Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.6: Solutions

A slightly more careful answer (short of explicit computation) goes as follows.
Taking the approximation for (I]\;) to the next order, we find:

(NA/;) ~oN #]\7/4' (1.40)

This approximation can be proved from an accurate version of Stirling’s ap-
proximation (1.12), or by considering the binomial distribution with p = 1/2
and noting

N/2

1=y <£>2—N ~ 2—N(N]\/72> | S et N <N]\/72> V2ro, (1.41)

K =—N/2

where 0 = y/N/4, from which equation (1.40) follows. The distinction between

[N/2] ;Lnd N/2 is not important in this term since (%) has a maximum at
K = N/2.

Then the probability of error (for odd N) is to leading order

" wabm)ﬂ”mﬂa—fﬂwﬂﬂ (1.42)

N1 L (N=1)/2 1

The equation pp, = 107! can be written

R

FlAf@ = pIN=D/2 (1.43)

log 1071% + log Y22 TrN/S

N-—-1)/2 ~ 1.44

()/ log4f(1—f) (1.44)

which may be solved for N iteratively, the first iteration starting from N, = 68:
N —15+1.7 -

(Ny—1)/2 ~ T+44 =299 = N,~60.9. (1.45)

This answer is found to be stable, so N =~ 61 is the blocklength at which
Pp = 10715.

Solution to exercise 1.6 (p.13).

(a)

The probability of block error of the Hamming code is a sum of six terms
— the probabilities that 2, 3, 4, 5, 6, or 7 errors occur in one block.

i()f’l ol (1.46)

To leading order, this goes as
7
PB ~ <2> 2 =21/ (1.47)

The probability of bit error of the Hamming code is smaller than the
probability of block error because a block error rarely corrupts all bits in
the decoded block. The leading-order behaviour is found by considering
the outcome in the most probable case where the noise vector has weight
two. The decoder will erroneously flip a third bit, so that the modified
received vector (of length 7) differs in three bits from the transmitted
vector. That means, if we average over all seven bits, the probability that
a randomly chosen bit is flipped is 3/7 times the block error probability,
to leading order. Now, what we really care about is the probability that

17

In equation (1.44), the logarithms
can be taken to any base, as long
as it’s the same base throughout.
In equation (1.45), I use base 10.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

18 1 — Introduction to Information Theory

a source bit is flipped. Are parity bits or source bits more likely to be
among these three flipped bits, or are all seven bits equally likely to be
corrupted when the noise vector has weight two? The Hamming code
is in fact completely symmetric in the protection it affords to the seven
bits (assuming a binary symmetric channel). [This symmetry can be
proved by showing that the role of a parity bit can be exchanged with
a source bit and the resulting code is still a (7,4) Hamming code; see
below.] The probability that any one bit ends up corrupted is the same
for all seven bits. So the probability of bit error (for the source bits) is
simply three sevenths of the probability of block error.

3
Py~ =pB = 9f2. (1.48)

Symmetry of the Hamming (7,4) code

To prove that the (7,4) code protects all bits equally, we start from the parity-
check matrix

1110100
H=|011 101 0]. (1.49)
1 01 1 0 0 1
The symmetry among the seven transmitted bits will be easiest to see if we

reorder the seven bits using the permutation (¢1tatstststety) — (tstatstatitety).
Then we can rewrite H thus:

11
H=|0 1 (1.50)
00

o e
= = O
= O -
o = O
= O O

Now, if we take any two parity constraints that t satisfies and add them
together, we get another parity constraint. For example, row 1 asserts t5 +
to +t3 +t1 = even, and row 2 asserts to + t3 + t4 + tg = even, and the sum of
these two constraints is

ts + 2ty + 2t3 +t1 + t4 + tg = even; (1.51)

we can drop the terms 2t5 and 2t3, since they are even whatever t9 and t3 are;
thus we have derived the parity constraint t5 + t; + t4 + tg = even, which we
can if we wish add into the parity-check matrix as a fourth row. [The set of
vectors satisfying Ht = 0 will not be changed.] We thus define

H — (1.52)

= O O
O O = =
O~ B~ -
~ P, P, O
P, O -
= O = O
O =, O O

The fourth row is the sum (modulo two) of the top two rows. Notice that the
second, third, and fourth rows are all cyclic shifts of the top row. If, having
added the fourth redundant constraint, we drop the first constraint, we obtain
a new parity-check matrix H”,

0111010
H=|001110 1], (1.53)
1001110

which still satisfies H’t = 0 for all codewords, and which looks just like
the starting H in (1.50), except that all the columns have shifted along one

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.6: Solutions 19

to the right, and the rightmost column has reappeared at the left (a cyclic
permutation of the columns).

This establishes the symmetry among the seven bits. Iterating the above
procedure five more times, we can make a total of seven different H matrices
for the same original code, each of which assigns each bit to a different role.

We may also construct the super-redundant seven-row parity-check matrix
for the code,

1110100

0111010

001110 1
H"=|1001110 (1.54)

0100111

1010011

|1 10100 1]

This matrix is ‘redundant’ in the sense that the space spanned by its rows is
only three-dimensional, not seven.

This matrix is also a cyclic matrix. Every row is a cyclic permutation of
the top row.

Cyclic codes: if there is an ordering of the bits t; ...ty such that a linear
code has a cyclic parity-check matrix, then the code is called a cyclic
code.

The codewords of such a code also have cyclic properties: any cyclic
permutation of a codeword is a codeword.

For example, the Hamming (7,4) code, with its bits ordered as above,
consists of all seven cyclic shifts of the codewords 1110100 and 1011000,
and the codewords 0000000 and 1111111.

Cyclic codes are a cornerstone of the algebraic approach to error-correcting
codes. We won’t use them again in this book, however, as they have been
superceded by sparse-graph codes (Part VI).

Solution to exercise 1.7 (p.13). There are fifteen non-zero noise vectors which
give the all-zero syndrome; these are precisely the fifteen non-zero codewords
of the Hamming code. Notice that because the Hamming code is linear, the
sum of any two codewords is a codeword.

Graphs corresponding to codes

Solution to exercise 1.9 (p.14). When answering this question, you will prob-
ably find that it is easier to invent new codes than to find optimal decoders
for them. There are many ways to design codes, and what follows is just one
possible train of thought. We make a linear block code that is similar to the
(7,4) Hamming code, but bigger.

Many codes can be conveniently expressed in terms of graphs. In fig-
ure 1.13, we introduced a pictorial representation of the (7,4) Hamming code.
If we rep%ace tha't ﬁgure’s big circles,.each of which shows' that the parity of circles are the bit nodes and the 3
four particular bits is even, by a ‘parity-check node’ that is connected to the squares are the parity-check
four bits, then we obtain the representation of the (7,4) Hamming code by a nodes.
bipartite graph as shown in figure 1.20. The 7 circles are the 7 transmitted
bits. The 3 squares are the parity-check nodes (not to be confused with the
3 parity-check bits, which are the three most peripheral circles). The graph
is a ‘bipartite’ graph because its nodes fall into two classes — bits and checks

Figure 1.20. The graph of the
(7,4) Hamming code. The 7

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

20 1 — Introduction to Information Theory

— and there are edges only between nodes in different classes. The graph and
the code’s parity-check matrix (1.30) are simply related to each other: each
parity-check node corresponds to a row of H and each bit node corresponds to
a column of H; for every 1 in H, there is an edge between the corresponding
pair of nodes.

Having noticed this connection between linear codes and graphs, one way
to invent linear codes is simply to think of a bipartite graph. For example,
a pretty bipartite graph can be obtained from a dodecahedron by calling the
vertices of the dodecahedron the parity-check nodes, and putting a transmitted
bit on each edge in the dodecahedron. This construction defines a parity-
check matrix in which every column has weight 2 and every row has weight 3.
[The weight of a binary vector is the number of 1s it contains.]

This code has N = 30 bits, and it appears to have M,pparent = 20 parity-
check constraints. Actually, there are only M = 19 independent constraints;
the 20th constraint is redundant (that is, if 19 constraints are satisfied, then
the 20th is automatically satisfied); so the number of source bits is K =
N — M = 11. The code is a (30,11) code.

It is hard to find a decoding algorithm for this code, but we can estimate
its probability of error by finding its lowest-weight codewords. If we flip all
the bits surrounding one face of the original dodecahedron, then all the parity
checks will be satisfied; so the code has 12 codewords of weight 5, one for each
face. Since the lowest-weight codewords have weight 5, we say that the code
has distance d = 5; the (7,4) Hamming code had distance 3 and could correct
all single bit-flip errors. A code with distance 5 can correct all double bit-flip
errors, but there are some triple bit-flip errors that it cannot correct. So the
error probability of this code, assuming a binary symmetric channel, will be
dominated, at least for low noise levels f, by a term of order f3, perhaps
something like

12(2) 2a-nr.

Of course, there is no obligation to make codes whose graphs can be rep-
resented on a plane, as this one can; the best linear codes, which have simple
graphical descriptions, have graphs that are more tangled, as illustrated by
the tiny (16,4) code of figure 1.22.

Furthermore, there is no reason for sticking to linear codes; indeed some
nonlinear codes — codes whose codewords cannot be defined by a linear equa-
tion like Ht = 0 — have very good properties. But the encoding and decoding
of a nonlinear code are even trickier tasks.

(1.55)

Solution to exercise 1.10 (p.14). First let’s assume we are making a linear
code and decoding it with syndrome decoding. If there are N transmitted
bits, then the number of possible error patterns of weight up to two is

)+ () -(6)

For N = 14, that’s 91 4+ 14 + 1 = 106 patterns. Now, every distinguishable
error pattern must give rise to a distinct syndrome; and the syndrome is a
list of M bits, so the maximum possible number of syndromes is 2M. For a
(14,8) code, M = 6, so there are at most 2° = 64 syndromes. The number of
possible error patterns of weight up to two, 106, is bigger than the number of
syndromes, 64, so we can immediately rule out the possibility that there is a
(14,8) code that is 2-error-correcting.

(1.56)

Figure 1.21. The graph defining
the (30,11) dodecahedron code.
The circles are the 30 transmitted
bits and the triangles are the 20
parity checks. One parity check is
redundant.

Figure 1.22. Graph of a rate-1/4
low-density parity-check code
(Gallager code) with blocklength
N =16, and M = 12 parity-check
constraints. Each white circle
represents a transmitted bit. Each
bit participates in j = 3
constraints, represented by
squares. The edges between nodes
were placed at random. (See
Chapter 47 for more.)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.6: Solutions

The same counting argument works fine for nonlinear codes too. When
the decoder receives r = t + n, his aim is to deduce both t and n from r. If
it is the case that the sender can select any transmission t from a code of size
St, and the channel can select any noise vector from a set of size Sy, and those
two selections can be recovered from the received bit string r, which is one of
at most 2V possible strings, then it must be the case that

S¢Sy < 2V, (1.57)

So, for a (N, K) two-error-correcting code, whether linear or nonlinear,

D o

Solution to exercise 1.11 (p.14). There are various strategies for making codes
that can correct multiple errors, and I strongly recommend you think out one
or two of them for yourself.

If your approach uses a linear code, e.g., one with a collection of M parity
checks, it is helpful to bear in mind the counting argument given in the previous
exercise, in order to anticipate how many parity checks, M, you might need.

Examples of codes that can correct any two errors are the (30,11) dodeca-
hedron code on page 20, and the (15,6) pentagonful code to be introduced on
p-221. Further simple ideas for making codes that can correct multiple errors
from codes that can correct only one error are discussed in section 13.7.

Solution to exercise 1.12 (p.16). The probability of error of R3 is, to leading

order,
po(RE) = 3 [pu(Ra)]” = 3(3f%)° + - = 27f1 + -+ (1.59)
whereas the probability of error of Ry is dominated by the probability of five
flips,
9
o) = (1) 7500)1 = 1260 - (1.60)

The R% decoding procedure is therefore suboptimal, since there are noise vec-
tors of weight four that cause it to make a decoding error.

It has the advantage, however, of requiring smaller computational re-
sources: only memorization of three bits, and counting up to three, rather
than counting up to nine.

This simple code illustrates an important concept. Concatenated codes
are widely used in practice because concatenation allows large codes to be
implemented using simple encoding and decoding hardware. Some of the best
known practical codes are concatenated codes.

