorem 2.1.8,

(ar1)(ar2) . . . (arϕ(m)) ≡ r1r2 . . . rϕ(m) (mod m),

so

aϕ(m)r1r2 . . . rϕ(m) ≡ r1r2 . . . rϕ(m) (mod m).

Since gcd(ri,m) = 1 for all i, gcd(r1r2 . . . rϕ(m),m) = 1. Hence, aϕ(m) ≡ 1 (mod m). �

Corollary 2.3.4. [Fermat] If p is a prime, then ap ≡ a (mod p) for all a ∈ Z.

Proof. If p | a, then p | (ap − a). Assume that p - a. Then gcd(a, p) = 1, so by Euler’s theorem, we
have aϕ(p) ≡ 1 (mod p). Since ϕ(p) = p− 1, we have ap−1 ≡ 1 (mod p). Hence, ap ≡ a (mod p). �

Remark. If gcd(a,m) = 1, then aϕ(m)−1a ≡ 1 (mod m), so aϕ(m)−1 is the inverse of a modulo m.

Corollary 2.3.5. If gcd(a,m) = 1, then the solution (unique modulo m) of the linear congruence

ax ≡ b (mod m)

is given by x ≡ baϕ(m)−1 (mod m).

Example 2.3.2. Solve the linear congruences:
(1) 5x ≡ 3 (mod 24) and (2) 25x ≡ 15 (mod 120)

Theorem 2.3.6. If m and n are relatively prime positive integers, then ϕ(mn) = ϕ(m)ϕ(n).
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Proof. Consider the list of integers from 1 to mn:

1 2 . . . r . . . m
m + 1 m + 2 . . . m + r . . . 2m

2m + 1 2m + 2 . . . 2m + r . . . 3m
...

...
...

...

(n − 1)m + 1 (n − 1)m + 2 . . . (n − 1)m + r . . . nm.

Clearly, each row forms a complete residue system modulo m. Each column forms a complete
residue system by Theorem 2.1.13 because gcd(m,n) = 1. Moreover, elements in each column are
congruent modulo m, so they have the same gcd with m.

Since gcd(m,n) = 1, we have

gcd(k,mn) = 1 ⇔ gcd(k,m) = 1 = gcd(k,n)

for all k ∈ Z. Thus,

{k : 1 ≤ k ≤ mn, gcd(k,mn) = 1} = {k : 1 ≤ k ≤ mn, gcd(k,m) = 1 = gcd(k, n)}.

We now count the numbers relatively prime to m and to n. First, eliminate all columns which are
not relatively prime to m. Then we have ϕ(m) columns left. Next, in each column, there are ϕ(n)
members relatively prime to n. Hence, there are ϕ(m)ϕ(n) numbers in {1, 2, . . . ,mn}, which are
relatively prime to m and to n. Therefore, ϕ(mn) = ϕ(m)ϕ(n). �

Corollary 2.3.7. If n = pk1
1 pk2

2 . . . p
kr
r is the prime-power factorization of n > 1, then

ϕ(n) = ϕ(pk1
1 )ϕ(pk2

2 ) . . . ϕ(pkr
r ) = (pk1

1 − pk1−1
1 )(pk2

2 − pk2−1
2 ) . . . (pkr

r − pkr−1
r )

= pk1
1 pk2

2 . . . p
kr
r

(
1 − 1

p1

) (
1 − 1

p2

)
. . .

(
1 − 1

pr

)
= n

∏
p|n

(
1 − 1

p

)
.

E.g., ϕ(1000) = ϕ(23 · 53) = (23 − 22)(53 − 52) = 400.

Exercise 2.3. 1. For any integer a, prove that (i) 42 | a7 − a (ii) 23 - (a2 + 1).

2. (i) Find the remainder when 22225555 + 55552222 is divided by 7.
(ii) What is the last digit of 3100?
(iii) Use Euler’s theorem to confirm that 51 | (1032n+9 − 7) for all n ∈N ∪ {0}.

3. Find all positive integers n for which n13 ≡ n (mod 1365).

4. (i) Prove that ϕ(n) ≡ 2 (mod 4) when n = 4 and when n = pa, a prime p ≡ 3 (mod 4).
(ii) Find all n for which ϕ(n) ≡ 2 (mod 4).

5. If m > 1 is an odd number, find the remainder when 2ϕ(m)−1 is divided by m.

6. If p is a prime and n ∈N ∪ {0}, prove that an(p−1)+1 ≡ a (mod p) for all a ∈ Z.

7. (i) If the integer n has r distinct odd prime factors, prove that 2r | ϕ(n).
(ii) If every prime that divides n also divides m, prove that ϕ(mn) = nϕ(m).

8. If a and b are relatively prime with 91, prove that 91 | (a12 − b12).

9. If p and q are distinct primes, prove that pq−1 + qp−1 ≡ 1 (mod pq).
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10. Assume that gcd(m,n) = 1. Let {r1, . . . , rϕ(m)} be a reduced residue system modulo m, {s1, . . . , sϕ(n)}
be a reduced residue system modulo n and {t1, . . . , tϕ(mn)} be a reduced residue system modulo mn.
Prove that there is a 1-1 correspondence between x ≡ ri (mod m)

x ≡ s j (mod n)
: i ∈ {1, . . . , ϕ(m)} and j ∈ {1, . . . , ϕ(n)}

 and {t1, . . . , tϕ(mn)}.

Hence, we may deduce that ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1.

2.4 Polynomial Congruences

Theorem 2.4.1. [Lagrange] Given a prime p, let

f (x) = c0 + c1x + · · · + cnxn

be a polynomial of degree n with integer coefficients such that p - cn. Then the polynomial congruence

f (x) ≡ 0 (mod p)

has at most n incongruent solutions modulo p.

Proof. We use induction on n ∈N. For n = 1, we consider f (x) = c0 + c1x ≡ 0 (mod p) and p - c1.
Then c1x ≡ −c0 (mod p). Since p - c1, gcd(c1, p) = 1, so by Corollary 2.2.2, there exists a unique x0

modulo p such that c1x0 + c0 ≡ 0 (mod p).
Assume that n > 1 and every polynomial g(x) = b0+ b1x+ · · ·+ bn−1xn−1, where p - bn, g(x) ≡ 0

(mod p) has at most n incongruent solutions modulo p. Let f (x) = c0 + c1x + · · · + cnxn and p - cn.
If f (x) ≡ 0 (mod p) has no solutions modulo p, then the number of solution is zero and ≤ n. Let
x0 be a solution of f (x) ≡ 0 (mod p). Then

c0 + c1x0 + · · · + cnxn
0 ≡ 0 (mod p),

so

f (x) ≡ c1(x − x0) + c2(x2 − x2
0) + · · · + cn(xn − xn

0) = (x − x0)g(x) (mod p),

where g(x) = b0 + b1x + · · · + cnxn−1. Since p | cn, by induction hypothesis we have g(x) ≡ 0
(mod p) has at most n − 1 solutions modulo p. Together with x0, f (x) ≡ 0 (mod p) has at most
(n − 1) + 1 = n incongruent solutions modulo p. �

The above theorem immediately implies:

Theorem 2.4.2. If f (x) = c0 + c1x + · · · + cnxn is a polynomial of degree n with integer coefficients, and
if the congruence f (x) ≡ 0 (mod p) has more than n solutions, where p is a prime, then every coefficient
of f is divisible by p.

Theorem 2.4.3. For any prime p, all the coefficients of the polynomial

f (x) = (x − 1)(x − 2) . . . (x − (p − 1)) − xp−1 + 1

are divisible by p.
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Proof. Note that deg f (x) < p−1 and f (1), f (2), . . . , f (p−1) are congruent to 0 modulo p by Fermat.
Hence, all coefficients of f is divisible by p. �

Theorem 2.4.4. [Wilson] For any prime p, we have

(p − 1)! ≡ −1 (mod p).

Proof. The constant term of f (x) = (x − 1)(x − 2) . . . (x − (p − 1)) − xp−1 + 1 is

(−1)p−1(p − 1)! + 1.

By Theorem 2.4.3, it is divisible by p. Since p = 2 or p is odd, (−1)p−1 ≡ 1 (mod p). Hence,
(p − 1)! ≡ −1 (mod p) as desired. �

Remark. The converse of Wilson’s theorem also holds. That is, if n > 1 and (n−1)! ≡ −1 (mod n),
then n is a prime.

Proof. Let n > 1. Assume that n is composite. Then there is a prime p < n such that p | n, so
p | (n − 1)!. Since n | (n − 1)! + 1, p | 1, a contradiction. Hence, n is a prime. �

Theorem 2.4.5. [Wolstenholme] For any prime p ≥ 5, we have

p−1∑
k=1

(p − 1)!
k

≡ 0 (mod p2).

Proof. Since p ≥ 5,

g(x) = (x − 1)(x − 2) . . . (x − (p − 1)) = xp−1 + cp−2xp−2 + · · · + c2x2 + c1x + (p − 1)!.

Observe that c1, c2, . . . , cp−2 are the coefficients of x, x2, . . . , xp−2 of f (x) in Theorem 2.4.3, so p | ci

for all i ∈ {1, 2, . . . , p − 2}. In particular,

−c1 =

p−1∑
k=1

(p − 1)!
k

≡ 0 (mod p).

Moreover,

(p − 1)! = g(p) = pp−1 + cp−2pp−2 + · · · + c2p2 + c1p + (p − 1)!.

Hence, 0 ≡ c1p (mod p3), so c1 ≡ 0 (mod p2). �

Remark. If p is a prime and a2 ≡ b2 (mod p), then a ≡ ±b (mod p).

Theorem 2.4.6. Let p be an odd prime. Then x2 ≡ −1 (mod p) has a solution if and only if p ≡ 1
(mod 4).

Proof. Let a be a solution of x2 ≡ −1 (mod p). Then p - a, so ap−1 ≡ 1 (mod p). This implies

(−1)
p−1

2 ≡ (a2)
p−1

2 ≡ 1 (mod p).
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Since p is odd, p−1
2 must be even, so 4 | (p − 1). Conversely, assume that p ≡ 1 (mod 4). Observe

that

(p − 1)! =
[
1 · 2 · · · p − 1

2

] [(
p − p − 1

2

)
· · · (p − 2)(p − 1)

]
≡

[
1 · 2 · · · p − 1

2

] [(
−p − 1

2

)
· · · (−2)(−1)

]
= (−1)

p−1
2

[(
p − 1

2

)
!
]2

(mod p).

By Wilson’s theorem, we have (p − 1)! ≡ −1 (mod p) and p ≡ 1 (mod 4) implies p−1
2 is even.

Hence,

−1 ≡
[(

p − 1
2

)
!
]2

(mod p).

Therefore, ±
(p−1

2

)
! are solutions of x2 ≡ −1 (mod p). �

Example 2.4.1. Solutions of x2 ≡ −1 (mod 37) are ±
(

37−1
2

)
! = ±18!.

Exercise 2.4. 1. Show that 18! ≡ −1 (mod 437).

2. Prove that for 1 < k < p − 1, (p − k)!(k − 1)! ≡ (−1)k (mod p).

3. Let n > 3. If p and q are primes such that p | n! and q | ((n − 1)! − 1), prove that p < q.

4. Given a prime number p, prove that (p − 1)! ≡ p − 1 (mod 1 + 2 + · · · + (p − 1)).

5. Let p be a prime, p ≥ 5, and write 1 +
1
2
+

1
3
+ · · · + 1

p
=

r
ps

. Prove that p3 | (r − s).

6. Show that if a prime p ≡ 3 (mod 4), then
(

p − 1
2

)
! ≡ ±1 (mod p).

7. Let p be an odd prime. Prove that

12 · 32 · · · (p − 2)2 ≡ (−1)(p+1)/2 (mod p) and 22 · 42 · · · (p − 1)2 ≡ (−1)(p+1)/2 (mod p).

8. Find all n ∈N for which (n − 1)! + 1 is a power of n. (Hint: Try to show that n ≤ 5.)
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Chapter 3
Number-Theoretic Functions

3.1 Multiplicative Functions

Definition. A real- or complex-valued function defined on the positive integers is called an
arithmetic function or a number-theoretic function.

Throughout this chapter, variables occurring as arguments of number-theoretic functions are
understood to be positive. The same applies to their divisors.

Examples 3.1.1. The following functions are arithmetic functions.

(1) ϕ(n) = |{r ∈ Z : 0 ≤ r < n and gcd(r, n) = 1}|.

(2) τ(n) = the number of positive divisors of n =
∑
d|n

1.

(3) σ(n) = the sum of positive divisors of n =
∑
d|n

d.

Here,
∑
d|n

f (d) means the sum of the values f (d) as d runs over all positive divisors of the positive

integer n. E.g.,
∑
d|12

f (d) = f (1) + f (2) + f (3) + f (4) + f (6) + f (12).

Theorem 3.1.1. Let p be a prime and k ∈N ∪ {0}. Then

τ(pk) = |{1, p, p2, . . . , pk}| = k + 1

and

σ(pk) = 1 + p + p2 + · · · + pk =
pk+1 − 1

p − 1
.

Definition. A number-theoretic function f which is not identically zero is said to be multiplicative
if ∀m, n ∈N, gcd(m, n) = 1⇒ f (mn) = f (m) f (n).

Example 3.1.2. The following functions are multiplicative.
(1) ϕ (Theorem 2.3.6) (2) U(n) = 1 for all n ∈N (3) N(n) = n for all n ∈N.

25
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Remark. Let f be a multiplicative function. Then f (1) = f (1 · 1) = f (1) f (1), so f (1) = 0 or 1. If
f (1) = 0, then f (n) = f (1 · n) = f (1) f (n) = 0, so f is the zero function. Hence, if f is multiplicative,
then f (1) = 1.

Lemma 3.1.2. f is multiplicative⇔ f (1) = 1 and f (pk1
1 pk2

2 . . . p
kr
r ) = f (pk1

1 ) f (pk2
2 ) . . . f (pkr

r ) for all distinct
primes pi and r, ki ∈N.

Remarks. (1) From the above lemma, to compute the values of a multiplicative function f , it
suffices to know only the values of f (pk) for all primes p and k ∈N.

(2) If f and g are multiplicative functions and f (pk) = g(pk) for all primes p and k ∈N, then f = g.

Definition. A number-theoretic function f which is not identically zero is said to be completely
multiplicative if f (mn) = f (m) f (n) for all m, n ∈N.

E.g., (1) U(n) = 1, for all n ∈N, and (2) N(n) = n, for all n ∈N, are completely multiplicative.

Remark. If f is completely multiplicative, then

f (pk1
1 pk2

2 . . . p
kr
r ) = f (p1)k1 f (p2)k2 . . . f (pr)kr .

Thus, to determine the values of a completely multiplicative function f , it suffices to know only
the values of f (p) for all primes p.

By Lemma 1.3.7, we have the next result.

Theorem 3.1.3. If n = pk1
1 pk2

2 . . . p
kr
r is the prime factorization of n > 1, then

τ(n) = (k1 + 1)(k2 + 2) . . . (kr + 1) = τ(pk1
1 )τ(pk2

2 ) . . . τ(pkr
r ).

Moreover, τ is multiplicative.

Definition. A positive integer n is a perfect square number if ∃a ∈ Z,n = a2.

Remarks. (1) If n is a perfect square number, then n ≡ 0 or 1 (mod 4).

(2) n is a perfect square if and only if τ(n) is odd.

Let n = pk1
1 pk2

2 . . . p
kr
r is the prime factorization of n > 1. Consider the product

(1 + p1 + p2
1 + · · · + pk1

1 )(1 + p2 + p2
2 + · · · + pk2

2 ) . . . (1 + pk + p2
k · · · + pkr

r )

=
∑
{pa1

1 pa2
2 . . . p

ar
r : 0 ≤ ai ≤ ki for all i ∈ {1, 2, . . . , r}}

=
∑
{d ∈N : d | n} = σ(n).

Theorem 3.1.4. If n = pk1
1 pk2

2 . . . p
kr
r is the prime factorization of n > 1, then

σ(n) = (1 + p1 + p2
1 + · · · + pk1

1 )(1 + p2 + p2
2 + · · · + pk2

2 ) . . . (1 + pk + p2
k · · · + pkr

r )

=
pk1+1

1 − 1

p1 − 1

pk2+1
2 − 1

p2 − 1
· · · p

kr+1
r − 1
pr − 1

= σ(pk1
1 )σ(pk2

2 ) . . . σ(pkr
r ).

Moreover, σ is multiplicative.
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Lemma 3.1.5. Assume that gcd(m,n) = 1. Then

{d ∈N : d | mn} = {d1d2 : d1, d2 ∈N, d1 | m, d2 | n and gcd(d1, d2) = 1}.

Proof. The result is clear when m or n is 1. Assume that m, n > 1 and gcd(m, n) = 1. Let
m = pm1

1 . . . pmr
r and n = qn1

1 . . . qns
s , where pi and q j are all distinct primes and mi,n j ∈ N for all

i ∈ {1, . . . , r} and j ∈ {1, . . . , s}.
Suppose that d | mn. By Lemma 1.3.7, d = pa1

1 . . . p
ar
r qb1

1 . . . q
bs
s for some 0 ≤ ai ≤ mi and

0 ≤ b j ≤ n j for all i, j. Thus d = d1d2 where d1 = pa1
1 . . . p

ar
r , d2 = qb1

1 . . . q
bs
s , so d1 | m, d2 | n and

gcd(d1, d2) = 1. The converse is clear. �

Remark. If gcd(m, n) = 1, then the above lemma gives∑
d|mn

f (d) =
∑

d1|m,d2|n,
gcd(d1,d2)=1

f (d1d2).

Theorem 3.1.6. If f is multiplicative function and F is defined by

F(n) =
∑
d|n

f (d),

then F is also multiplicative.

Proof. Let m,n ∈N be such that gcd(m,n) = 1. Then

F(mn) =
∑
d|mn

f (d) =
∑

d1|m,d2|n,
gcd(d1,d2)=1

f (d1d2) =
∑
d1|m

∑
d2|n

f (d1) f (d2) (since gcd(d1, d2) = 1)

=
∑
d1|m

f (d1)
∑
d2|n

f (d2) = F(m)F(n).

Hence, F is multiplicative. �

Recall that U(n) = 1 for all n ∈ N and N(n) = n for all n ∈ N are multiplicative. The above
theorem gives another proof of the following result.

Corollary 3.1.7. τ(n) =
∑
d|n

1 and σ(n) =
∑
d|n

d are multiplicative.

Theorem 3.1.8.
∑
d|n
ϕ(d) = n

Proof. We first observe that{1
n
,

2
n
, . . . ,

n − 1
n

,
n
n

}
=

∪
d|n

{ a
d

: 1 ≤ a ≤ d and gcd(a, d) = 1
}
.

Moreover, for d | n, each set in the union is of cardinality ϕ(d). Assume that d1 | n, d2 | n and
a
d1
=

b
d2

for some 1 ≤ a ≤ d1,gcd(a, d1) = 1 and 1 ≤ b ≤ d2,gcd(b, d2) = 1. Then ad2 = bd1 which
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implies d1 | ad2 and d2 | bd1. Since gcd(a, d1) = 1 = gcd(b, d2), d1 | d2 and d2 | d1 by Corollary 1.1.12,
so d1 = d2 and a = b. This shows that the union on the right hand side is a disjoint union. Hence,

n =
∣∣∣∣∣{1

n
,

2
n
, . . . ,

n − 1
n

,
n
n

}∣∣∣∣∣ =
∣∣∣∣∣∣∣∪d|n

{ a
d

: 1 ≤ a ≤ d and gcd(a, d) = 1
}∣∣∣∣∣∣∣

=
∑
d|n

∣∣∣∣∣{ a
d

: 1 ≤ a ≤ d and gcd(a, d) = 1
}∣∣∣∣∣ =∑

d|n
ϕ(d)

as desired. �

Exercise 3.1. 1. Find the smallest n ∈N such that τ(n) = 10.

2. Prove that
∑

d|n τ
3(d) =

(∑
d|n τ(d)

)2
.

3. Prove that σ(n) is odd if and only if n is a perfect square or twice a perfect square.

4. Prove that ϕ(m)ϕ(n) = ϕ(gcd(m,n))ϕ(lcm(m,n)) for all m,n ∈N.

5. Show that the number of ordered pairs of positive integers whose lcm is n is τ(n2).

6. (i) For a fixed integer k, show that the function fk(n) = nk for all n ∈N is multiplicative.
(ii) For each k ∈ N, show that the function σk(n) =

∑
d|n dk for all n ∈ N is multiplicative and find a

formula for it.

7. For k ≥ 2, show each of the following:
(i) n = 2k−1 satisfies the equation σ(n) = 2n − 1;
(ii) if 2k − 1 is prime, then n = 2k−1(2k − 1) satisfies the equation σ(n) = 2n;
(iii) if 2k − 3 is prime, then n = 2k−1(2k − 3) satisfies the equation σ(n) = 2n + 2.

8. For any positive integer n, show that
(i)

∑
d|n σ(d) =

∑
d|n

n
dτ(d); (ii)

∑
d|n

n
dσ(d) =

∑
d|n dτ(d); (iii)

∑
d|n

1
d =

σ(n)
n .

3.2 The Möbius Inversion Formula

Definition. An integer n is said to be square-free if it is not divisible by the square of any prime.

Remark. Every positive integer n can be written uniquely in the form n = ab2, where a, b ∈ N
and a is square-free.

Definition. [Möbius, 1832] For a positive integer n, we define the Möbius function, µ, by the
rules

µ(n) =


1, if n = 1,

0, if ∃ a prime p, p2 | n, i.e., n is not square-free,

(−1)r, if n = p1p2 . . . pr where p1, p2, . . . , pr are distinct primes.

Theorem 3.2.1. The Möbius function µ is multiplicative.

Proof. Note that µ(1) = 1. Suppose n > 1 and write n = pk1
1 pk2

2 . . . p
kr
r , where pi are distinct primes

and ki ≥ 1 for all i. If k j > 1 for some j ∈ {1, 2, . . . , r}, we have µ(n) = 0 and µ(p
k j

j ) = 0, so

µ(n) = µ(pk1
1 )µ(pk2

2 ) . . . µ(pkr
r ). Assume that ki = 1 for all i. Then n = p1p2 . . . pr, so µ(n) = (−1)r.

Since µ(pi) = −1 for all i, we have µ(p1)µ(p2) · · ·µ(pr) = (−1)r = µ(n). Hence, µ is multiplicative by
Lemma 3.1.2. �
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Theorem 3.2.2. E(n) =
∑
d|n
µ(d) =

1, if n = 1,

0, if n > 1,
for all n ∈N is a multiplicative function.

Proof. By Theorem 3.1.6, E is multiplicative, and since

E(pk) =

1, if k = 0,

1 − 1 + 0 + · · · + 0, if k ≥ 1,

we see that E(n) = 0 if n is divisible by a prime p, that is, if n > 1. �

Remark. For n ∈N, {d ∈N : d | n} = {n/d : d ∈N and d | n}.

Lemma 3.2.3. Let f and g be multiplicative functions. Then

1. f g and f/g are multiplicative (whenever the latter function is defined), and

2. F(n) =
∑
d|n

f (d)g(n/d) =
∑
d|n

f (n/d)g(d) is a multiplicative function.

Proof. Exercises. �

Definition. For arithmetic functions f and g, we define the Dirichlet convolution by

( f ∗ g)(n) =
∑
d|n

f (d)g(n/d)

for all n ∈N.

Remarks. (1) Clearly, f ∗ g = g ∗ f and we can verify that f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

(2) By Lemma 3.2.3, if f and g are multiplicative, then f ∗ g is also multiplicative.

(3) The set of multiplicative functions is an abelian group under the Dirichlet convolution with

identity element E(n) =

1, if n = 1,

0, if n > 1.

Theorem 3.2.4. [Möbius Inversion Formula] Let F and f be two arithmetic functions (not necessarily
multiplicative) related by the formula

F(n) =
∑
d|n

f (d) = ( f ∗U)(n).

Then f (n) =
∑
d|n

F(d)µ(n/d) =
∑
d|n

F(n/d)µ(d) =
∑

d1d2=n

F(d1)µ(d2), i.e., f = F ∗ µ.

Proof. We have

∑
d|n

F(n/d)µ(d) =
∑

d1d2=n

F(d1)µ(d2) =
∑

d1d2=n

∑
d|d1

f (d)

µ(d2)

=
∑
d2d|n

f (d)µ(d2) =
∑
d|n

f (d)
∑

d2|(n/d)

µ(d2).

But
∑

d2|(n/d) µ(d2) = 0 unless n/d = 1 (that is, unless d = n) when it is 1, so that this last sum is
equal to f (n). �
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Example 3.2.1. We know by Theorem 3.1.8 that
∑
d|n
ϕ(d) = n, i.e., ϕ∗U = N. The Möbius inversion

formula gives ϕ = N ∗ µ, i.e., we have

ϕ(n) =
∑
d|n

n
d
µ(d) = n

∑
d|n

µ(d)
d

for all n ∈N.

Corollary 3.2.5. Let F and f be two arithmetic functions related by the formula

F(n) =
∑
d|n

f (d).

If F is multiplicative, then f is also multiplicative.

Proof. It follows from Theorem 3.2.4 and Theorems 3.2.3, 3.2.1. �

Corollary 3.2.6. Let F and f be two arithmetic functions related by the formula

F(n) =
∏
d|n

f (d).

Then f (n) =
∏
d|n

F(n/d)µ(d).

Proof. Its proof is similar to the Möbius inversion formula and is left as an exercise. �

Exercise 3.2. 1. Prove Lemma 3.2.3 and Corollary 3.2.6.

2. Prove that
∑

d|n σ(d)µ(n/d) = n for all n ∈N.

3. Let f , g and h be arithmetic functions. Prove that
(i) f ∗ (g ∗ h) = ( f ∗ g) ∗ h, (ii) f ∗ (g + h) = f ∗ g + f ∗ h,
(iii) (∃ an arithmetic function F such that f ∗ F = E) if and only if f (1) , 0.

4. Determine the arithmetic function f such that µ = f ∗U. Is f multiplicative? If so, find its values on
the prime powers.

5. Show that if f is multiplicative, then
∑
d|n
µ(d) f (d) =

∏
p|n

p prime

(1 − f (p)).

6. Show that
∏
d|n

d = nτ(n)/2 for all n ∈N.

3.3 The Greatest Integer Function

Let x ∈ R. By Archimedean property and well-ordering principle, we can prove that there exists
an nx ∈ Z such that

nx ≤ x < nx + 1.

This leads to the following definition.

Definition. For each real number x, [x] is the unique integer such that

x − 1 < [x] ≤ x < [x] + 1.

That is, [x] is the largest integer ≤ x. Sometimes, [x] is called the floor of x. Note that [x] =
max((−∞, x] ∩Z). The greastest integer function is the map x 7→ [x] for all x ∈ R.
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Some properties of [x] are listed in the following theorem.

Theorem 3.3.1. Let x, x1 and x2 be real numbers.

(1) x = [x] + {x}, where 0 ≤ {x} < 1. {x} is called the fractional part of x.

(2) [x] = x if and only if x is an integer.

(3) [x + a] = [x] + a, if a ∈ Z.

(4) [x] + [−x] =

0, if x ∈ Z,

−1, otherwise.

(5) [x1] + [x2] ≤ [x1 + x2] ≤ [x1] + [x2] + 1.

(6) [x/n] = [[x]/n] if n ∈N.

(7) −[−x] is the least integer ≥ x and [x + 1
2 ] is the nearest integer to x.

(8) 0 ≤ [x] − 2[x/2] ≤ 1.

(9) If x1 < x2, then |(x1, x2] ∩Z| = [x2] − [x1].

(10) For d ∈N and x > 0, |{n ∈N : d | n and n ≤ x}| = [x/d], so
n∑

k=1

τ(k) =
n∑

k=1

[x/k].

Theorem 3.3.2. If a ∈ Z and m ∈N, then

a = m[a/m] +m{a/m} and 0 ≤ m{a/m} < m.

That is, [a/m] and m{a/m} are the quotient and the remainder in the division of a by m.

We write pe∥n if pe | n and pe+1 - n, i.e., e is the highest exponent of p that divides n.

Theorem 3.3.3. [de Polignac’s Formula] If n is a positive integer and p is a prime, then the highest
exponent of p that divides n! is

e =
[
n
p

]
+

[
n
p2

]
+

[
n
p3

]
+ · · · =

∞∑
j=1

[n/p j].

That is, pe∥n!.

Proof. The sum has only finitely many nonzero terms, since [n/pk] = 0 for pk > n. Note that if
p > n, then p - n! and

∑∞
j=1[n/p j] = 0. If p ≤ n, then [n/p] integers in {1, 2, . . . , n} are divisible by p,

namely,
p, 2p, 3p, . . . , [n/p]p.

Of these integers, [n/p2] are again divisible by p2:

p2, 2p2, . . . , [n/p2]p2.

By the same idea, [n/p3] of these are divisible by p3:

p3, 2p3, . . . , [n/p3]p3.
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After finitely many repetitions of this argument, the total number of times p divides number in
{1, 2, . . . ,n} is precisely [

n
p

]
+

[
n
p2

]
+

[
n
p3

]
+ · · · .

Hence, this sum is the exponent of p appearing in the prime factorization of n!. �

Remark. Recall that [x/k] = [[x]/k] if k ∈N, this shortens the computation for e as follows:

e =
[
n
p

]
+

[
[n/p]

p

]
+

[
[[n/p]/p]

p

]
+ · · · .

Example 3.3.1. Find the highest power of 7 that divides 1000!.

Proof. We compute [1000/7] = 142, [142/7] = 20, [20/7] = 2 and [2/7] = 0. Thus e = 142+20+2+0 =
164 is the highest power of 7 divides 1000!. �

Theorem 3.3.4. If 0 ≤ k ≤ n, then the binomial coefficient
(
n
k

)
=

n!
k!(n − k)!

is an integer.

Proof. This follows from the fact that

[n/p j] = [(n − k + k)/p j] ≥ [(n − k)/p j] + [k/p j]

for all j ∈N. �

Corollary 3.3.5. For k ∈N, k! divides the product of k consecutive integers.

Exercise 3.3. 1. Prove Theorem 3.3.1 (6)–(10).

2. Prove that if n ∈N and α is a non-negative real number, then
n−1∑
k=0

[
α +

k
n

]
= [nα].

3. (i) Let F and f be two arithmetic functions related by the formula F(n) =
∑

d|n f (d).

Prove that
n∑

k=1

F(k) =
n∑

k=1

f (k)[n/k] for all n ∈N.

(ii) Conclude that
n∑

k=1

τ(k) =
n∑

k=1

[n/k] and
n∑

k=1

σ(k) =
n∑

k=1

k[n/k].

(iii) Evaluate the sum
n∑

k=1

[n/k]ϕ(n).

4. Find the highest power of 17 that divides 2010!.

5. (i) Verify that 1000! terminates in 249 zeros.
(ii) For what values of n does n! terminate in 37 zeros.

6. Find the greatest common divisor of the binomial coefficients
(
n
1

)
,

(
n
2

)
, . . . ,

(
n

n − 1

)
.



Chapter 4
Primitive Roots

4.1 The Order of an Integer Modulo n

Example 4.1.1. We know that ϕ(10) = 4, and we observe that {1, 3, 7, 9} is a reduced residue
system modulo 10. Since

31 = 3 ≡ 3 (mod 10), 71 = 7 ≡ 7 (mod 10),

32 = 9 ≡ 9 (mod 10), 72 = 49 ≡ 9 (mod 10),

33 = 27 ≡ 7 (mod 10), 73 = 343 ≡ 3 (mod 10),

34 = 81 ≡ 1 (mod 10), 74 = 2401 ≡ 1 (mod 10),

we see that each of {3, 32, 33, 34} and {7, 72, 73, 74} is also a reduced residue system modulo 10.

From Euler’s theorem, we know that aϕ(m) ≡ 1 (mod m) whenever gcd(a,m) = 1. This leads
to the following definition.

Definition. Let m > 1 and gcd(a,m) = 1. The order of a modulo m, ordm a, is the smallest positive
integer k such that ak ≡ 1 (mod m). That is,

ordm a = min{k ∈N : ak ≡ 1 (mod m)}.

Remarks. (1) ordm a ≤ ϕ(m).

(2) If a ≡ b (mod m), then ordm a = ordm b.

(3) If gcd(a,m) > 1, then ak ≡ 1 (mod m) cannot hold for any k ∈N.

Theorem 4.1.1. Let m > 1 and gcd(a,m) = 1. If ordm(a) = h, then

∀k ∈N(ak ≡ 1 (mod m)⇔ h | k).

In particular, ordm(a) | ϕ(m).

Proof. Suppose that orda(m) = h. Then h is the smallest positive integer such that ah ≡ 1 (mod m).
Let k ∈N. If h | k, then k = hq for some q ∈N, so

ak ≡ ahq ≡ (ah)q ≡ 1 (mod m).

33
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On the other hand, assume that ak ≡ 1 (mod m). By the Division Algorithm, ∃q, r ∈ Z, k = hq+ r,
where 0 ≤ r < h. If r > 0, then

ar = ak−hq = aka−hq ≡ ak(ah)−q ≡ 1 (mod m)

which contradicts the minimality of h. Thus h | k. �

Example 4.1.2. Find the order of 3 and of 5 modulo 31.

Theorem 4.1.2. If ordm(a) = h, then ai ≡ a j (mod m) if and only if i ≡ j (mod h).

Proof. Let ordm(a) = h. Assume that ai ≡ a j (mod m), where i ≥ j. Then ai− j ≡ 1 (mod m). By
Theorem 4.1.1, h | (i − j).

Conversely, suppose that i ≡ j mod h. Then ∃q ∈ Z, i = j + qh. Since ah ≡ 1 (mod m),

ai = a j+qh = a j(ah)q ≡ a j (mod m)

as desired. �

Corollary 4.1.3. If ordm(a) = h, then the integers a, a2, . . . , ah are incongruent modulo m.

Theorem 4.1.4. If ordm(a) = h, then ordm(ak) =
h

gcd(h, k)
.

Proof. Let ordm(a) = h and d = gcd(h, k). Since d | k, (ak)h/d = (ah)k/d ≡ 1 (mod m). Let t ∈ N
be such that (ak)t ≡ 1 (mod m). By Theorem 4.1.1, h | kt. Then (h/d) | (k/d)t. Recall that
gcd(h/d, k/d) = 1, so Corollary 1.1.12 gives (h/d) | t. Hence h/d ≤ t. �

Theorem 4.1.5. Let ordm(a) = h1 and ordm(b) = h2. If gcd(h1, h2) = 1, then

ordm(ab) = h1h2.

Proof. Assume that gcd(h1, h2) = 1. Since ah1 ≡ 1 (mod m) and bh2 ≡ 1 (mod m),

(ab)h1h2 = (ah1)h2(bh2)h1 ≡ 1 (mod m).

Let t ∈ N be such that (ab)t ≡ 1 (mod m). Then bh1t = ah1tbh1t = (ab)h1t = ((ab)t)h1 = 1, so h2 | h1t
by Theorem 4.1.1. Since gcd(h1, h2) = 1, we conclude by Corollary 1.1.12 that h2 | t. Similarly, we
can show that h1 | t. We have thus by Corollary 1.1.11 that h1h2 | t, so h1h2 ≤ t. �

Definition. If gcd(a,m) = 1 and a is of order ϕ(m) modulo m, then a is a primitive root of the
integer m.

Example 4.1.3. (1) Since ϕ(31) = 30, ord31 3 = 30 and ord31 5 = 3, 3 is a primitive root of 31 while
5 is not.

(2) 3 and 7 are all primitive roots of 10.

(3) 8 and 12 have no primitive root.

Remarks. (1) By Corollary 4.1.3, if a is a primitive root of m, then {a, a2, . . . , aϕ(m)} is reduced
residue system modulo m.
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(2) Let a be a primitive root of m. For k ∈N,

ak is a primitive root of m ⇔ ordm(ak) = ϕ(m) ⇔ gcd(ϕ(m), k) = 1.

Hence, if m has a primitive root, then there are ϕ(ϕ(m)) incongruent primitive roots of m.

Example 4.1.4. Find all incongruent primitive roots modulo 31.

Proof. Since 3 is a primitive root of 31 and ϕ(31) = 30, we have 3, 37, 311, 313, 317, 319, 323 and 329

are all incongruent primitive roots of 31. �

Exercise 4.1. 1. Find the order of the integers 2, 3 and 5: (i) modulo 17 (ii) modulo 19 (iii) modulo 23.

2. (i) If a has order hk, then ah has order k modulo n
(ii) If a has order m − 1, then m is a prime.

3. If g and g′ are primitive roots of an odd prime p, then gg′ is not a primitive root of p.

4. Given a has order 3 modulo p, where p is an odd prime. Show that ordp(a + 1) = 6.

4.2 Integers Having Primitive Roots

Lemma 4.2.1. If d | p − 1, then the polynomial xd − 1 is a factor of the polynomial xp−1 − 1.

Proof. Since d | p − 1, we have p − 1 = dq for some q ∈N. Then

xp−1 − 1 = (xd)q − 1 = (xd − 1)(xd(q−1) + xd(q−2) + · · · + xd + 1)

as desired. �

Recall that all the coefficients of the polynomial

f (x) = (x − 1)(x − 2) . . . (x − (p − 1)) − (xp−1 − 1)

is divisible by p (Theorem 2.4.3). That is, as polynomials,

xp−1 − 1 ≡ (x − 1)(x − 2) . . . (x − (p − 1)) (mod p).

Corollary 4.2.2. If d | p − 1, then the congruence xd ≡ 1 (mod p) has d solutions.

Proof. Since d | p − 1, we have xd − 1 is a factor of xp−1 − 1, so

xd − 1 ≡ (x − a1)(x − a2) . . . (x − ad) (mod p)

for some distinct a1, a2 . . . , ad in {1, 2, . . . , p − 1}. Thus xd ≡ 1 (mod p) has d solutions. �

Corollary 4.2.3. If d | p − 1, then the number of integers a, 1 ≤ a ≤ p − 1, having order d modulo p is
either 0 or ϕ(d).

Proof. Assume that 1 ≤ a ≤ p − 1 and ordp a = d. Then ad ≡ 1 (mod p) and by Corollary 4.1.3,
a, a2, . . . , ad are incongruent modulo p and so are all solutions of xd ≡ 1 (mod p). Thus, every
element of order d is congruent to ak with 1 ≤ k ≤ d and gcd(k, d) = 1. Hence, there are ϕ(d)
such k. �
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Theorem 4.2.4. If p is a prime and d | p − 1, then there are exactly ϕ(d) incongruent integers having
order d modulo p.

Proof. For each d | p− 1, let ψ(d) be the number of integers a, 1 ≤ a ≤ p− 1, having order d modulo
p. Since each integer between 1 and p − 1 has order d for some d | p − 1,

p − 1 =
∑
d|p−1

ψ(d).

On the other hand, by Theorem 3.1.8, p− 1 =
∑
d|p−1

ϕ(d) and by Corollary 4.2.3, we have 0 ≤ ψ(d) ≤

ϕ(d) for all d | p − 1. Hence
∑
d|p−1

ψ(d) =
∑
d|p−1

ϕ(d) forces ψ(d) = ϕ(d) for all d | p − 1. �

Corollary 4.2.5. If p is a prime, then there are exactly ϕ(p − 1) incongruent primitive roots of p.

Example 4.2.1. Find all incongruent elements of order 5 modulo 31.

Lemma 4.2.6. If p is a prime, then all coefficients of f (x) = (x + 1)p − xp − 1 is divisible by p. Hence, p

divides
(
p
i

)
for all 1 ≤ i ≤ p − 1.

Proof. It follows from Lagrange since deg f (x) = p−1 and f (a) ≡ 0 (mod p) for all a ∈ {0, 1, . . . , p−1}
by Fermat. �

Lemma 4.2.7. Let k ∈N and p be a prime. If p > 2 or k > 1, pk∥(a − b) and p - b, then pk+1∥(ap − bp).

Proof. Assume that a ≡ b (mod pk). Then a = b + cpk for some c ∈ Z and p - c. Thus,

ap = (b + cpk)p = bp +

(
p
1

)
bp−1cpk +

(
p
2

)
bp−2(cpk)2 + · · · +

(
p

p − 1

)
b(cpk)p−1 + (cpk)p

By the previous lemma, the interior binomial coefficients are divisible by p. Hence, the p-
components of the successive terms after the first, on the right side at at least pk+1, p2k+1, . . . ,

p(p−1)k+1, pkp. Note that kp > k + 1 is equivalent to k(p − 1) > 1 which follows from the hypothesis
that p > 2 or k > 1. Since p - b, we can conclude that pk+1∥(ap − bp). �

Theorem 4.2.8. Let p be a prime and suppose that p - a. Assume that ordp a = h and let k be such that
pk∥(ah − 1). Then if p > 2 or k > 1, we have

hn = ordpn a =

h, if n ≤ k;

hpn−k, if n ≥ k.

Proof. a) Suppose that n ≤ k. Since pk | (ah − 1), ah ≡ 1 (mod pn), so hn | h. But ahn ≡ 1 (mod pn)
implies ahn ≡ 1 (mod p), and thus h | hn. Hence hn = h.
b) Suppose that n ≥ k. Since ah ≡ 1 (mod pk), by applying Lemma 4.2.7 repeatedly, we have
pn∥(ahpn−k − 1). This implies that hn | hpn−k. Let hn = h′pn−l, where h′ | h and l ≥ k. Now ahn ≡ 1
(mod pn) gives ahn ≡ 1 (mod p), so h | hn. Since gcd(h, p) = 1, we get h | h′, so h = h′. Thus,
ahpn−l ≡ 1 (mod pn). But pk∥(ah − 1), so pn−l+k∥(ahp(n−l+k)−k − 1) by Lemma 4.2.7, i.e, pn−(l−k)∥(ahpn−l − 1).
Hence, l = k and hn = hpn−k. �
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We can use Theorem 4.2.8 to construct a primitive root of pn when p is an odd prime. Let g
be a primitive root of p and suppose first, in the notation of Theorem 4.2.8, that k = 1, so that
p2 - (gp−1 − 1). Then for n ≥ 1,

ordpn g = (p − 1)pn−1 = ϕ(pn),

so g is also a primitive root of pn. On the other hand, if k > 1, consider the number g1 = g + p,
which is again a primitive root of p. Let pk1∥(gp−1

1 − 1). We have

gp−1
1 − 1 = (g + p)p−1 − 1 ≡ gp−1 + (p − 1)gp−2p − 1 (mod p2),

so gp−1
1 − 1 ≡ (p − 1)gp−2p (mod p2). Since p2 - (p − 1)gp−2p, we have p2 - (gp−1

1 − 1), so k1 = 1, and
the preceding argument shows that g1 is a primitive root of pn for all n ≥ 1.

Theorem 4.2.9. (1) There exists a primitive root g1 such that gp−1
1 . 1 (mod p2).

(2) g1 is a primitive root of pn for all n ≥ 1.

Corollary 4.2.10. Each positive power of an odd prime has a primitive root g1. In group-theoretic
language, if p is an odd prime, then Z×pn = ⟨g1⟩ for all n ≥ 1.

Observe that if we take a = 5 and k = 2, then ord2 5 = 1, and Theorem 4.2.8 gives

ord2n 5 = 2n−2 =
ϕ(2n)

2
, for all n ≥ 2.

Theorem 4.2.11. (1) Both 2 and 22 have the primitive root −1.

(2) For n ≥ 3, 2n does not have primitive roots. On the other hand, the powers 5, 52, 53 . . . , 52n−2
constitute

half of a reduced residue system modulo 2n, namely all the integers ≡ 1 (mod 4). The missing residue
classes are represented by −5,−52,−53, . . . ,−5n−2.

(3) In group-theoretic language, Z×2 = ⟨−1⟩, Z×
22 = ⟨−1⟩ and Z×2n = ⟨−1⟩ × ⟨5⟩ for all n ≥ 3.

Proof. Let n ≥ 3. Let a be an odd integer. Since a2 ≡ 1 (mod 8), we have

(a2)2n−3
= a2n−2 ≡ 1 (mod 2n).

Then (ord2n a) | 2n−2, ord2n a < 2n−1 = ϕ(2n). Hence, 2n has no primitive root.
Recall that ord2n 5 = 2n−2 and all powers of 5 are ≡ 1 (mod 4), together with the fact that

there are exactly 2n−2 positive integers less than 2n and ≡ 1 (mod 4). This proves the powers
5, 52, 53 . . . , 52n−2

constitute half of a reduced residue system modulo 2n. Similarly, the numbers
−5,−52,−53, . . . ,−5n−2 are distinct modulo 2n, and they are all ≡ −1 (mod 4), so they must be
congruent in some order to 3, 7, 11, . . . , 2n − 1. �

Theorem 4.2.12. Let g be a primitive root of pn, where p is an odd prime.

(1) If g is odd, then g is a primitive root of 2pn.

(2) If g is even, then g + pn is a primitive root of 2pn.
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Proof. Since g ≡ g+ pn (mod pn), g+ pn is a primitive root of pn. Observe that one of g and g+ pn

is odd, say g2. Since g2 is a primitive root of pn, if d | ϕ(pn), then gd
2 ≡ 1 (mod pn) ⇔ d = ϕ(pn).

But ϕ(2pn) = ϕ(pn), and since g2 is odd, 2 | (gd
2 − 1) for all d, so if d | ϕ(pn), then gd

2 ≡ 1
(mod 2pn)⇔ d = ϕ(2pn). Thus g2 is a primitive root of 2pn. �

Remark. In group-theoretic language, if p is an odd prime, then Z×2pn = ⟨g2⟩ for all n ≥ 1.

Theorem 4.2.13. The numbers having primitive roots are 2, 4, pn and 2pn, where n ∈N and p runs over
the odd primes.

Proof. What is left is to show that m does not have a primitive root if at least two of the prime-
power factors in m =

∏
pei

i are such that ϕ(pei
i ) > 1. Put M = lcm(ϕ(pe1

1 ), ϕ(pe2

2 ), . . . ). Since

aϕ(pei
i ) ≡ 1 (mod pei

i ), i = 1, 2, . . . ,

we have
aM ≡ 1 (mod pei

i ), i = 1, 2, . . .

and hence
aM ≡ 1 (mod m).

But if ϕ(r) > 1, then ϕ(r) is even, so the lcm in the exponent is strictly smaller than the product of
the entries, and the product is ϕ(m) as ϕ is multiplicative. �

By the Chinese remainder theorem, we can prove

Theorem 4.2.14. If m = pe1
1 pe2

2 . . . p
er
r , where the pi are arbitrary distinct primes and the ei are positive,

then the group
Z×m � Z

×
pe1

1

×Z×
pe2

2
× · · · ×Z×per

r
.

We can go a step further, using what we know about the individual factors Z×pe . But now 2 is
exceptional so we change notation slightly. We continue to use ⟨a⟩ for the cyclic group generated
by a.

Theorem 4.2.15. Suppose m ≥ 2 has the prime-power decomposition m = 2epe1
1 . . . p

er
r , where e ≥ 0,

r ≥ 0, and if r ≥ 0, then p1, . . . , pr are distinct odd primes and e1, . . . , er are positive. Let g1, . . . , gr be
primitive roots of pe1

1 , . . . , p
er
r , respectively, if r > 0. Then

Z×m � ⟨[−1]22⟩ × ⟨[5]23⟩ × ⟨[g1]pe1
1
⟩ × · · · × ⟨[gr]per

r
⟩,

where the first two factors are to be omitted if e = 0 or 1 and the second factor is to be omitted if e = 2.

Corollary 4.2.16. Z×m is cyclic⇔ m = 2, 4, pn and 2pn, where p is an odd prime and n ∈N.

Exercise 4.2. 1. Find a primitive root of 11, 11n for all n ≥ 1.

2. How many primitive roots does 22 have? Find them all.

3. Find a primitive root of 2 · 5n for all n ≥ 1.

4. The prime p = 71 has 7 as a primitive root. Find all primitive roots of 71 and also find a primitive
root of p2 and of 2p2.
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5. If p > 3 is a prime, prove that the product of all incongruent primitive roots of p is congruent to 1
modulo p.

6. Let m be a number having primitive roots and let g be a primitive root of m. Prove that
(i) gϕ(m)/2 ≡ −1 (mod m),
(ii) the inverse of g modulo m is also a primitive root of m, and
(iii) x2 ≡ 1 (mod m) if and only if x ≡ 1 or −1 (mod m).

7. If p is a prime, show that the product of the ϕ(p − 1) primitive roots of p is congruent to (−1)ϕ(p−1)

modulo p.

8. Let p be an odd prime. Prove that

1n + 2n + · · · + (p − 1)n ≡
 0 (mod p) if (p − 1) - n,

−1 (mod p) if (p − 1) | n.

4.3 nth power residues

Let m be a number having primitive roots and let g be one of them. Then the numbers
g, g2, . . . , gϕ(m) form a reduced residue system of m. The relation between a number a and
the exponent of a power of g which is congruent to a modulo m is very similar to the relation
between an ordinary positive real number x and its logarithm.

Definition. Let m be a number having primitive roots and let g be one of them. Let a ∈ Z be such
that gcd(a,m) = 1. Then ∃ ! t ∈ {1, 2, . . . , ϕ(m)}, a ≡ gt (mod m). This exponent is called an index
of a to the base g, and written indg a. That is,

indg a ≡ t (mod ϕ(m)) ⇔ a ≡ gt (mod m).

Theorem 4.3.1. Let g be a primitive root of m and let a and b be relatively prime to m.

(1) If a ≡ b (mod m), then indg a ≡ indg b (mod ϕ(m)),

(2) indg(ab) ≡ indg a + indg b (mod ϕ(m)),

(3) indg an ≡ n indg a (mod ϕ(m)),

(4) indg 1 ≡ 0 (mod ϕ(m)) and indg g ≡ 1 (mod ϕ(m)).

Example 4.3.1. (1) If m = 17 and g = 3, we have the table

a : 3 9 10 13 5 15 11 16
indg a : 1 2 3 4 5 6 7 8

a : 14 8 7 4 12 2 6 1
indg a : 9 10 11 12 13 14 15 16

(2) If m = 18 and g = 5, we have
a : 5 7 17 13 11 1

indg a : 1 2 3 4 5 6

Remark. Let g be a primitive root of m and gcd(a,m) = 1. Recall that ordm(gk) =
ϕ(m)

gcd(k, ϕ(m))
.

Then a is a primitive root of m if and only if gcd(indg a, ϕ(m)) = 1.



40 Primitive Roots Y. Meemark

Example 4.3.2. Solve (1) 4x6 ≡ 9 (mod 17) (2) x9 ≡ 7 (mod 18).

Definition. Let m ≥ 2, n ∈ N and let a ∈ Z be such that gcd(a,m) = 1. We say that a is an
nth power residue [resp. non-residue] of m if the congruence xn ≡ a (mod m) is [resp. is not]
solvable. If n = 2, we call a a quadratic residue [resp. non-residue] of m.

Remark. Clearly, 1 is an nth power residue for all n ∈N.

Theorem 4.3.2. If a and b are both nth power residue of m, then the congruences xn ≡ a (mod m) and
xn ≡ b (mod m) have the same number of solutions.

Proof. Let a be an nth power residue. We shall show that xn ≡ a (mod m) has the same number
of solutions as xn ≡ 1 (mod m). Let x1, x2, . . . , xk be all incongruent such that xn

i ≡ a (mod m) for
all i. Then x−1

k xi are incongruent and (x−1
k xi)n = a−1a ≡ 1 (mod m) for all i. By symmetry, we can

show that the solutions of xn ≡ 1 (mod m) will yield as many as solutions to xn ≡ a (mod m).
Hence the numbers of solutions of both congruences are the same. �

Remark. The set of all nth power residues of m forms a subgroup of Z×m.

Theorem 4.3.3. Suppose m is a number having primitive roots and let g be a primitive root of m. Let
a ∈ Z be such that gcd(a,m) = 1 and n ∈N. Then

(1) a is an n-th power residue of m if and only if

aϕ(m)/d ≡ 1 (mod m), where d = gcd(n, ϕ(m)). (4.3.1)

(2) The number of nth power residues of m is ϕ(m)/d, and each of them is the nth power of exactly d
incongruent integers modulo m.

Proof. (1) It follows from

xn ≡ a (mod m) has a solution ⇔ n indg x ≡ indg a (mod ϕ(m)) has a solution

⇔ d | (indg a), where d = gcd(n, ϕ(m))

⇔ indg a ≡ 0 (mod d), where d = gcd(n, ϕ(m))

⇔ ϕ(m)
d indg a ≡ 0 (mod ϕ(m))

⇔ indg aϕ(m)/d ≡ 0 (mod ϕ(m))

⇔ aϕ(m)/d ≡ 1 (mod m).

(2) The second assertion follows from the second line above and Theorem 2.2.1. Finally, the
ϕ(m)/d numbers gd, g2d, . . . , g(ϕ(m)/d)d are distinct modulo m and satisfy (4.3.1). �

Corollary 4.3.4. [Euler’s criterion] If p is a prime and gcd(a, p) = 1. Then a is an n-th power residue
of p if and only if a(p−1)/d ≡ 1 (mod p), where d = gcd(n, p − 1). In particular, if p is an odd prime, then
a is a quadratic residue of p⇔ a(p−1)/2 ≡ 1 (mod p).

Exercise 4.3. 1. Is 5 a cubic residue of 18? What are all cubic residues of 18?

2. (i) Calculate a table for indices of 50 and solve 3x4 ≡ 7 (mod 50)
(ii) Is 43 is the fifth power residue of 50? If so, find all fifth power residues of 50.
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3. If g and g′ are both primitive roots of the odd prime p, show that for gcd(a, p) = 1,

indg′ a ≡ (indg a)(indg′ g) (mod p − 1).

4. If p is an odd prime, prove that x4 ≡ −1 (mod p)⇔ p ≡ 1 (mod 8).

5. Given that 2 is a primitive root of 29. Find the solutions of
(i) x7 ≡ 1 (mod 29), (ii) x6 + x5 + x4 + x3 + x2 + x + 1 ≡ 0 (mod 29).

4.4 Hensel’s Lemma

Theorem 4.4.1. Let f be a polynomial with integer coefficients, let m1,m2, . . . ,mr be pairwise relatively
prime positive integers, and let m = m1m2 . . .mr. Then the congruence

f (x) ≡ 0 (mod m) (4.4.1)

has a solution if and only if each of the congruences

f (x) ≡ 0 (mod mi) (4.4.2)

has a solution for all i = 1, 2, . . . , r. Moreover, if ν(m) and ν(mi) denote the number of solutions of (4.4.1)
and (4.4.2), respectively, then

ν(m) = ν(m1)ν(m2) . . . ν(mr).

Proof. Clearly, if f (x) ≡ 0 (mod m), then f (a) ≡ 0 (mod mi) for all i ∈ {1, . . . , r}. Thus, (4.4.1)
implies (4.4.2).

Conversely, let ai be a solution of (4.4.2) for each i ∈ {1, . . . , r}. Then by Chinese remainder
theorem, ∃a ∈ Z, ai ≡ a (mod mi) for all i, so

0 ≡ f (ai) ≡ f (a) (mod mi)

for all i. Since m1, . . . ,mr are positive relatively prime,

f (a) ≡ 0 (mod m1 . . .mr = m).

Hence, (4.4.2) implies (4.4.1).

Finally, by Chinese remainder theorem, each r-tuple of solution (a1, . . . , ar) of (4.4.2) gives rises
to a unique integer a modulo m satisfying (4.4.1). As each ai runs through the ν(mi) solutions of
(4.4.2), the number of integers a modulo m which satisfy (4.4.1) is ν(m1) . . . ν(mr). �

Remark. If m > 1 has the prime-power factorization m = pk1
1 pk2

2 . . . p
kr
r , we can take mi = pki

i for
all i = 1, 2, . . . , r in the previous theorem and we see that the problem of solving a polynomial
congruence for a composite modulus is reduced to that for prime-power moduli.

Lemma 4.4.2. Let f (x) = c0 + c1x + c2x2 + · · · + cnxn be a polynomial with integer coefficients. Then
every coefficient of f (k)(x) is divisible by k! for all k ∈N.
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Proof. Recall that
(m

k
)
=

m(m−1)...(m−(k−1))
k! ∈ Z for all 0 ≤ k ≤ m. This implies that k! divides the

product of k consecutive integers. Moreover, for ℓ ∈N,

d
dxk

xℓ =

ℓ(ℓ − 1) . . . (ℓ − (k − 1))xℓ−k if ℓ ≥ k,

0 if ℓ < k.

Hence, k! divides every coefficient of f (k)(x). �

Lemma 4.4.3. [Hensel] Assume that k ≥ 2 and let r be a solution of the congruence

f (x) ≡ 0 (mod pk−1)

lying in the interval 0 ≤ r < pk−1.

(1) Assume p - f ′(r). Then r can be lifted in a unique way from pk−1 to pk. That is, there is a unique a in
the interval 0 ≤ a < pk such that a ≡ r (mod pk−1) and a satisfies the congruence f (x) ≡ 0 (mod pk).

(2) Assume p | f ′(r). Then we have two possibilities:

(a) If pk | f (r), r can be lifted from pk−1 to pk in p distinct ways.

(b) If pk - f (r), r cannot be lifted from pk−1 to pk.

Proof. From Calculus, the Taylor’s expansion of f (x) is

f (x + h) = f (x) + f ′(x)h +
f ′′(x)

2!
h2 + · · · + f (n)(x)

n!
hn

for all x, h ∈ Z and deg f (x) = n. Take x = r and h = qpk−1, where q ∈ Z, we have

f (r + qpk−1) ≡ f (r) + f ′(r)qpk−1 (mod pk). (4.4.3)

Since f (r) ≡ 0 (mod pk−1), we have f (r) = mpk−1 for some m ∈ Z and so (4.4.3) becomes

f (r + qpk−1) ≡ mpk−1 + f ′(r)qpk−1 = (m + f ′(r)q)pk−1 (mod pk).

Suppose p - f ′(r). We can choose a unique q ∈ {0, 1, . . . , p − 1} such that m + f ′(r)q ≡ 0 (mod p).
Thus,

f (r + qpk−1) ≡ 0 (mod pk),

where 0 ≤ r + qpk−1 < pk. Let a = r + qpk−1. Then a is unique and a ≡ r (mod pk−1).
Next, we suppose that p | f ′(r). Then

m + f ′(r)x ≡ 0 (mod p) has a solution⇔ p | m⇔ f (r) ≡ 0 (mod pk).

Moreover, m + f ′(r)x ≡ 0 (mod p) has p incongruent solutions modulo p if p | m. We now
distinguish two cases.
(a) If pk | f (r), then for each q ∈ {0, 1, . . . , p − 1}, rq = r + qpk−1 is a solution of f (x) ≡ 0 (mod pk).
These gives p incongruent solutions.
(b) If pk - f (r), then m + f ′(r)x ≡ 0 (mod p) has no solution, so r cannot be lifted from pk−1 to
pk. �
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Corollary 4.4.4. Let p be an odd prime and n ∈N. For a ∈ Z and p - a, if x2 ≡ a (mod p) has a solution,
so does x2 ≡ a (mod pn).

Proof. Consider f (x) = x2 − a. Then f ′(x) = 2x, so p - f ′(r) for all r ∈ Z such that p - r and the
statement follows from Hensel’s lemma (1). �

Example 4.4.1. Determine the number of solutions of x7 + x + 1 ≡ 0 (mod 343).

Example 4.4.2. Find all solutions of x4 + x + 1 ≡ 0 (mod 27).

Example 4.4.3. Find all solutions of x3 + x2 + 23 ≡ 0 (mod 125).

Exercise 4.4. 1. Find all solutions of the following congruences
(i) x3 − 3x2 + 27 ≡ 0 (mod 1125) (ii) x7 + x + 1 ≡ 0 (mod 343)
(iii) x4 + 2x + 2 ≡ 0 (mod 125).

2. Find all solutions of x3 + 2x2 − 3 ≡ 0 (mod 73)

3. Prove that 3n - (a2 + 1) for all a ∈ Z and n ∈N.
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Chapter 5
Quadratic Residues

5.1 The Legendre Symbol

Definition. Let m ≥ 2 and let a ∈ Z be such that gcd(a,m) = 1. We call a a quadratic residue
[resp. non-residue] of m if the congruence x2 ≡ a (mod m) is [resp. is not] solvable.

Theorem 5.1.1. (1) 1 is the only quadratic residue of 2 and of 4.

(2) a is a quadratic residue of 2e for all e ≥ 3⇔ a ≡ 1 (mod 8).

(3) If p is an odd prime and n ∈N, then
a is a quadratic residue of pn ⇔ a is a quadratic residue of p.

Proof. (1) It is obtained by basic calculation.
(2) Since a is a quadratic residue for all e ≥ 3, a ≡ t2 (mod 2e) for some t ∈ Z. Recall that for any
odd integer t, t2 ≡ 1 (mod 8). Hence, a ≡ 1 (mod 8).

Conversely, assume that a ≡ 1 (mod 8). Clearly, a is a quadratic residue modulo 23 = 8. Let
e > 3 and assume that a is a quadratic residue modulo 2e−1. Then a = t2 + k2e−1 for some k, t ∈ Z.
Since a is odd, t is odd. Thus, there is a k′ ∈ Z such that tk′ ≡ k (mod 2). Note that

(t + k′2e−2)2 = t2 + 2tk′2e−2 + (k′2e−2)2 = t2 + tk′2e−1 + k′222e−4.

Substitute a = t2 + k2e−1, we have

(t + k′2e−2)2 = a − k2e−1 + tk′2e−1 + k′222e−4 = a − (tk′ − k)2e−1 + k′222e−4,

so a ≡ (t + k′2e−2)2 (mod 2e) because e > 3.
(3) It follows from Corollary 4.4.4. �

Hence, to determine a quadratic residue of m ≥ 2, by Theorem 4.4.1, it suffices to study a
quadratic residue of an odd prime p.

Definition. For an odd prime p, we define the Legendre symbol (·/p) by

(a/p) =


0, if p | a;

1, if a is a quadratic residue of p;

−1, if a is a quadratic nonresidue of p.

45
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Using the symbol, the Euler’s criterion can be rephrased more simply.

Theorem 5.1.2. If p is an odd prime, then for arbitrary a ∈ Z, a(p−1)/2 ≡ (a/p) (mod p).

Proof. Observe that 1 ≡ ap−1 = a(p−1)/2 (mod p), so a(p−1)/2 ≡ 1 or −1 (mod p). The Euler’s
criterion gives a(p−1)/2 ≡ 1⇔ (a/p) = 1, which is equivalent to a(p−1)/2 ≡ −1⇔ (a/p) = −1. Hence
a(p−1)/2 ≡ (a/p) (mod p). �

Corollary 5.1.3. For an odd prime p, (−1/p) = (−1)(p−1)/2.
Thus −1 is a quadratic residue of p⇔ p ≡ 1 (mod 4).

The Legendre symbol (·/p) has the following properties.

Theorem 5.1.4. Let p be an odd prime.

(1) (ab/p) = (a/p)(b/p). Thus, (QR)(QR) = QR, (QR)(QNR) = QNR and (QNR)(QNR) = QR.

(2) If a ≡ b (mod p), then (a/p) = (b/p).

(3) (a2/p) = 1 if p - a.

Proof. Note that (ab/p) ≡ (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 ≡ (a/p)(b/p) (mod p). Since the values of (·/p)
is 0 or ±1 and p is odd, we have (ab/p) = (a/p)(b/p). The later two statements follow from (1). �

Example 5.1.1. Determine whether the congruence x2 ≡ −46 (mod 17) is solvable.

Theorem 5.1.5. If p is an odd prime, then

p−1∑
a=1

(a/p) = 0.

Hence, there are precisely (p − 1)/2 quadratic residues and (p − 1)/2 quadratic non-residues of p.

Proof. Let g be a primitive root of p. Then g, g2, . . . , gp−1 forms a reduced residue modulo p. Recall
that g(p−1)/2) ≡ −1 (mod p), so we have

(gk/p) = (g/p)k ≡ (g(p−1/2))k ≡ (−1)k (mod p)

for all k ∈ {1, 2, . . . , p−1}. Since the values of (·/p) is 0 or ±1 and p is odd, (gk/p) = (−1)k, and hence

p−1∑
a=1

(a/p) =
p−1∑
k=1

(gk/p) =
p−1∑
k=1

(−1)k = 0

as desired. �

Theorem 5.1.6. There are infinitely many primes of the form 4k + 1, k ∈N.

Proof. Suppose that there are finitely many such primes; let us call them p1, p2, . . . , pn and consider
the integer

N = (2p1p2 . . . pn)2 + 1.

Clearly, N is odd, so that there exists some odd prime p with p | N. That is,

(2p1p2 . . . pn)2 ≡ −1 (mod p),

so (−1/p) = 1. Hence p = 4k + 1 for some k ∈N, so p = pi for some i. This implies that p | 1 which
is a contradiction. �
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From Theorem 5.1.4, in investigating the Legendre symbol (·/p), there will be be no loss in
generality in assuming that a is a positive prime. In general, (a/p) can be written as the product
of Legendre symbols, in which the first entries are the distinct prime divisors of a which divide
a to an odd power.

Example 5.1.2. Show that (−48/31) = −(3/31) = (2/31)(7/31).

Theorem 5.1.7. [Gauss’ lemma] If µ is the number of elements of the set

{a, 2a, . . . , 1
2 (p − 1)a}

whose numerically smallest remainders modulo p, lied in the interval (−p/2, p/2), are negative, then we
have

(a/p) = (−1)µ.

Example 5.1.3. If a = 3, p = 31, the numerically smallest remainders modulo 31 of 3·1, 3·2, . . . , 3·15
are 3, 6, 9, 12, 15,−13,−10,−7,−4,−1, 2, 5, 8, 11, 14; thus we have µ = 5, (3/31) = −1, and hence
(−48/31) = 1.

Proof of Gauss’ lemma. Replace the number of the set {a, 2a, . . . , 1
2 (p − 1)a} by their numerically

smallest remainder modulo p lied in the interval (−p/2, p/2); denote the positive ones by r1, r2, . . .

and the negative ones by −r′1,−r′2, . . . . Clearly, no two ri’s are equal, and no two r′j’s are equal.
Note that ri . r′j (mod p) for all i, j. Hence the (p−1)/2 numbers ri, r′j are distinct integers between
1 and (p − 1)/2 inclusive, and are therefore exactly the numbers 1, 2, . . . , (p − 1)/2 in some order.
Thus

a · 2a · . . . · p−1
2 a ≡ (−1)µ p−1

2 ! (mod p)

(a/p) = a(p−1)/2 ≡ (−1)µ (mod p).

Since p is odd and (a/p) assumes only the values ±1, (a/p) = (−1)µ as desired. �

If a = 2, then µ is the number of elements of the set {2m : 1 ≤ m ≤ p−1
2 } = {2, 4, . . . , p− 1}which

are greater than p/2; clearly; this is true⇔ m > p/4. Thus

µ =
p − 1

2
−

[p
4

]
.

If now,

p = 8k + 1, then µ = 4k − [2k + 1
4 ] = 4k − 2k = 2k is even,

p = 8k + 3, then µ = 4k + 1 − [2k + 3
4 ] = 4k + 1 − 2k = 2k + 1 is odd,

p = 8k − 3, then µ = 4k − 2 − [2k − 1 + 1
4 ] = 2k − 1 is odd, and

p = 8k − 1, then µ = 4k − 1 − [2k − 1 + 3
4 ] = 2k is even.

Observe that the quality (p2 − 1)/8 satisfies exactly the same parities as µ above. This result can
be concluded in the following form.

Theorem 5.1.8. For an odd prime p, 2 is a quadratic residue of p⇔ p ≡ ±1 (mod 8).
Briefly, (2/p) = (−1)(p2−1)/8.
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Theorem 5.1.9. (1) 2 is a primitive root of the prime q = 4p + 1 if p is an odd prime.

(2) 2 is a primitive root of q = 2p + 1 if p is a prime of the form 4k + 1.

(3) −2 is a primitive root of q = 2p + 1 if p is a prime of the form 4k − 1.

Proof. (1) If ordq 2 = t, then t | (q− 1), that is t | 4p. Aside from 4, every proper divisor of 4p is also
a divisor of 2p, and if 24 ≡ 1 (mod q), then q = 5 and p = 1 is not a prime. Hence it suffices to
show that 22p . 1 (mod q). But 22p = 2(q−1)/2 ≡ (2/q) (mod q) and (2/q) = −1 since q ≡ 5 (mod 8).
The other statements are exercises. �

Theorem 5.1.10. There are infinitely many primes of the form 8k − 1.

Proof. As usual, suppose that there are finitely many such primes; let us call them p1, p2, . . . , pn

and consider the integer
N = (4p1p2 . . . pn)2 − 2.

Then there exists an odd prime divisor of N, so that

(4p1p2 . . . pn)2 ≡ 2 (mod p)

or (2/p) = 1. In view of Theorem 5.1.8, p ≡ ±1 (mod 8). If all the odd prime divisors of N were of
the form 8k + 1, then N would be of the form 16a + 2 which is impossible, since N is of the form
16a − 2. Thus N must have a prime divisor q of the form 8k − 1. But q | N and q | (4p1p2 . . . pn)2

leads to the contradiction that q | 2. �

Exercise 5.1. 1. Suppose p - a. Show that if p ≡ 1 (mod 4), then both or neither of a and −a are
quadratic residues of p, while if p ≡ −1 (mod 4), exactly one is a quadratic residue.

2. Complete the proof of Theorem 5.1.9.

3. If p - a, prove that the number of solutions to ax2 + bx + c ≡ 0 (mod p) is 1 + ((b2 − 4ac)/p).

4. Show that if p = 2q + 1 and q are both odd primes, then −4 is a primitive root of p.

5. Let p be an odd prime. Find the sum
∑

1≤a<b<p

(( a
p

)
+

(b
p

))2

.

5.2 Quadratic Reciprocity

Remark. For m,n ∈ Z, (−1)m = (−1)n ⇔ m ≡ n (mod 2).

Lemma 5.2.1. Let p be an odd prime. If p - a, then

(a/p) = (−1)ν, where ν =

p−1
2∑

x=1

[
2ax
p

]
.

Proof. We start from Gauss’ lemma, µ is the number of x with 0 < x < p/2 and p/2 < ax−p[ax/p] <
p, i.e.,

1 ≤ 2ax
p
− 2

[
ax
p

]
< 2.
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Hence

µ =

p−1
2∑

x=1

[
2ax
p
− 2

[
ax
p

]]
=

p−1
2∑

x=1

([
2ax
p

]
− 2

[
ax
p

])
≡ ν (mod 2)

as desired. �

Lemma 5.2.2. If p and q are distinct odd primes, then

(p/q)(q/p) = (−1)λ, where λ =

p−1
2∑

x=1

[
qx
p

]
+

q−1
2∑

y=1

[
py
q

]
.

Proof. From Lemma 5.2.1, for an odd number a we have(
a
p

)
=

(
a + p

p

)
=

 a+p
2

p

 (2
p

)
= (−1)κ,

where

κ =

p−1
2∑

x=1

[
(a + p)x

p

]
+

p2 − 1
8
=

p−1
2∑

x=1

[
ax
p

]
+

p−1
2∑

x=1

x +
p2 − 1

8
=

p−1
2∑

x=1

[
ax
p

]
+

p2 − 1
4

.

Now, take a = q and also switch p and q, we have finally proved the lemma. �

Theorem 5.2.3. [Quadratic reciprocity law] If p and q are distinct positive odd primes, then

(p/q)(q/p) = (−1)
p−1

2
q−1

2 .

That is,

(p/q) =

(q/p), if p ≡ 1 (mod 4) or q ≡ 1 (mod 4);

−(q/p), if p ≡ q ≡ 3 (mod 4).

Proof. Consider the lattice points (i.e., integer coordinates) inside the rectangle

R = {(x, y) ∈ Z ×Z : 0 < x < p/2 and 0 < y < q/2}

Then |R| = p−1
2

q−1
2 . Note that R = R1 ∪ R2, where

R1 = {(x, y) ∈ Z ×Z : 0 < x < p/2 and 0 < y < qx/p}

and

R2 = {(x, y) ∈ Z ×Z : 0 < x < p/2 and qx/p < y < q/2}
= {(x, y) ∈ Z ×Z : 0 < x < py/q and 0 < y < q/2}.

Moreover, R1 ∩ R2 = ∅. Thus

p − 1
2

q − 1
2
= |R| = |R1| + |R2| =

p−1
2∑

x=1

[
qx
p

]
+

q−1
2∑

y=1

[
py
q

]
.

Hence Lemma 5.2.2 establishes the theorem. �
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Example 5.2.1. Compute (2011/2551).

Solution. Since 2011 ≡ 3 ≡ 2551 (mod 4),

(2011/2551) = −(2551/2011) = −(540/2011) = −((4 · 9 · 3 · 5)/2011) = −(3/2011)(5/2011).

Next, since 5 ≡ 1 (mod 4), (5/2011) = (2011/5) = (1/5) = 1. Also, (3/2011) = −(2011/3) =
−(1/3) = −1. Hence, (2011/2551) = −(−1)(1) = 1. �

Moreover, the quadratic reciprocity law can be used to determine the primes p of which a
given prime q is a quadratic residue. This result, which is contained in the next theorem, has
sometimes been taken as the quadratic reciprocity law, rather than Theorem 5.2.3. (Each can be
deduced from the other.)

Theorem 5.2.4. Let q be a fixed positive odd prime, and let p range over the odd positive primes , q.
Every such p has a unique representation in exactly one of the two forms

p = 4qk ± a, with k ∈ Z, 0 < a < 4q, and a ≡ 1 (mod 4). (5.2.1)

When (5.2.1) holds,
(q/p) = (a/q). (5.2.2)

Thus the p for which (q/p) = 1 are exactly those p ≡ ±a (mod 4q), for all a such that

0 < a < 4q, a ≡ 1 (mod 4), and(a/q) = 1. (5.2.3)

The a’s satisfying (5.2.3) are given by the smallest positive remainders modulo 4q of the odd squares

12, 32, . . . , (q − 2)2.

Example 5.2.2. (1) Take q = 3. Then the only integer satisfying the condition (5.2.3) is 1, so the 3
is a quadratic residue of primes 12k ± 1. Every other odd number is one of the forms 12k ± 3
or 12k±5, and no prime except 3 occurs in the progressions 12k±3. Hence (3/p) is completely
determined by the equations

(3/p) =

1, if p ≡ ±1 (mod 12);

−1, if p ≡ ±5 (mod 12).

(2) Take q = 17. We consider the squares

12, 32, 52, 72, 92, 112, 132, 152,

which reduce modulo 4 · 17 = 68 to

1, 9, 25, 49, 13, 53, 33, 21.

We have that 17 is a quadratic residue of primes of the forms

68k ± 1, 9, 13, 21, 25, 33, 49, 53,

and a nonresidue of primes of the forms

68k ± 5, 29, 37, 41, 45, 57, 61, 65;

17 itself is the only primes of the forms 68 ± 17.
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(3) Determine all odd primes p such that (6/p) = 1.

Proof of Theorem 5.2.4. By the division algorithm, there are unique k′ and a′ such that

p = 4qk′ + a′, 1 ≤ a′ < 4q,

and clearly a′ is odd. If a′ ≡ 1 (mod 4), (5.2.1) holds with the plus sign and with k = k′, a = a′. If
a′ ≡ −1 (mod 4), (5.2.1) holds with the minus sign and k = k′ + 1, a = 4q − a′. Any other value of
k than k′ and k′ + 1 would yield |a| > 4q.

To verify (5.2.2), first suppose that the plus sign is correct in (5.2.1). Then p ≡ 1 (mod 4), and
p ≡ a (mod q), so (q/p) = (p/q) = (a/q). If the minus sign is correct, then p ≡ −1 (mod 4) and
p ≡ −a (mod q), so either

q ≡ −1 (mod 4), and then (q/p) = −(p/q) = −(−a/q) = (a/q),

or
q ≡ 1 (mod 4), and then (q/p) = (p/q) = (−a/q) = (a/q).

Finally, if (a/q) = 1, there is a b such that

a ≡ b2 (mod q) and 1 ≤ b ≤ q − 1,

whence also
a ≡ (q − b)2 (mod q) and 1 ≤ q − b ≤ q − 1.

Since either b or q − b is odd, say b′, we have

a ≡ b′2 (mod q), 1 ≤ b′ ≤ q − 2, b′ ≡ 1 (mod 2).

But then also
a ≡ 1 ≡ b′2 (mod 4),

so that
a ≡ b′2 (mod 4q),

as asserted. �

Example 5.2.3. Determine whether the congruence x2 ≡ 248 (mod 1357) is solvable.

Definition. Let m be an odd positive integer and a ∈ Z. Write m = pk1
1 . . . p

kr
r , where pi are distinct

odd primes. Define the Jacobi symbol by

(a/m)J = (a/p1)k1 . . . (a/pr)kr .

Theorem 5.2.5. Let m be an odd positive integer and a ∈ Z. If x2 ≡ a (mod m) is solvable, then
(a/m)J = 1.

Proof. Let m = pk1
1 . . . p

kr
r . Since x2 ≡ a (mod m) is solvable, x2 ≡ a (mod pki

i ) is solvable for all i.
By Theorem 5.1.1, (a/pi) = 1 for all i. Hence (a/m)J = 1. �

Remark. The converse of Theorem 5.2.5 is not true in general, e.g., (2/9)J = (2/3)2 = 1 but x2 ≡ 2
(mod 9) has no solution.
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Exercise 5.2. 1. Evaluate the Legendre symbols (503/773) and (501/773).

2. Characterize the primes of which 5 is quadratic residue; those of which 10 is a quadratic residue;
and those of which −5 is a quadratic residue.

3. Decide which of the following congruences are solvable:
(i) x2 ≡ 2455 (mod 4993), (ii) x2 ≡ 245 (mod 27496),
(iii) x2 ≡ 11 (mod 35), (iv) x2 ≡ 19 (mod 30),
(v) x2 ≡ 12 (mod 2989), (vi) x2 + 5x ≡ 12 (mod 31).

4. Assume Theorem 5.2.4. Prove Theorem 5.2.3.

5. Show that for p > 3, the congruence x2 ≡ −3 (mod p) is solvable if and only if p ≡ 1 (mod 6).
Deduce that there are infinitely many primes of the form 6k + 1.

6. Prove that 7 is a primitive root of any prime of the form p = 24n + 1. [Hint: Show that (7/p) = (p/7) =
−1.]

7. Characterize the primes p of which the congruence 2x2 + 1 ≡ 0 (mod p) is solvable.

8. Compute (5/21)J and (39/539)J.
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