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About Chapter 11

Before reading Chapter 11, you should have read Chapters 9 and 10.
You will also need to be familiar with the Gaussian distribution.

One-dimensional Gaussian distribution. If a random variable y is Gaus-
sian and has mean µ and variance σ2, which we write:

y ∼ Normal(µ, σ2), or P (y) = Normal(y;µ, σ2), (11.1)

then the distribution of y is:

P (y|µ, σ2) =
1√

2πσ2
exp

[
−(y − µ)2/2σ2

]
. (11.2)

[I use the symbol P for both probability densities and probabilities.]

The inverse-variance τ ≡ 1/σ2 is sometimes called the precision of the
Gaussian distribution.

Multi-dimensional Gaussian distribution. If y = (y1, y2, . . . , yN ) has a
multivariate Gaussian distribution, then

P (y|x,A) =
1

Z(A)
exp

(

−1

2
(y − x)TA(y − x)

)

, (11.3)

where x is the mean of the distribution, A is the inverse of the
variance–covariance matrix, and the normalizing constant is Z(A) =

(det(A/2π))−1/2.

This distribution has the property that the variance Σii of yi, and the
covariance Σij of yi and yj are given by

Σij ≡ E [(yi − ȳi)(yj − ȳj)] = A−1
ij , (11.4)

where A−1 is the inverse of the matrix A.

The marginal distribution P (yi) of one component yi is Gaussian;
the joint marginal distribution of any subset of the components is
multivariate-Gaussian; and the conditional density of any subset, given
the values of another subset, for example, P (yi|yj), is also Gaussian.
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11

Error-Correcting Codes & Real Channels

The noisy-channel coding theorem that we have proved shows that there exist
reliable error-correcting codes for any noisy channel. In this chapter we address
two questions.

First, many practical channels have real, rather than discrete, inputs and
outputs. What can Shannon tell us about these continuous channels? And
how should digital signals be mapped into analogue waveforms, and vice versa?

Second, how are practical error-correcting codes made, and what is
achieved in practice, relative to the possibilities proved by Shannon?

�
11.1 The Gaussian channel

The most popular model of a real-input, real-output channel is the Gaussian
channel.

The Gaussian channel has a real input x and a real output y. The condi-
tional distribution of y given x is a Gaussian distribution:

P (y|x) =
1√

2πσ2
exp

[
−(y − x)2/2σ2

]
. (11.5)

This channel has a continuous input and output but is discrete in time.
We will show below that certain continuous-time channels are equivalent
to the discrete-time Gaussian channel.

This channel is sometimes called the additive white Gaussian noise
(AWGN) channel.

As with discrete channels, we will discuss what rate of error-free information
communication can be achieved over this channel.

Motivation in terms of a continuous-time channel

Consider a physical (electrical, say) channel with inputs and outputs that are
continuous in time. We put in x(t), and out comes y(t) = x(t) + n(t).

Our transmission has a power cost. The average power of a transmission
of length T may be constrained thus:

∫ T

0
dt [x(t)]2/T ≤ P. (11.6)

The received signal is assumed to differ from x(t) by additive noise n(t) (for
example Johnson noise), which we will model as white Gaussian noise. The
magnitude of this noise is quantified by the noise spectral density N0.
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How could such a channel be used to communicate information? Consider

φ1(t)

φ2(t)

φ3(t)

x(t)

Figure 11.1. Three basis functions,
and a weighted combination of

them, x(t) =
∑

N

n=1
xnφn(t), with

x1 = 0.4, x2 = −0.2, and x3 = 0.1.

transmitting a set of N real numbers {xn}N
n=1 in a signal of duration T made

up of a weighted combination of orthonormal basis functions φn(t),

x(t) =

N∑

n=1

xnφn(t), (11.7)

where
∫ T
0 dt φn(t)φm(t) = δnm. The receiver can then compute the scalars:

yn ≡
∫ T

0
dt φn(t)y(t) = xn +

∫ T

0
dt φn(t)n(t) (11.8)

≡ xn + nn (11.9)

for n = 1 . . . N . If there were no noise, then yn would equal xn. The white
Gaussian noise n(t) adds scalar noise nn to the estimate yn. This noise is
Gaussian:

nn ∼ Normal(0, N0/2), (11.10)

where N0 is the spectral density introduced above. Thus a continuous channel
used in this way is equivalent to the Gaussian channel defined above. The
power constraint

∫ T
0 dt [x(t)]2 ≤ PT defines a constraint on the signal ampli-

tudes xn,
∑

n

x2
n ≤ PT ⇒ x2

n ≤ PT

N
. (11.11)

Before returning to the Gaussian channel, we define the bandwidth (mea-
sured in Hertz) of the continuous channel to be:

W =
Nmax

2T
, (11.12)

where Nmax is the maximum number of orthonormal functions that can be
produced in an interval of length T . This definition can be motivated by
imagining creating a band-limited signal of duration T from orthonormal co-
sine and sine curves of maximum frequency W . The number of orthonormal
functions is Nmax = 2WT . This definition relates to the Nyquist sampling
theorem: if the highest frequency present in a signal is W , then the signal
can be fully determined from its values at a series of discrete sample points
separated by the Nyquist interval ∆t = 1/2W seconds.

So the use of a real continuous channel with bandwidth W , noise spectral
density N0 and power P is equivalent to N/T = 2W uses per second of a
Gaussian channel with noise level σ2 = N0/2 and subject to the signal power
constraint x2

n ≤ P/2W .

Definition of Eb/N0

Imagine that the Gaussian channel yn = xn + nn is used with an encoding
system to transmit binary source bits at a rate of R bits per channel use. How
can we compare two encoding systems that have different rates of communi-
cation R and that use different powers x2

n? Transmitting at a large rate R is
good; using small power is good too.

It is conventional to measure the rate-compensated signal to noise ratio by
the ratio of the power per source bit Eb = x2

n/R to the noise spectral density
N0: Eb/N0 is dimensionless, but it is

usually reported in the units of
decibels; the value given is
10 log

10
Eb/N0.

Eb/N0 =
x2

n

2σ2R
. (11.13)

Eb/N0 is one of the measures used to compare coding schemes for Gaussian
channels.
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�
11.2 Inferring the input to a real channel

‘The best detection of pulses’

In 1944 Shannon wrote a memorandum (Shannon, 1993) on the problem of
best differentiating between two types of pulses of known shape, represented
by vectors x0 and x1, given that one of them has been transmitted over a
noisy channel. This is a pattern recognition problem. It is assumed that the

x0

x1

y

Figure 11.2. Two pulses x0 and
x1, represented as 31-dimensional
vectors, and a noisy version of one
of them, y.

noise is Gaussian with probability density

P (n) =

[

det

(
A

2π

)]1/2

exp

(

−1

2
nTAn

)

, (11.14)

where A is the inverse of the variance–covariance matrix of the noise, a sym-
metric and positive-definite matrix. (If A is a multiple of the identity matrix,
I/σ2, then the noise is ‘white’. For more general A, the noise is ‘coloured’.)
The probability of the received vector y given that the source signal was s
(either zero or one) is then

P (y|s) =

[

det

(
A

2π

)]1/2

exp

(

−1

2
(y − xs)

TA(y − xs)

)

. (11.15)

The optimal detector is based on the posterior probability ratio:

P (s = 1|y)

P (s = 0|y)
=

P (y|s = 1)

P (y|s = 0)

P (s = 1)

P (s = 0)
(11.16)

= exp

(

−1

2
(y − x1)

TA(y − x1) +
1

2
(y − x0)

TA(y − x0) + ln
P (s = 1)

P (s = 0)

)

= exp (yTA(x1 − x0) + θ) , (11.17)

where θ is a constant independent of the received vector y,

θ = −1

2
xT

1Ax1 +
1

2
xT

0Ax0 + ln
P (s = 1)

P (s = 0)
. (11.18)

If the detector is forced to make a decision (i.e., guess either s = 1 or s =
0) then the decision that minimizes the probability of error is to guess the
most probable hypothesis. We can write the optimal decision in terms of a
discriminant function:

a(y) ≡ yTA(x1 − x0) + θ (11.19)

with the decisions

w

Figure 11.3. The weight vector
w ∝ x1 − x0 that is used to
discriminate between x0 and x1.

a(y) > 0 → guess s = 1
a(y) < 0 → guess s = 0
a(y) = 0 → guess either.

(11.20)

Notice that a(y) is a linear function of the received vector,

a(y) = wTy + θ, (11.21)

where w ≡ A(x1 − x0).

�
11.3 Capacity of Gaussian channel

Until now we have only measured the joint, marginal, and conditional entropy
of discrete variables. In order to define the information conveyed by continuous
variables, there are two issues we must address – the infinite length of the real
line, and the infinite precision of real numbers.
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Infinite inputs

How much information can we convey in one use of a Gaussian channel? If
we are allowed to put any real number x into the Gaussian channel, we could
communicate an enormous string of N digits d1d2d3 . . . dN by setting x =
d1d2d3 . . . dN000 . . . 000. The amount of error-free information conveyed in
just a single transmission could be made arbitrarily large by increasing N ,
and the communication could be made arbitrarily reliable by increasing the
number of zeroes at the end of x. There is usually some power cost associated
with large inputs, however, not to mention practical limits in the dynamic
range acceptable to a receiver. It is therefore conventional to introduce a
cost function v(x) for every input x, and constrain codes to have an average
cost v̄ less than or equal to some maximum value. A generalized channel
coding theorem, including a cost function for the inputs, can be proved – see
McEliece (1977). The result is a channel capacity C(v̄) that is a function of
the permitted cost. For the Gaussian channel we will assume a cost

v(x) = x2 (11.22)

such that the ‘average power’ x2 of the input is constrained. We motivated this
cost function above in the case of real electrical channels in which the physical
power consumption is indeed quadratic in x. The constraint x2 = v̄ makes
it impossible to communicate infinite information in one use of the Gaussian
channel.

Infinite precision

(a)

(b)

-�

g

...

Figure 11.4. (a) A probability
density P (x). Question: can we
define the ‘entropy’ of this
density? (b) We could evaluate
the entropies of a sequence of
probability distributions with
decreasing grain-size g, but these
entropies tend to∫

P (x) log
1

P (x)g
dx, which is not

independent of g: the entropy
goes up by one bit for every
halving of g.∫

P (x) log
1

P (x)
dx is an illegal

integral.

It is tempting to define joint, marginal, and conditional entropies for real
variables simply by replacing summations by integrals, but this is not a well
defined operation. As we discretize an interval into smaller and smaller divi-
sions, the entropy of the discrete distribution diverges (as the logarithm of the
granularity) (figure 11.4). Also, it is not permissible to take the logarithm of
a dimensional quantity such as a probability density P (x) (whose dimensions
are [x]−1).

There is one information measure, however, that has a well-behaved limit,
namely the mutual information – and this is the one that really matters, since
it measures how much information one variable conveys about another. In the
discrete case,

I(X;Y ) =
∑

x,y

P (x, y) log
P (x, y)

P (x)P (y)
. (11.23)

Now because the argument of the log is a ratio of two probabilities over the
same space, it is OK to have P (x, y), P (x) and P (y) be probability densities
and replace the sum by an integral:

I(X;Y ) =

∫

dx dy P (x, y) log
P (x, y)

P (x)P (y)
(11.24)

=

∫

dx dy P (x)P (y|x) log
P (y|x)

P (y)
. (11.25)

We can now ask these questions for the Gaussian channel: (a) what probability
distribution P (x) maximizes the mutual information (subject to the constraint
x2 = v)? and (b) does the maximal mutual information still measure the
maximum error free communication rate of this real channel, as it did for the
discrete channel?
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Exercise 11.1.[3, p.189] Prove that the probability distribution P (x) that max-
imizes the mutual information (subject to the constraint x2 = v) is a
Gaussian distribution of mean zero and variance v.

. Exercise 11.2.[2, p.189] Show that the mutual information I(X;Y ), in the case
of this optimized distribution, is

C =
1

2
log
(

1 +
v

σ2

)

. (11.26)

This is an important result. We see that the capacity of the Gaussian channel
is a function of the signal to noise ratio v/σ2.

Inferences given a Gaussian input distribution

If P (x) = Normal(x; 0, v) and P (y|x) = Normal(y;x, σ2) then the marginal
distribution of y is P (y) = Normal(y; 0, v + σ2) and the posterior distribution
of the input, given that the output is y, is:

P (x|y) ∝ P (y|x)P (x) (11.27)

∝ exp(−(y − x)2/2σ2) exp(−x2/2v) (11.28)

= Normal

(

x;
v

v + σ2
y ,

(
1

v
+

1

σ2

)
−1
)

. (11.29)

[The step from (11.28) to (11.29) is made by completing the square in the
exponent.] This formula deserves careful study. The mean of the posterior
distribution, v

v+σ2 y, can be viewed as a weighted combination of the value
that best fits the output, x = y, and the value that best fits the prior, x = 0:

v

v + σ2
y =

1/σ2

1/v + 1/σ2
y +

1/v

1/v + 1/σ2
0. (11.30)

The weights 1/σ2 and 1/v are the precisions of the two Gaussians that we
multiplied together in equation (11.28): the prior and the likelihood.

The precision of the posterior distribution is the sum of these two pre-
cisions. This is a general property: whenever two independent sources con-
tribute information, via Gaussian distributions, about an unknown variable,
the precisions add. [This is the dual to the better known relationship ‘when
independent variables are added, their variances add’.]

Noisy-channel coding theorem for the Gaussian channel

We have evaluated a maximal mutual information. Does it correspond to a
maximum possible rate of error-free information transmission? One way of
proving that this is so is to define a sequence of discrete channels, all derived
from the Gaussian channel, with increasing numbers of inputs and outputs,
and prove that the maximum mutual information of these channels tends to the
asserted C. The noisy-channel coding theorem for discrete channels applies
to each of these derived channels, thus we obtain a coding theorem for the
continuous channel. Alternatively, we can make an intuitive argument for the
coding theorem specific for the Gaussian channel.
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Geometrical view of the noisy-channel coding theorem: sphere packing

Consider a sequence x = (x1, . . . , xN ) of inputs, and the corresponding output
y, as defining two points in an N dimensional space. For large N , the noise
power is very likely to be close (fractionally) to Nσ2. The output y is therefore
very likely to be close to the surface of a sphere of radius

√
Nσ2 centred on x.

Similarly, if the original signal x is generated at random subject to an average
power constraint x2 = v, then x is likely to lie close to a sphere, centred
on the origin, of radius

√
Nv; and because the total average power of y is

v +σ2, the received signal y is likely to lie on the surface of a sphere of radius
√

N(v + σ2), centred on the origin.

The volume of an N -dimensional sphere of radius r is

V (r,N) = πN/2

Γ(N/2+1)
rN . (11.31)

Now consider making a communication system based on non-confusable
inputs x, that is, inputs whose spheres do not overlap significantly. The max-
imum number S of non-confusable inputs is given by dividing the volume of
the sphere of probable ys by the volume of the sphere for y given x:

S ≤
(√

N(v + σ2)√
Nσ2

)N

(11.32)

Thus the capacity is bounded by:

C =
1

N
log M ≤ 1

2
log
(

1 +
v

σ2

)

. (11.33)

A more detailed argument like the one used in the previous chapter can es-
tablish equality.

Back to the continuous channel

Recall that the use of a real continuous channel with bandwidth W , noise
spectral density N0 and power P is equivalent to N/T = 2W uses per second of
a Gaussian channel with σ2 = N0/2 and subject to the constraint x2

n ≤ P/2W .
Substituting the result for the capacity of the Gaussian channel, we find the
capacity of the continuous channel to be:

C = W log

(

1 +
P

N0W

)

bits per second. (11.34)

This formula gives insight into the tradeoffs of practical communication. Imag-
ine that we have a fixed power constraint. What is the best bandwidth to make
use of that power? Introducing W0 = P/N0, i.e., the bandwidth for which the
signal to noise ratio is 1, figure 11.5 shows C/W0 = W/W0 log(1 + W0/W )
as a function of W/W0. The capacity increases to an asymptote of W0 log e.
It is dramatically better (in terms of capacity for fixed power) to transmit at
a low signal to noise ratio over a large bandwidth, than with high signal to
noise in a narrow bandwidth; this is one motivation for wideband communi-
cation methods such as the ‘direct sequence spread-spectrum’ approach used
in 3G mobile phones. Of course, you are not alone, and your electromagnetic
neighbours may not be pleased if you use a large bandwidth, so for social rea-
sons, engineers often have to make do with higher-power, narrow-bandwidth
transmitters.

0
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Figure 11.5. Capacity versus
bandwidth for a real channel:
C/W0 = W/W0 log (1 + W0/W )
as a function of W/W0.
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�
11.4 What are the capabilities of practical error-correcting codes?

Nearly all codes are good, but nearly all codes require exponential look-up
tables for practical implementation of the encoder and decoder – exponential
in the block length N . And the coding theorem required N to be large.

By a practical error-correcting code, we mean one that can be encoded
and decoded in a reasonable amount of time, for example, a time that scales
as a polynomial function of the block length N – preferably linearly.

The Shannon limit is not achieved in practice

The non-constructive proof of the noisy-channel coding theorem showed that
good block codes exist for any noisy channel, and indeed that nearly all block
codes are good. But writing down an explicit and practical encoder and de-
coder that are as good as promised by Shannon is still an unsolved problem.

Very good codes. Given a channel, a family of block codes that achieve
arbitrarily small probability of error at any communication rate up to
the capacity of the channel are called ‘very good’ codes for that channel.

Good codes are code families that achieve arbitrarily small probability of
error at non-zero communication rates up to some maximum rate that
may be less than the capacity of the given channel.

Bad codes are code families that cannot achieve arbitrarily small probability
of error, or that can only achieve arbitrarily small probability of error by
decreasing the information rate to zero. Repetition codes are an example
of a bad code family. (Bad codes are not necessarily useless for practical
purposes.)

Practical codes are code families that can be encoded and decoded in time
and space polynomial in the block length.

Most established codes are linear codes

Let us review the definition of a block code, and then add the definition of a
linear block code.

An (N,K) block code for a channel Q is a list of S = 2K codewords

{x(1),x(2), . . . ,x(2K )}, each of length N : x(s) ∈ AN
X . The signal to be

encoded, s, which comes from an alphabet of size 2K , is encoded as x(s).

A linear (N,K) block code is a block code in which the codewords {x(s)}
make up a K-dimensional subspace of AN

X . The encoding operation can
be represented by an N ×K binary matrix GT such that if the signal to
be encoded, in binary notation, is s (a vector of length K bits), then the
encoded signal is t = GTs modulo 2.

The codewords {t} can be defined as the set of vectors satisfying Ht =
0mod2, where H is the parity-check matrix of the code.

GT =








1 · · ·
· 1 · ·
· · 1 ·
· · · 1
1 1 1 ·
· 1 1 1
1 · 1 1








For example the (7, 4) Hamming code of section 1.2 takes K = 4 signal
bits, s, and transmits them followed by three parity-check bits. The N = 7
transmitted symbols are given by GTsmod2.

Coding theory was born with the work of Hamming, who invented a fam-
ily of practical error-correcting codes, each able to correct one error in a
block of length N , of which the repetition code R3 and the (7, 4) code are
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the simplest. Since then most established codes have been generalizations of
Hamming’s codes: Bose–Chaudhury–Hocquenhem codes, Reed–Müller codes,
Reed–Solomon codes, and Goppa codes, to name a few.

Convolutional codes

Another family of linear codes are convolutional codes, which do not divide
the source stream into blocks, but instead read and transmit bits continuously.
The transmitted bits are a linear function of the past source bits. Usually the
rule for generating the transmitted bits involves feeding the present source
bit into a linear feedback shift register of length k, and transmitting one or
more linear functions of the state of the shift register at each iteration. The
resulting transmitted bit stream is the convolution of the source stream with
a linear filter. The impulse response function of this filter may have finite or
infinite duration, depending on the choice of feedback shift register.

We will discuss convolutional codes in Chapter 48.

Are linear codes ‘good’?

One might ask, is the reason that the Shannon limit is not achieved in practice
because linear codes are inherently not as good as random codes? The answer
is no, the noisy-channel coding theorem can still be proved for linear codes,
at least for some channels (see Chapter 14), though the proofs, like Shannon’s
proof for random codes, are non-constructive.

Linear codes are easy to implement at the encoding end. Is decoding a
linear code also easy? Not necessarily. The general decoding problem (find
the maximum likelihood s in the equation GTs+n = r) is in fact NP-complete
(Berlekamp et al., 1978). [NP-complete problems are computational problems
that are all equally difficult and which are widely believed to require expo-
nential computer time to solve in general.] So attention focuses on families of
codes for which there is a fast decoding algorithm.

Concatenation

One trick for building codes with practical decoders is the idea of concatena-
tion.

An encoder–channel–decoder system C → Q → D can be viewed as defining C′ → C → Q → D
︸ ︷︷ ︸

→ D′

Q′
a super-channel Q′ with a smaller probability of error, and with complex
correlations among its errors. We can create an encoder C ′ and decoder D′ for
this super-channel Q′. The code consisting of the outer code C ′ followed by
the inner code C is known as a concatenated code.

Some concatenated codes make use of the idea of interleaving. We read
the data in blocks, the size of each block being larger than the block lengths
of the constituent codes C and C ′. After encoding the data of one block using
code C′, the bits are reordered within the block in such a way that nearby
bits are separated from each other once the block is fed to the second code
C. A simple example of an interleaver is a rectangular code or product code

in which the data are arranged in a K2 ×K1 block, and encoded horizontally
using an (N1,K1) linear code, then vertically using a (N2,K2) linear code.

. Exercise 11.3.[3 ] Show that either of the two codes can be viewed as the inner
code or the outer code.

As an example, figure 11.6 shows a product code in which we encode
first with the repetition code R3 (also known as the Hamming code H(3, 1))
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Figure 11.6. A product code. (a)
A string 1011 encoded using a
concatenated code consisting of
two Hamming codes, H(3, 1) and
H(7, 4). (b) a noise pattern that
flips 5 bits. (c) The received
vector. (d) After decoding using
the horizontal (3, 1) decoder, and
(e) after subsequently using the
vertical (7, 4) decoder. The
decoded vector matches the
original.
(d′, e′) After decoding in the other
order, three errors still remain.

horizontally then with H(7, 4) vertically. The block length of the concatenated
code is 27. The number of source bits per codeword is four, shown by the small
rectangle.

We can decode conveniently (though not optimally) by using the individual
decoders for each of the subcodes in some sequence. It makes most sense to
first decode the code which has the lowest rate and hence the greatest error-
correcting ability.

Figure 11.6(c–e) shows what happens if we receive the codeword of fig-
ure 11.6a with some errors (five bits flipped, as shown) and apply the decoder
for H(3, 1) first, and then the decoder for H(7, 4). The first decoder corrects
three of the errors, but erroneously modifies the third bit in the second row
where there are two bit errors. The (7, 4) decoder can then correct all three
of these errors.

Figure 11.6(d′– e′) shows what happens if we decode the two codes in the
other order. In columns one and two there are two errors, so the (7, 4) decoder
introduces two extra errors. It corrects the one error in column 3. The (3, 1)
decoder then cleans up four of the errors, but erroneously infers the second
bit.

Interleaving

The motivation for interleaving is that by spreading out bits that are nearby
in one code, we make it possible to ignore the complex correlations among the
errors that are produced by the inner code. Maybe the inner code will mess
up an entire codeword; but that codeword is spread out one bit at a time over
several codewords of the outer code. So we can treat the errors introduced by
the inner code as if they are independent.

Other channel models

In addition to the binary symmetric channel and the Gaussian channel, coding
theorists keep more complex channels in mind also.

Burst-error channels are important models in practice. Reed–Solomon
codes use Galois fields (see Appendix C.1) with large numbers of elements
(e.g. 216) as their input alphabets, and thereby automatically achieve a degree
of burst-error tolerance in that even if 17 successive bits are corrupted, only 2
successive symbols in the Galois field representation are corrupted. Concate-
nation and interleaving can give further protection against burst errors. The
concatenated Reed–Solomon codes used on digital compact discs are able to
correct bursts of errors of length 4000 bits.



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

186 11 — Error-Correcting Codes and Real Channels

. Exercise 11.4.[2, p.189] The technique of interleaving, which allows bursts of
errors to be treated as independent, is widely used, but is theoretically
a poor way to protect data against burst errors, in terms of the amount
of redundancy required. Explain why interleaving is a poor method,
using the following burst-error channel as an example. Time is divided
into chunks of length N = 100 clock cycles; during each chunk, there
is a burst with probability b = 0.2; during a burst, the channel is a bi-
nary symmetric channel with f = 0.5. If there is no burst, the channel
is an error-free binary channel. Compute the capacity of this channel
and compare it with the maximum communication rate that could con-
ceivably be achieved if one used interleaving and treated the errors as
independent.

Fading channels are real channels like Gaussian channels except that the
received power is assumed to vary with time. A moving mobile phone is an
important example. The incoming radio signal is reflected off nearby objects
so that there are interference patterns and the intensity of the signal received
by the phone varies with its location. The received power can easily vary by
10 decibels (a factor of ten) as the phone’s antenna moves through a distance
similar to the wavelength of the radio signal (a few centimetres).

�
11.5 The state of the art

What are the best known codes for communicating over Gaussian channels?
All the practical codes are linear codes, and are either based on convolutional
codes or block codes.

Convolutional codes, and codes based on them

Textbook convolutional codes. The ‘de facto standard’ error-correcting
code for satellite communications is a convolutional code with constraint
length 7. Convolutional codes are discussed in Chapter 48.

Concatenated convolutional codes. The above convolutional code can be
used as the inner code of a concatenated code whose outer code is a Reed–
Solomon code with eight-bit symbols. This code was used in deep space
communication systems such as the Voyager spacecraft. For further
reading about Reed–Solomon codes, see Lin and Costello (1983).

The code for Galileo. A code using the same format but using a longer
constraint length – 15 – for its convolutional code and a larger Reed–
Solomon code was developed by the Jet Propulsion Laboratory (Swan-
son, 1988). The details of this code are unpublished outside JPL, and the
decoding is only possible using a room full of special-purpose hardware.
In 1992, this was the best known code of rate 1/4.

Turbo codes. In 1993, Berrou, Glavieux and Thitimajshima reported work
on turbo codes. The encoder of a turbo code is based on the encoders
of two convolutional codes. The source bits are fed into each encoder,
the order of the source bits being permuted in a random way, and the
resulting parity bits from each constituent code are transmitted.

The decoding algorithm involves iteratively decoding each constituent
code using its standard decoding algorithm, then using the output of

C1

C2�
��
π

-

-

--

-

Figure 11.7. The encoder of a
turbo code. Each box C1, C2,
contains a convolutional code.
The source bits are reordered
using a permutation π before they
are fed to C2. The transmitted
codeword is obtained by
concatenating or interleaving the
outputs of the two convolutional
codes. The random permutation
is chosen when the code is
designed, and fixed thereafter.

the decoder as the input to the other decoder. This decoding algorithm
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is an instance of a message-passing algorithm called the sum–product

algorithm.

Turbo codes are discussed in Chapter 48, and message passing in Chap-
ters 16, 17, 25, and 26.

Block codes

Gallager’s low-density parity-check codes. The best block codes known

H =

Figure 11.8. A low-density
parity-check matrix and the
corresponding graph of a rate-1/4
low-density parity-check code
with blocklength N = 16, and
M =12 constraints. Each white
circle represents a transmitted bit.
Each bit participates in j = 3
constraints, represented by
squares. Each constraint forces
the sum of the k = 4 bits to which
it is connected to be even. This
code is a (16, 4) code.
Outstanding performance is
obtained when the block length is
increased to N ' 10 000.

for Gaussian channels were invented by Gallager in 1962 but were
promptly forgotten by most of the coding theory community. They were
rediscovered in 1995 and shown to have outstanding theoretical and prac-
tical properties. Like turbo codes, they are decoded by message-passing
algorithms.

We will discuss these beautifully simple codes in Chapter 47.

The performances of the above codes are compared for Gaussian channels
in figure 47.17, p.570.

�
11.6 Summary

Random codes are good, but they require exponential resources to encode
and decode them.

Non-random codes tend for the most part not to be as good as random
codes. For a non-random code, encoding may be easy, but even for
simply-defined linear codes, the decoding problem remains very difficult.

The best practical codes (a) employ very large block sizes; (b) are based
on semi-random code constructions; and (c) make use of probability-
based decoding algorithms.

�
11.7 Nonlinear codes

Most practically used codes are linear, but not all. Digital soundtracks are
encoded onto cinema film as a binary pattern. The likely errors affecting the
film involve dirt and scratches, which produce large numbers of 1s and 0s
respectively. We want none of the codewords to look like all-1s or all-0s, so
that it will be easy to detect errors caused by dirt and scratches. One of the
codes used in digital cinema sound systems is a nonlinear (8, 6) code consisting
of 64 of the

(
8
4

)
binary patterns of weight 4.

�
11.8 Errors other than noise

Another source of uncertainty for the receiver is uncertainty about the tim-

ing of the transmitted signal x(t). In ordinary coding theory and infor-
mation theory, the transmitter’s time t and the receiver’s time u are as-
sumed to be perfectly synchronized. But if the receiver receives a signal
y(u), where the receiver’s time, u, is an imperfectly known function u(t)
of the transmitter’s time t, then the capacity of this channel for commu-
nication is reduced. The theory of such channels is incomplete, compared
with the synchronized channels we have discussed thus far. Not even the ca-

pacity of channels with synchronization errors is known (Levenshtein, 1966;
Ferreira et al., 1997); codes for reliable communication over channels with
synchronization errors remain an active research area (Davey and MacKay,
2001).
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Further reading

For a review of the history of spread-spectrum methods, see Scholtz (1982).

�
11.9 Exercises

The Gaussian channel

. Exercise 11.5.
[2, p.190] Consider a Gaussian channel with a real input x, and

signal to noise ratio v/σ2.

(a) What is its capacity C?

(b) If the input is constrained to be binary, x ∈ {±√
v}, what is the

capacity C ′ of this constrained channel?

(c) If in addition the output of the channel is thresholded using the
mapping

y → y′ =

{
1 y > 0
0 y ≤ 0,

(11.35)

what is the capacity C ′′ of the resulting channel?

(d) Plot the three capacities above as a function of v/σ2 from 0.1 to 2.
[You’ll need to do a numerical integral to evaluate C ′.]

. Exercise 11.6.
[3 ] For large integers K and N , what fraction of all binary error-

correcting codes of length N and rate R = K/N are linear codes? [The
answer will depend on whether you choose to define the code to be an
ordered list of 2K codewords, that is, a mapping from s ∈ {1, 2, . . . , 2K}
to x(s), or to define the code to be an unordered list, so that two codes
consisting of the same codewords are identical. Use the latter definition:
a code is a set of codewords; how the encoder operates is not part of the
definition of the code.]

Erasure channels

. Exercise 11.7.
[4 ] Design a code for the binary erasure channel, and a decoding

algorithm, and evaluate their probability of error. [The design of good
codes for erasure channels is an active research area (Spielman, 1996;
Byers et al., 1998); see also Chapter 50.]

. Exercise 11.8.[5 ] Design a code for the q-ary erasure channel, whose input x is
drawn from 0, 1, 2, 3, . . . , (q − 1), and whose output y is equal to x with
probability (1 − f) and equal to ? otherwise. [This erasure channel is a
good model for packets transmitted over the internet, which are either
received reliably or are lost.]

Exercise 11.9.
[2, p.190] How do redundant arrays of independent disks (RAID)

work? These are information storage systems consisting of about ten [Some people say RAID stands for
‘redundant array of inexpensive
disks’, but I think that’s silly –
RAID would still be a good idea
even if the disks were expensive!]

disk drives, of which any two or three can be disabled and the oth-
ers are able to still able to reconstruct any requested file. What codes
are used, and how far are these systems from the Shannon limit for
the problem they are solving? How would you design a better RAID
system? Some information is provided in the solution section. See
http://www.acnc.com/raid2.html; see also Chapter 50.


