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8

Correlated Random Variables

In the last three chapters on data compression we concentrated on random
vectors x coming from an extremely simple probability distribution, namely
the separable distribution in which each component xn is independent of the
others.

In this chapter, we consider joint ensembles in which the random variables
are correlated. This material has two motivations. First, data from the real
world have interesting correlations, so to do data compression well, we need
to know how to work with models that include correlations. Second, a noisy
channel with input x and output y defines a joint ensemble in which x and y are
correlated – if they were independent, it would be impossible to communicate
over the channel – so communication over noisy channels (the topic of chapters
9–11) is described in terms of the entropy of joint ensembles.

�
8.1 More about entropy

This section gives definitions and exercises to do with entropy, carrying on
from section 2.4.

The joint entropy of X,Y is:

H(X,Y ) =
∑

xy∈AXAY

P (x, y) log
1

P (x, y)
. (8.1)

Entropy is additive for independent random variables:

H(X,Y ) = H(X) + H(Y ) iff P (x, y) = P (x)P (y). (8.2)

The conditional entropy of X given y = bk is the entropy of the proba-
bility distribution P (x | y = bk).

H(X | y = bk) ≡
∑

x∈AX

P (x | y = bk) log
1

P (x | y = bk)
. (8.3)

The conditional entropy of X given Y is the average, over y, of the con-
ditional entropy of X given y.

H(X |Y ) ≡
∑

y∈AY

P (y)





∑

x∈AX

P (x | y) log
1

P (x | y)





=
∑

xy∈AXAY

P (x, y) log
1

P (x | y)
. (8.4)

This measures the average uncertainty that remains about x when y is
known.
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8.1: More about entropy 139

The marginal entropy of X is another name for the entropy of X, H(X),
used to contrast it with the conditional entropies listed above.

Chain rule for information content. From the product rule for probabil-
ities, equation (2.6), we obtain:

log
1

P (x, y)
= log

1

P (x)
+ log

1

P (y |x)
(8.5)

so

h(x, y) = h(x) + h(y |x). (8.6)

In words, this says that the information content of x and y is the infor-
mation content of x plus the information content of y given x.

Chain rule for entropy. The joint entropy, conditional entropy and
marginal entropy are related by:

H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ). (8.7)

In words, this says that the uncertainty of X and Y is the uncertainty
of X plus the uncertainty of Y given X.

The mutual information between X and Y is

I(X;Y ) ≡ H(X) − H(X |Y ), (8.8)

and satisfies I(X;Y ) = I(Y ;X), and I(X;Y ) ≥ 0. It measures the
average reduction in uncertainty about x that results from learning the
value of y; or vice versa, the average amount of information that x
conveys about y.

The conditional mutual information between X and Y given z = ck

is the mutual information between the random variables X and Y in
the joint ensemble P (x, y | z = ck),

I(X;Y | z = ck) = H(X | z = ck) − H(X |Y, z = ck). (8.9)

The conditional mutual information between X and Y given Z is
the average over z of the above conditional mutual information.

I(X;Y |Z) = H(X |Z) − H(X |Y,Z). (8.10)

No other ‘three-term entropies’ will be defined. For example, expres-
sions such as I(X;Y ;Z) and I(X |Y ;Z) are illegal. But you may put
conjunctions of arbitrary numbers of variables in each of the three spots
in the expression I(X;Y |Z) – for example, I(A,B;C,D |E,F ) is fine:
it measures how much information on average c and d convey about a
and b, assuming e and f are known.

Figure 8.1 shows how the total entropy H(X,Y ) of a joint ensemble can be
broken down. This figure is important. ∗
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H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 8.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.

�
8.2 Exercises

. Exercise 8.1.[1 ] Consider three independent random variables u, v, w with en-
tropies Hu,Hv,Hw. Let X ≡ (U, V ) and Y ≡ (V,W ). What is H(X,Y )?
What is H(X |Y )? What is I(X;Y )?

. Exercise 8.2.[3, p.142] Referring to the definitions of conditional entropy (8.3–
8.4), confirm (with an example) that it is possible for H(X | y = bk) to
exceed H(X), but that the average, H(X |Y ) is less than H(X). So
data are helpful – they do not increase uncertainty, on average.

. Exercise 8.3.[2, p.143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y ) = H(X) + H(Y |X)].

Exercise 8.4.[2, p.143] Prove that the mutual information I(X;Y ) ≡ H(X) −
H(X |Y ) satisfies I(X;Y ) = I(Y ;X) and I(X;Y ) ≥ 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y ) = DKL(P (x, y)||P (x)P (y)).] (8.11)

Exercise 8.5.[4 ] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

DH(X,Y ) ≡ H(X,Y ) − I(X;Y ). (8.12)

Prove that the entropy distance satisfies the axioms for a distance –
DH(X,Y ) ≥ 0, DH(X,X)= 0, DH(X,Y )=DH(Y,X), and DH(X,Z) ≤
DH(X,Y ) + DH(Y,Z). [Incidentally, we are unlikely to see DH(X,Y )
again but it is a good function on which to practise inequality-proving.]

Exercise 8.6.[2 ] A joint ensemble XY has the following joint distribution.

P (x, y) x
1 2 3 4

1 1/8 1/16 1/32 1/32

y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16

4 1/4 0 0 0
4
3
2
1

1 2 3 4

What is the joint entropy H(X,Y )? What are the marginal entropies
H(X) and H(Y )? For each value of y, what is the conditional entropy
H(X | y)? What is the conditional entropy H(X |Y )? What is the
conditional entropy of Y given X? What is the mutual information
between X and Y ?
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8.3: Further exercises 141

Exercise 8.7.[2, p.143] Consider the ensemble XY Z in which AX = AY =
AZ = {0, 1}, x and y are independent with PX = {p, 1 − p} and
PY = {q, 1 − q} and

z = (x + y)mod 2. (8.13)

(a) If q = 1/2, what is PZ? What is I(Z;X)?

(b) For general p and q, what is PZ? What is I(Z;X)? Notice that
this ensemble is related to the binary symmetric channel, with x =
input, y = noise, and z = output.

H(X|Y) H(Y|X)I(X;Y)

H(X)

H(Y)

H(X,Y)

Figure 8.2. A misleading
representation of entropies
(contrast with figure 8.1).

Three term entropies

Exercise 8.8.[3, p.143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables and z ∈ {0, 1}
is defined to be z = x + y mod2.

�
8.3 Further exercises

The data-processing theorem

The data processing theorem states that data processing can only destroy
information.

Exercise 8.9.[3, p.144] Prove this theorem by considering an ensemble WDR
in which w is the state of the world, d is data gathered, and r is the
processed data, so that these three variables form a Markov chain

w → d → r, (8.14)

that is, the probability P (w, d, r) can be written as

P (w, d, r) = P (w)P (d |w)P (r | d). (8.15)

Show that the average information that R conveys about W, I(W ;R), is
less than or equal to the average information that D conveys about W ,
I(W ;D).

This theorem is as much a caution about our definition of ‘information’ as it
is a caution about data processing!
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Inference and information measures

Exercise 8.10.[2 ] The three cards.

(a) One card is white on both faces; one is black on both faces; and one
is white on one side and black on the other. The three cards are
shuffled and their orientations randomized. One card is drawn and
placed on the table. The upper face is black. What is the colour of
its lower face? (Solve the inference problem.)

(b) Does seeing the top face convey information about the colour of
the bottom face? Discuss the information contents and entropies

in this situation. Let the value of the upper face’s colour be u and
the value of the lower face’s colour be l. Imagine that we draw
a random card and learn both u and l. What is the entropy of
u, H(U)? What is the entropy of l, H(L)? What is the mutual
information between U and L, I(U ;L)?

Entropies of Markov processes

. Exercise 8.11.[3 ] In the guessing game, we imagined predicting the next letter
in a document starting from the beginning and working towards the end.
Consider the task of predicting the reversed text, that is, predicting the
letter that precedes those already known. Most people find this a harder
task. Assuming that we model the language using an N -gram model
(which says the probability of the next character depends only on the
N − 1 preceding characters), is there any difference between the average
information contents of the reversed language and the forward language?

�
8.4 Solutions

Solution to exercise 8.2 (p.140). See exercise 8.6 (p.140) for an example where
H(X | y) exceeds H(X) (set y =3).

We can prove the inequality H(X |Y ) ≤ H(X) by turning the expression
into a relative entropy (using Bayes’ theorem) and invoking Gibbs’ inequality
(exercise 2.26 (p.37)):

H(X |Y ) ≡
∑

y∈AY

P (y)





∑

x∈AX

P (x | y) log
1

P (x | y)





=
∑

xy∈AXAY

P (x, y) log
1

P (x | y)
(8.16)

=
∑

xy

P (x)P (y |x) log
P (y)

P (y |x)P (x)
(8.17)

=
∑

x

P (x) log
1

P (x)
+

∑

x

P (x)
∑

y

P (y |x) log
P (y)

P (y |x)
.(8.18)

The last expression is a sum of relative entropies between the distributions
P (y |x) and P (y). So

H(X |Y ) ≤ H(X) + 0, (8.19)

with equality only if P (y |x) = P (y) for all x and y (that is, only if X and Y
are independent).
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Solution to exercise 8.3 (p.140). The chain rule for entropy follows from the
decomposition of a joint probability:

H(X,Y ) =
∑

xy

P (x, y) log
1

P (x, y)
(8.20)

=
∑

xy

P (x)P (y |x)

[

log
1

P (x)
+ log

1

P (y |x)

]

(8.21)

=
∑

x

P (x) log
1

P (x)
+

∑

x

P (x)
∑

y

P (y |x) log
1

P (y |x)
(8.22)

= H(X) + H(Y |X). (8.23)

Solution to exercise 8.4 (p.140). Symmetry of mutual information:

I(X;Y ) = H(X) − H(X |Y ) (8.24)

=
∑

x

P (x) log
1

P (x)
−

∑

xy

P (x, y) log
1

P (x | y)
(8.25)

=
∑

xy

P (x, y) log
P (x | y)

P (x)
(8.26)

=
∑

xy

P (x, y) log
P (x, y)

P (x)P (y)
. (8.27)

This expression is symmetric in x and y so

I(X;Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X). (8.28)

We can prove that mutual information is positive two ways. One is to continue
from

I(X;Y ) =
∑

x,y

P (x, y) log
P (x, y)

P (x)P (y)
(8.29)

which is a relative entropy and use Gibbs’ inequality (proved on p.44), which
asserts that this relative entropy is ≥ 0, with equality only if P (x, y) =
P (x)P (y), that is, if X and Y are independent.

The other is to use Jensen’s inequality on

−
∑

x,y

P (x, y) log
P (x)P (y)

P (x, y)
≥ − log

∑

x,y

P (x, y)

P (x, y)
P (x)P (y) = log 1 = 0. (8.30)

Solution to exercise 8.7 (p.141). z = x + y mod2.

(a) If q = 1/2, PZ = {1/2, 1/2} and I(Z;X) = H(Z) − H(Z |X) = 1 − 1 = 0.

(b) For general q and p, PZ = {pq + (1 − p)(1 − q), p(1 − q) + q(1 − p)}.
The mutual information is I(Z;X) = H(Z) − H(Z |X) = H2(pq + (1 −
p)(1 − q)) − H2(q).

Three term entropies

Solution to exercise 8.8 (p.141). The depiction of entropies in terms of Venn
diagrams is misleading for at least two reasons.

First, one is used to thinking of Venn diagrams as depicting sets; but what
are the ‘sets’ H(X) and H(Y ) depicted in figure 8.2, and what are the objects
that are members of those sets? I think this diagram encourages the novice
student to make inappropriate analogies. For example, some students imagine
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H(Y|X,Z)

H(X)

H(Z)

I(X;Y)

H(Z|X) H(Z|X,Y)

I(X;Y|Z)A

H(Z|Y)

H(X|Y,Z)

H(Y)
H(X,Y|Z)

Figure 8.3. A misleading
representation of entropies,
continued.

that the random outcome (x, y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y ), I(X;Y ) and H(Y |X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y |Z) is less than the mutual information I(X;Y ). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables
and z ∈ {0, 1} is defined to be z = x + y mod2. Then clearly H(X) =
H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y ) = 0. However, if z is observed, X and Y become correlated —
knowing x, given z, tells you what y is: y = z − xmod2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y , and output Z is a situation
in which I(X;Y ) = 0 (input and noise are uncorrelated) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,Z) = I(X;Y ) + I(X;Z |Y ). (8.32)

Now, in the case w → d → r, w and r are independent given d, so
I(W ;R |D) = 0. Using the chain rule twice, we have:

I(W ;D,R) = I(W ;D) (8.33)

and
I(W ;D,R) = I(W ;R) + I(W ;D |R), (8.34)

so
I(W ;R) − I(W ;D) ≤ 0. (8.35)
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About Chapter 9

Before reading Chapter 9, you should have read Chapter 1 and worked on
exercise 2.26 (p.37), and exercises 8.2–8.7 (pp.140–141).
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9

Communication over a Noisy Channel

�
9.1 The big picture

Noisy
channel

Encoder Decoder

Compressor Decompressor
Source

coding

Channel

coding

Source

-
6

6

6

?

?

In Chapters 4–6, we discussed source coding with block codes, symbol codes
and stream codes. We implicitly assumed that the channel from the compres-
sor to the decompressor was noise-free. Real channels are noisy. We will now
spend two chapters on the subject of noisy-channel coding – the fundamen-
tal possibilities and limitations of error-free communication through a noisy
channel. The aim of channel coding is to make the noisy channel behave like
a noiseless channel. We will assume that the data to be transmitted has been
through a good compressor, so the bit stream has no obvious redundancy. The
channel code, which makes the transmission, will put back redundancy of a
special sort, designed to make the noisy received signal decodeable.

Suppose we transmit 1000 bits per second with p0 = p1 = 1/2 over a
noisy channel that flips bits with probability f = 0.1. What is the rate of
transmission of information? We might guess that the rate is 900 bits per
second by subtracting the expected number of errors per second. But this is
not correct, because the recipient does not know where the errors occurred.
Consider the case where the noise is so great that the received symbols are
independent of the transmitted symbols. This corresponds to a noise level of
f = 0.5, since half of the received symbols are correct due to chance alone.
But when f = 0.5, no information is transmitted at all.

Given what we have learnt about entropy, it seems reasonable that a mea-
sure of the information transmitted is given by the mutual information between
the source and the received signal, that is, the entropy of the source minus the
conditional entropy of the source given the received signal.

We will now review the definition of conditional entropy and mutual in-
formation. Then we will examine whether it is possible to use such a noisy
channel to communicate reliably. We will show that for any channel Q there
is a non-zero rate, the capacity C(Q), up to which information can be sent
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with arbitrarily small probability of error.

�
9.2 Review of probability and information

As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P (x) and P (y) are shown in the margins.

P (x, y) x P (y)

1 2 3 4

1 1/8 1/16 1/32 1/32 1/4

y 2 1/16 1/8 1/32 1/32 1/4

3 1/16 1/16 1/16 1/16 1/4

4 1/4 0 0 0 1/4

P (x) 1/2 1/4 1/8 1/8

The joint entropy is H(X,Y ) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y ) = 2 bits.

We can compute the conditional distribution of x for each value of y, and
the entropy of each of those conditional distributions:

P (x | y) x H(X | y)/bits

1 2 3 4

1 1/2 1/4 1/8 1/8 7/4

y 2 1/4 1/2 1/8 1/8 7/4

3 1/4 1/4 1/4 1/4 2

4 1 0 0 0 0

H(X |Y ) = 11/8

Note that whereas H(X | y =4) = 0 is less than H(X), H(X | y =3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P (x | y =2) is a different distribution from P (x),
the conditional entropy H(X | y =2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about x, since H(X |Y ) < H(X).

One may also evaluate H(Y |X) = 13/8 bits. The mutual information is
I(X;Y ) = H(X) − H(X |Y ) = 3/8 bits.

�
9.3 Noisy channels

A discrete memoryless channel Q is characterized by an input alphabet
AX , an output alphabet AY , and a set of conditional probability distri-
butions P (y |x), one for each x ∈ AX .

These transition probabilities may be written in a matrix

Qj|i = P (y = bj |x=ai). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, pY , from a probability distribution over the input, pX , by
right-multiplication:

pY = QpX . (9.2)
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.

x
-

-

���@@R
1

0

1

0
y P (y =0 |x=0) = 1 − f ;

P (y =1 |x=0) = f ;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f. 1

0

0 1

Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.

x
-

-

���
@@R

1

0

1

0

? y
P (y =0 |x=0) = 1 − f ;
P (y =? |x=0) = f ;
P (y =1 |x=0) = 0;

P (y =0 |x=1) = 0;
P (y =? |x=1) = f ;
P (y =1 |x=1) = 1 − f.

1
?
0

0 1

Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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Z channel. AX ={0, 1}. AY ={0, 1}.
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P (y =1 |x=0) = 0;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f. 1

0
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�
9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)
∑

x′ P (y |x′)P (x′)
. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)

∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085

0.22
= 0.39. (9.5)
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Thus ‘x=1’ is still less probable than ‘x=0’, although it is not as im-
probable as it was before.

Exercise 9.2.[1, p.157] Now assume we observe y =0. Compute the probability
of x=1 given y =0.

Example 9.3. Consider a Z channel with probability of error f =0.15. Let the
input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume we observe y =1.

P (x=1 | y =1) =
0.85 × 0.1

0.85 × 0.1 + 0 × 0.9

=
0.085

0.085
= 1.0. (9.6)

So given the output y =1 we become certain of the input.

Exercise 9.4.[1, p.157] Alternatively, assume we observe y =0. Compute
P (x=1 | y =0).

�
9.5 Information conveyed by a channel

We now consider how much information can be communicated through a chan-
nel. In operational terms, we are interested in finding ways of using the chan-
nel such that all the bits that are communicated are recovered with negligible
probability of error. In mathematical terms, assuming a particular input en-
semble X, we can measure how much information the output conveys about
the input by the mutual information:

I(X;Y ) ≡ H(X) − H(X |Y ) = H(Y ) − H(Y |X). (9.7)

Our aim is to establish the connection between these two ideas. Let us evaluate
I(X;Y ) for some of the channels above.

Hint for computing mutual information

We will tend to think of I(X;Y ) as H(X) − H(X |Y ), i.e., how much the
uncertainty of the input X is reduced when we look at the output Y . But for
computational purposes it is often handy to evaluate H(Y )−H(Y |X) instead.

H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 9.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.
This figure is important, so I’m
showing it twice.

Example 9.5. Consider the binary symmetric channel again, with f =0.15 and
PX : {p0 =0.9, p1 =0.1}. We already evaluated the marginal probabil-
ities P (y) implicitly above: P (y =0) = 0.78; P (y =1) = 0.22. The
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X).
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What is H(Y |X)? It is defined to be the weighted sum over x of H(Y |x);
but H(Y |x) is the same for each value of x: H(Y |x=0) is H2(0.15),
and H(Y |x=1) is H2(0.15). So

I(X;Y ) = H(Y ) − H(Y |X)

= H2(0.22) − H2(0.15)

= 0.76 − 0.61 = 0.15 bits. (9.8)

This may be contrasted with the entropy of the source H(X) =
H2(0.1) = 0.47 bits.

Note: here we have used the binary entropy function H2(p) ≡ H(p, 1−
p) = p log2

1
p + (1 − p) log2

1
(1−p) .

Example 9.6. And now the Z channel, with PX as above. P (y =1)=0.085.

I(X;Y ) = H(Y ) − H(Y |X)

= H2(0.085) − [0.9H2(0) + 0.1H2(0.15)]

= 0.42 − (0.1 × 0.61) = 0.36 bits. (9.9)

The entropy of the source, as above, is H(X) = 0.47 bits. Notice that
the mutual information I(X;Y ) for the Z channel is bigger than the
mutual information for the binary symmetric channel with the same f .
The Z channel is a more reliable channel.

Exercise 9.7.[1, p.157] Compute the mutual information between X and Y for
the binary symmetric channel with f =0.15 when the input distribution
is PX = {p0 =0.5, p1 =0.5}.

Exercise 9.8.[2, p.157] Compute the mutual information between X and Y for
the Z channel with f = 0.15 when the input distribution is PX :
{p0 =0.5, p1 =0.5}.

Maximizing the mutual information

We have observed in the above examples that the mutual information between
the input and the output depends on the chosen input ensemble.

Let us assume that we wish to maximize the mutual information conveyed
by the channel by choosing the best possible input ensemble. We define the
capacity of the channel to be its maximum mutual information.

The capacity of a channel Q is:

C(Q) = max
PX

I(X;Y ). (9.10)

The distribution PX that achieves the maximum is called the optimal

input distribution, denoted by P∗
X . [There may be multiple optimal

input distributions achieving the same value of I(X;Y ).]

In Chapter 10 we will show that the capacity does indeed measure the maxi-
mum amount of error-free information that can be transmitted over the chan-
nel per unit time.

Example 9.9. Consider the binary symmetric channel with f =0.15. Above,
we considered PX = {p0 =0.9, p1 =0.1}, and found I(X;Y ) = 0.15 bits.
How much better can we do? By symmetry, the optimal input distribu-

I(X ; Y )

0

0.1

0.2

0.3

0.4

0 0.25 0.5 0.75 1
p1

Figure 9.2. The mutual
information I(X ; Y ) for a binary
symmetric channel with f = 0.15
as a function of the input
distribution.
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tion is {0.5, 0.5} and the capacity is

C(QBSC) = H2(0.5) − H2(0.15) = 1.0 − 0.61 = 0.39 bits. (9.11)

We’ll justify the symmetry argument later. If there’s any doubt about
the symmetry argument, we can always resort to explicit maximization
of the mutual information I(X;Y ),

I(X;Y ) = H2((1 − f)p1 + (1 − p1)f) − H2(f) (figure 9.2). (9.12)

Example 9.10. The noisy typewriter. The optimal input distribution is a uni-
form distribution over x, and gives C = log2 9 bits.

Example 9.11. Consider the Z channel with f =0.15. Identifying the optimal
input distribution is not so straightforward. We evaluate I(X;Y ) explic-
itly for PX = {p0, p1}. First, we need to compute P (y). The probability
of y =1 is easiest to write down:

P (y =1) = p1(1 − f). (9.13)

Then the mutual information is:

I(X;Y ) = H(Y ) − H(Y |X)

= H2(p1(1 − f)) − (p0H2(0) + p1H2(f))

= H2(p1(1 − f)) − p1H2(f). (9.14)

This is a non-trivial function of p1, shown in figure 9.3. It is maximized
for f = 0.15 by p∗1 = 0.445. We find C(QZ) = 0.685. Notice that
the optimal input distribution is not {0.5, 0.5}. We can communicate
slightly more information by using input symbol 0 more frequently than
1.

I(X ; Y )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.25 0.5 0.75 1

p1

Figure 9.3. The mutual
information I(X ; Y ) for a Z
channel with f = 0.15 as a
function of the input distribution.

Exercise 9.12.[1, p.158] What is the capacity of the binary symmetric channel
for general f?

Exercise 9.13.[2, p.158] Show that the capacity of the binary erasure channel
with f = 0.15 is CBEC = 0.85. What is its capacity for general f?
Comment.

�
9.6 The noisy-channel coding theorem

It seems plausible that the ‘capacity’ we have defined may be a measure of
information conveyed by a channel; what is not obvious, and what we will
prove in the next chapter, is that the capacity indeed measures the rate at
which blocks of data can be communicated over the channel with arbitrarily

small probability of error.
We make the following definitions.

An (N,K) block code for a channel Q is a list of S = 2K codewords

{x(1),x(2), . . . ,x(2K )}, x(s) ∈ AN
X ,

each of length N . Using this code we can encode a signal s ∈
{1, 2, 3, . . . , 2K} as x(s). [The number of codewords S is an integer,
but the number of bits specified by choosing a codeword, K ≡ log2 S, is
not necessarily an integer.]
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The rate of the code is R = K/N bits per channel use.

[We will use this definition of the rate for any channel, not only chan-
nels with binary inputs; note however that it is sometimes conventional
to define the rate of a code for a channel with q input symbols to be
K/(N log q).]

A decoder for an (N,K) block code is a mapping from the set of length-N
strings of channel outputs, AN

Y to a codeword label ŝ ∈ {0, 1, 2, . . . , 2K}.
The extra symbol ŝ=0 can be used to indicate a ‘failure’.

The probability of block error of a code and decoder, for a given channel,
and for a given probability distribution over the encoded signal P (sin),
is:

pB =
∑

sin

P (sin)P (sout 6=sin | sin) (9.15)

The maximal probability of block error is

pBM = max
sin

P (sout 6=sin | sin) (9.16)

The optimal decoder for a channel code is the one that minimizes the prob-
ability of block error. It decodes an output y as the input s that has
maximum posterior probability P (s |y).

P (s |y) =
P (y | s)P (s)

∑

s′ P (y | s′)P (s′)
(9.17)

ŝoptimal = argmaxP (s |y). (9.18)

A uniform prior distribution on s is usually assumed, in which case the
optimal decoder is also the maximum likelihood decoder, i.e., the decoder
that maps an output y to the input s that has maximum likelihood

P (y | s).

The probability of bit error pb is defined assuming that the codeword
number s is represented by a binary vector s of length K bits; it is the
average probability that a bit of sout is not equal to the corresponding
bit of sin (averaging over all K bits).

Shannon’s noisy-channel coding theorem (part one). Associated with
each discrete memoryless channel,there is a non-negative number C

-

6

C R

pBM

achievable

Figure 9.4. Portion of the R, pBM

plane asserted to be achievable by
the first part of Shannon’s noisy
channel coding theorem.

(called the channel capacity) with the following property. For any ε > 0
and R < C, for large enough N , there exists a block code of length N and
rate ≥ R and a decoding algorithm, such that the maximal probability
of block error is < ε.

Confirmation of the theorem for the noisy typewriter channel

In the case of the noisy typewriter, we can easily confirm the theorem, because
we can create a completely error-free communication strategy using a block
code of length N = 1: we use only the letters B, E, H, . . . , Z, i.e., every third
letter. These letters form a non-confusable subset of the input alphabet (see
figure 9.5). Any output can be uniquely decoded. The number of inputs
in the non-confusable subset is 9, so the error-free information rate of this
system is log2 9 bits, which is equal to the capacity C, which we evaluated in
example 9.10 (p.151).
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Figure 9.6. Extended channels
obtained from a binary symmetric
channel with transition
probability 0.15.

How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete

memoryless channel, there is a

non-negative number C.

The capacity C is log2 9.

For any ε > 0 and R < C, for large

enough N ,

No matter what ε and R are, we set the block length N to 1.

there exists a block code of length N and

rate ≥ R
The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of

block error is < ε.
the maximal probability of block error is zero, which is less
than the given ε.

�
9.7 Intuitive preview of proof

Extended channels

To prove the theorem for a given channel, we consider the extended channel

corresponding to N uses of the given channel. The extended channel has
|AX |N possible inputs x and |AY |N possible outputs. Extended channels
obtained from a binary symmetric channel and from a Z channel are shown in
figures 9.6 and 9.7, with N = 2 and N = 4.
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Figure 9.7. Extended channels
obtained from a Z channel with
transition probability 0.15. Each
column corresponds to an input,
and each row is a different output.
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Figure 9.8. (a) Some typical
outputs in AN

Y
corresponding to

typical inputs x. (b) A subset of
the typical sets shown in (a) that
do not overlap each other. This
picture can be compared with the
solution to the noisy typewriter in
figure 9.5.

Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block
lengths N . The intuitive idea is that, if N is large, an extended channel looks

a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-
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given-typical-x set, 2NH(Y |X). So the number of non-confusable inputs, if they
are selected from the set of typical inputs x ∼ XN , is ≤ 2NH(Y )−NH(Y |X) =
2NI(X;Y ).

The maximum value of this bound is achieved if X is the ensemble that
maximizes I(X;Y ), in which case the number of non-confusable inputs is
≤ 2NC . Thus asymptotically up to C bits per cycle, and no more, can be
communicated with vanishing error probability. 2

This sketch has not rigorously proved that reliable communication really
is possible – that’s our task for the next chapter.

�
9.8 Further exercises

Exercise 9.15.[3, p.159] Refer back to the computation of the capacity of the Z
channel with f = 0.15.

(a) Why is p∗1 less than 0.5? One could argue that it is good to favour
the 0 input, since it is transmitted without error – and also argue
that it is good to favour the 1 input, since it often gives rise to the
highly prized 1 output, which allows certain identification of the
input! Try to make a convincing argument.

(b) In the case of general f , show that the optimal input distribution
is

p∗1 =
1/(1 − f)

1 + 2(H2(f)/(1−f))
. (9.19)

(c) What happens to p∗1 if the noise level f is very close to 1?

Exercise 9.16.[2, p.159] Sketch graphs of the capacity of the Z channel, the
binary symmetric channel and the binary erasure channel as a function
of f .

. Exercise 9.17.[2 ] What is the capacity of the five-input, ten-output channel
whose transition probability matrix is


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? (9.20)

Exercise 9.18.[2, p.159] Consider a Gaussian channel with binary input x ∈
{−1,+1} and real output alphabet AY , with transition probability den-
sity

Q(y |x, α, σ) =
1√

2πσ2
e
−

(y−xα)2

2σ2 , (9.21)

where α is the signal amplitude.

(a) Compute the posterior probability of x given y, assuming that the
two inputs are equiprobable. Put your answer in the form

P (x=1 | y, α, σ) =
1

1 + e−a(y)
. (9.22)
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Sketch the value of P (x=1 | y, α, σ) as a function of y.

(b) Assume that a single bit is to be transmitted. What is the optimal
decoder, and what is its probability of error? Express your answer
in terms of the signal to noise ratio α2/σ2 and the error function
(the cumulative probability function of the Gaussian distribution),

Φ(z) ≡
∫ z

−∞

1√
2π

e−
z2

2 dz. (9.23)

[Note that this definition of the error function Φ(z) may not corre-
spond to other people’s.]

Pattern recognition as a noisy channel

We may think of many pattern recognition problems in terms of communi-
cation channels. Consider the case of recognizing handwritten digits (such
as postcodes on envelopes). The author of the digit wishes to communicate
a message from the set AX = {0, 1, 2, 3, . . . , 9}; this selected message is the
input to the channel. What comes out of the channel is a pattern of ink on
paper. If the ink pattern is represented using 256 binary pixels, the channel
Q has as its output a random variable y ∈ AY = {0, 1}256 . An example of an
element from this alphabet is shown in the margin.

Exercise 9.19.[2 ] Estimate how many patterns in AY are recognizable as the
character ‘2’. [The aim of this problem is to try to demonstrate the
existence of as many patterns as possible that are recognizable as 2s.]

Figure 9.9. Some more 2s.

Discuss how one might model the channel P (y |x=2). Estimate the
entropy of the probability distribution P (y |x=2).

One strategy for doing pattern recognition is to create a model for
P (y |x) for each value of the input x = {0, 1, 2, 3, . . . , 9}, then use Bayes’
theorem to infer x given y.

P (x | y) =
P (y |x)P (x)

∑

x′ P (y |x′)P (x′)
. (9.24)

This strategy is known as full probabilistic modelling or generative

modelling . This is essentially how current speech recognition systems
work. In addition to the channel model, P (y |x), one uses a prior proba-
bility distribution P (x), which in the case of both character recognition
and speech recognition is a language model that specifies the probability
of the next character/word given the context and the known grammar
and statistics of the language.

Random coding

Exercise 9.20.[2, p.160] Given twenty-four people in a room, what is the prob-
ability that there are at least two people present who have the same
birthday (i.e., day and month of birth)? What is the expected number
of pairs of people with the same birthday? Which of these two questions
is easiest to solve? Which answer gives most insight? You may find it
helpful to solve these problems and those that follow using notation such
as A = number of days in year = 365 and S = number of people = 24.

. Exercise 9.21.[2 ] The birthday problem may be related to a coding scheme.
Assume we wish to convey a message to an outsider identifying one of
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the twenty-four people. We could simply communicate a number s from
AS = {1, 2, . . . , 24}, having agreed a mapping of people onto numbers;
alternatively, we could convey a number from AX = {1, 2, . . . , 365},
identifying the day of the year that is the selected person’s birthday
(with apologies to leapyearians). [The receiver is assumed to know all
the people’s birthdays.] What, roughly, is the probability of error of this
communication scheme, assuming it is used for a single transmission?
What is the capacity of the communication channel, and what is the
rate of communication attempted by this scheme?

. Exercise 9.22.[2 ] Now imagine that there are K rooms in a building, each
containing q people. (You might think of K = 2 and q = 24 as an
example.) The aim is to communicate a selection of one person from each
room by transmitting an ordered list of K days (from AX). Compare
the probability of error of the following two schemes.

(a) As before, where each room transmits the birthday of the selected
person.

(b) To each K-tuple of people, one drawn from each room, an ordered
K-tuple of randomly selected days from AX is assigned (this K-
tuple has nothing to do with their birthdays). This enormous list
of S = qK strings is known to the receiver. When the building has
selected a particular person from each room, the ordered string of
days corresponding to that K-tuple of people is transmitted.

What is the probability of error when q = 364 and K = 1? What is the
probability of error when q = 364 and K is large, e.g. K = 6000?

�
9.9 Solutions

Solution to exercise 9.2 (p.149). If we assume we observe y =0,

P (x=1 | y =0) =
P (y =0 |x=1)P (x=1)

∑

x′ P (y |x′)P (x′)
(9.25)

=
0.15 × 0.1

0.15 × 0.1 + 0.85 × 0.9
(9.26)

=
0.015

0.78
= 0.019. (9.27)

Solution to exercise 9.4 (p.149). If we observe y = 0,

P (x=1 | y =0) =
0.15 × 0.1

0.15 × 0.1 + 1.0 × 0.9
(9.28)

=
0.015

0.915
= 0.016. (9.29)

Solution to exercise 9.7 (p.150). The probability that y = 1 is 0.5, so the
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X) (9.30)

= H2(0.5) − H2(0.15) (9.31)

= 1 − 0.61 = 0.39 bits. (9.32)

Solution to exercise 9.8 (p.150). We again compute the mutual information
using I(X;Y ) = H(Y ) − H(Y |X). The probability that y = 0 is 0.575, and


