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ABSTRACT

This paper presents the element-stretching problem for Newtonian fluid by finite element
methods (FEM) under the semi-implicit Taylor-Galerkin pressure correction principle. The
assumptions of incompressible fluid, no gravitational effect, and temperature independence
are used. The two-dimensional governing equations, in which the equations are nonlinear
partial differential equations, are derived through the conservation of mass and momentum.

The configuration of mesh, which is elaborately and dominantly biased, can reflect
true stretching behaviour. In the paper, the variation of velocities, pressure, stresses, shear rate
and extension rate have showed up to Hencky strain (&) 1.92

The simulation programme has been created to compute the solutions, which utilize
remeshing and interpolating techniques for increased accuracy of solutions. The results exhibit
the same trend as the experimental solutions.
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1. INTRODUCTION

Research in filament stretching is the study of fluid deformation behaviour and its properties
while the fluid is stretched in time. Many people have attempted to describe and make a
mathematical model since the first attempt in 1990 by Matta and Tytus [1]. It was developed
by Tirtaatmadja and Sridha [2][3], who found that the behavior of filament stretching is
retracted at an exponential rate. After 1996 the filament stretching research was popular, for
example Spiegelberg et al. [4], Solomon and Muller [5], Sizaire and Legat [6], Yao and
McKinley [7], Gaudet and McKinley [8][9], Hassagar et al. [10], Kolte and Szabo [11] and
Ainser et al. [12].

Recently, M.S. Chandio et al. [13] studied numerical solution with Newtonian fluid
by using semi-implicit Taylor-Galerkin/pressure-correction finite element method that was
obtained by P. Townsend and M.F. Webster [14][15]. The method they used is stable and
accurate up to large Henky strain levels. In contrast, K.S. Sujatha and M.F. Webster [16]
simulated the filament stretching on the nano-scale under very large deformation-rates.

This paper studies the deformation of Newtonian fluid by showing the change of
velocites, pressure, stresses, shear rate and extension rate of filament up to Hencky strain of
1.92. The six nodes are used in finite element method with the semi-implicit Taylor-Galerkin
pressure correction scheme in two dimensionless cylindrical coordinate system. The
assumptions of incompressible flow, no gravitational effect, no inertia force, and isothermal
case are supposed to adopt. Tension forces at the free surface have an effect for setting both
dynamic and kinematic boundary conditions. For every time-step of stretching, some
techniques of remeshing, interpolation, and volume conservation are considered. In the
present study, the comparison of all results have referred extensively to the fundamental work
of Sizaire and Legat [6], Yao and McKinley [7], K.S. Sujathaand M.F. Webster [16] especially
for M.S. Chandio et al. by constructing a C computer programme.
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2. GOVERNING EQUATIONS

For two-dimensional isothermal incompressible Newtonian fluid, the generalized momentum
and continuity equations can be expressed as:
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where p, u,t,V, oand f are the fluid density, the velocity vector, time, the spatial

differential operator, Cauchy stress tensor and body force vector respectively. The Cauchy
stress tensor is given in the form

G=—ps+ T (3)
1, 1=y
where P is an isotropic pressure and the Kronecker delta tensor is 62’;‘ = 0, i
For Newtonian fluid, the extra stress tensor ( T ) is obtained by
T =2uD @)
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where D is the rate of deformation tensor and p is a Newtonian viscosity.

For inelastic homogeneous isotropic fluid behaviour under incompressible isothermal flow, the
general form of extra stess tensoris described as a function of the rate of deformation tensor
(Rivlin and Eriksen [17], Reiner[18]) that is:

T, =2u(%.¢)D, (6)

where the shear rate (’.y ) for simple shear flow is given by:

v =210, 7
and elongation rate (a’::) for elongational flow is defined :
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where IT; and I1I, are the second and third invariants of the rate of deformation tensor (D, )

respectively. In cylindrical coordinate system 11, and III, are obtained by
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For convenience of comparison and representation, the problem in dimensionless form has

D
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considered. The non-dimensional variables 7", 2", u", p", T" ¢, ", —— A", i, X" are
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where A is a relaxation time, x is a coefficient of tension, €, 1is stretching-rate, L is a

characteristic length, V' is a characteristic velocity (V' = ¢, L), p, is reference viscosity

and index ¢ = 1,2

3.TAYLOR-GALERKIN METHOD

The computation converts non-linear P.D.E. into the system of algebraic equations for the
convenience of computation by converting expressions in terms of a time—dependent
differential expression into the forward finite different form using Taylor’s series expansion in
time (with half time step method). For the pressure, the semi-implicit pressure correction
method was used. After that, equations of pressure and velocities are separated into two by
Galerkin weak formulation which includes integration by part so that the algebraic equations
appear as equations (11)-(14). The way to discretise time and spatial derivatives was
introduced by Donea [19].
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The solutions of all stages have been solved by Jacobi iterative method, namely successive
over relaxation (SOR), with Penalty approach for handling boundary condition. The
computation of integral was approximated by a triangular 4-points Gaussian quadrature
approach (Reddy [21]). The Gradient recovery is a strategy to improve the stability of solution,




and has been stated by Hawken et al. [22], Levine [23, 24], Boroomand and Zienkiewicz [25],
Zienkiewicz and Zhu [26] and Matallah [27], who applied it to adjust the smooth convergence.
At each time step, the fixed-connectivity remeshing technique is employed by adjusting values
in domain with interpolation technique while the constant values of the outside part are kept.
The initial estimation of free surface is computed by an elliptic equation,
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where Az, =2, — 2, ,

For each computational step, the conservation of volume is verified from the
summation of frustum of a cone compared with the initial volume.

The convergent criteria is considered by ”E(at)”oC = ”(x"“ — w")

Lo < TOL

Here TOL=10" for velocity and pressure, TOL=10" for SOR computation, and
TOL=10" for checking volume.

4. PROBLEM SPECIFICATION

Here, the original domain of fluid in a cylinder of height [, and radius [, are displayed as
figure 1. Both end are attached to the plates and pulled in opposite directions with the same
speed. At time t, the fluid is stretched in the z-direction with distance L(t) and shrunk in the
r-direction with distance R(t) for maintaining mass conservation. According to symmetry, a
quarter of the domain is considered for simulation (figure 1).

4.1 Initial condition

Initially, the computational domain is rectangular, and fluid is assumed to be at rest, i.e.,
velocity in both directions are zero as shown in figure 1.
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Figure 1: Domain of the problem



4.2 Boundary condition

The solutions must satisfy the boundary conditions. Dirichlet boundary condition and
Neumann boundary condition will be used as figure 2.

Figure 2: Boundary condition for the filament stretching

In additional, the free surface will be affected by surface tension which is defined by the
following dynamic and kinematic boundary conditions:

Dynamic boundary condition
The condition comes from continuity of contact force along free surface as follow:
1
— + J—
R R

where 1 is outward normal vector, p,, ~is atmospheric pressure, X is surface tension

0-N=—|Dyn +X n (18)

coefficient, [, and I, are radius of curvature of free surface shown in figure 3 (Levich [28]

and Keunings [29]) as follow:
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where £ is displacement normal to initial free surface and it is a function of time but its’

value is differ for each height z as shown in figure 4.
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Figure 3: Location of free surface
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Figure 4: Radius of curvature at free surface
Kinematic boundary condition
This condition comes from the fact that free surface is material line, defined as:
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4.3 Material parameters

When computing the Newtonian fluid case, parameters of material in Table 1 are defined on
the basis of the steady shear data by McKinley [30].

Table 1. Material parameters for a polyisobuthylene-polybutene Boger fluid.

p (density) 890 (kg m™)

. -1

€ (stretch rate) 1.6 (s7)

L, (initial length) 2*10” (m)

R, (initial radius) 3.5%10” (m)

X (surface tension 28.9%10° (nm™)
coefficient)

Newtonian calculation

7 (shear viscosity) 98 (Pas™)

4.4 Mesh patterns

In this problem, four patterns of meshes are shown in figure 5.

(a) 2x3 uniform (b) 3x5 uniform

(c) 4x7 uniform (d) 4x7 bias
Figure 5: Mesh patterns



5. RESULT

The configuration of the mesh, which is elaborately and dominantly biased, can reflect pure
stretching behavior. Computational results of #(z), I, at each Hencky strain, U, along

free surface and U at center line are in line with the work of Chandio et al. shown in figures

6-9. The evolution of filament structure of Newtonian fluid at different Hencky strain is
illustrated in figure 10.
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Figure 6: Radius (7(2)): comparison each mesh types with Chandio et al.
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Figure 8: U, profiles along free surface: comparison each mesh types with analytical solution
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Figure 9: U, profiles at centreline (7 = 0) : comparison each mesh types with analytical

solution
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Figure 10: Evolution of filament structure of Newtonian fluid at different Hencky strain

The velocities satisfying the lubrication model of Spiegelberg et al. [4] and other
research [6,7,13] is shown in each Hencky strain (&) up to 1.92. The r direction velocity

(U.,) as in figure 11 is relatively small. The greatest change at free surface of figure 12 is

observed, especially at the bottom right corner, where the value is most negative. This shrinks
with lower rate as Hencky strain increases, due to the reduction in fluid area, shrinking in the
opposite direction to 7 axis. When considering the area throughout the free surface, the value

U, will satisfy lubrication model. The velocity in z direction (U ) gives the result of figure
13, which illustrates that U is dependent on velocity of the plates, thus maximum at the
upper plate and decreasing until it reaches 0 at the lower plate. It can also be seen that U

changes according to the height z , and at the midplane (7 =0) it satisfies the lubrication
model (figure 14).
The value of Pressure (P ) in the initial will be changed according to distance from

free surface and when & increased, Atmospheric pressure (P, ) will affect the domain more,

tm

especially at the upper-right corner shown in Figure 15.

The stress near free surface will be more smooth (more natural) when the mesh is
finer, and the bias rate is greater. This comes from the gradient recovery technique. When
stretching the element, the fluid near bottom plate will be stretched in z -axis and shrunk in
7 -axis.



This makes 7/, most negative and make 7 _ most positive at this bottom plate. The

effect from pulling around the circumference is very small. The effect from shearing will be
cleared when & is small and this shows that the fluid is not purely uni-axial. But when & is
increased, the effect of shearing is decreased until it is unable to be considered and becomes
shear-free flow. The stress in many directions can be shown as in Figure 16-17.

N u, .
Shear rate ( <y ) contains component 6—’ which has the greatest effect on the
v

computational process. When undergoing Gradient recovery, it can be seen that the area near
free surface 7y does not have smooth stress, and if we stretch it to larger &, the 7y will

increased at the bottom line. This tells us that the area is easy to deform. Shear rate is shown
as in Figure 18.

Extension rate (é) is affected by the structure of mesh as for ’.)/, which leads to

unsmooth values near the free surface area. If & is small we can see that & will be high
according to the increasing of &, especially at the bottom line where it reaches a maximum.
This means the area is most fragile and most easy to break down (shown in figure 19).
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Figure 11: U, colour contours,various Hencky strain
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Figure 13: U_ colour contours,various Hencky strain
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Figure 15: Pressure colour contours, various Hencky strain
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Figure 16: T’ colour contours,various Hencky strain
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Figure 17: T colour contours,various Hencky strain
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Figure 18: Shear rate colour contours,various Hencky strain
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Figure 18: Continued Shear rate colour contours,various Hencky strain
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Figure 19: Extension rate colour contours,various Hencky strain

6. CONCLUSION
The structure of the mesh and initial approximation give a lot of effect to each
computational step. If a configuration is chosen which is near the real situation, the
computational result will be closed to the real solution.
Stretching of Newtonian fluid (with fixed viscosity) at the middle of the filament
gives the most fragile and most easy to deform response.

REFERENCE:

[1] Matta J.E. and Tytus R.P., 1990. Liquid Stretching Using a Falling Cylinder, J. Non-
Newtonian Fluid Mech., 35, 215-229.

[2] Tirtaatmadja V. and Sridha T., 1993. A Filament Stretching Device for Measurement of
Extensional Viscosity, J. Rheol., 37, 1081-1102.

[3] Tirtaatmadja V. and Sridha T., 1995. Comparison of Constitutive Equations for Polymer
Solutions in Uniaxial Extension, J. Rheol., 39, 1133-1160.

[4] Spiegelberg S.H., Abels D.C. and McKinley G.H., 1996. The Role of End-effects on
Measurement of Extensional Viscosity in Filament Stretching Rheometers, J. Non-Newtonian
Fluid Mech., 64, 229-267.

[5] Solomon M.J. and Muller S.J., 1996. The Transient Extensional Behavior of Polystyrene-
based Boger Fluids of Varying Solvent Quality and Molecular weight, J. Rheol., 40, 837-856.



[6] Sizaire R. and Legat V., 1997. Finite Element Simulation of a Filament Stretching
Extensional Rheometer, Int. J. Non-Newtonian Fluid Mech., 77, 89-107.

[7] Yao M. and McKinley G.H., 1998. Numerical Simulation of Extensional Deformations of
Viscoelastic Liquid Bridges in Filament Stretching Device, J. Non-Newtonian Fluid Mech., 79,
469-501.

[8] Gaudet S. and McKinley G.H., 1996. Extensional Deformation of Newtonian Liquid
Bridges, Phys. Fluids., 8, 2568-2579.

[9] Gaudet S. and McKinley G.H., 1998. Extensional Deformation of Non-Newtonian Liquid
Bridges , Comp. Mechs., 22, 461-476.

[10] Hassager O., Kolte M.I1. and Renardy M., 1998. Failure and Non-failure of Fluid Filament
in Extension, J. Non-Newtonian Fluid Mech., 76, 137-151.

[11] Kolte M.I. and Szabo P., 1999. Capillary Thinning of Polymeric Filaments, J.Rheol., 43,
609-625.

[12] Ainser A., Carrot C., Guillet J. and Sirikov 1., 2000. Transient Viscoelastic Analysis of
Falling Weight Experiment, XIIIth Int. Cong. Rheol. , Cambridge, UK, 2, 259-261.

[13] Chandio M.S., Matallah H. and Webster M.F., 2003. Numerical Simulation of Viscous
Filament Stretching Flows, Int. J. Num. Meth. Heat Fluid Flow, 13, 899-930.

[14] Townsend P. and Webster M.F., 1987. An Algorithm for the Three-dimensional
Transient Simulation of Non-Newtonian Fluid Flows, Proc. NUMERTA 87.

[15] Hawken D.M., Tamaddon-Jahromi H.R., Townsend P. and Webster M.F., 1990. A
Taylor-Galerkin Based Algorithm for Viscous Incompressible Flow, Int. J. Num. Meth. Fluids,
10, 327-351.

[16] Sujatha K.S. and Webster M.F., Transient Simulation for Nano-scale Filament Stretching
with Large Deformation-rates, Research progress report, Department of Computer Science,
University of Wales, Swansea.

[17] Rivlin R.S. and Eriksen J.L., 1955. Stress Deformation Relations for Isotropic Material, J.
Rat. Mech. Anal., 4, 323-425.

[18] Reiner M., 1960. Deformation Strain and Flow, Wiley, New York.

[19] Donea J., 1984. A Taylor-Galerkin Method for Convective Transport Problems, Int. J.
Num. Meth. Eng., 20, 101-119.

[20] Crank J. and Nicolson P., 1947. A Practical Method for Numerical Evaluation of Solution
of Patial Differential equations of the Heat-conduction Type, Proc. Camb. Phil. Soc., 43, 50-
67.

[21] Reddy J.N., 1984. An Introduction to the Finite Element Method, McGraw-Hill.

[22] Townsend P. and Webster M.F., 1991. A Comparison of Gradient recovery methods in
Finite Element Calculations, Comm. Appl. Num. Meth., 7, 195-204.

[23] Levine N., 1983. Superconvergent Recovery of the Gradient from Finite Element
Approximation on Triangles, Technical report Num. Anal. Rep. 6/83, University of Reading,
UK.

[24] Levine N., 1985. Superconvergent Estimation of the Gradient from Linear Finite Element
Approximation of Triangular elements, Ph.D. Thesis, University of Reading, U.K.

[25] Boroomand B. and Zienkiewicz O.C., 1997. An Improve REP Recovery and the
Effectively Robustness test, /nt. J. Num. Meth. Eng., 40, 3247-3277.

[26] Zienkiewicz O.C. and Zhu J.Z., 1995. Superconvergent and Superconvergent patch
Recovery Finite Element in Analysis and Design, 19, 11-23.

[27] Matallah H., 1998. Numerical Simulation of Viscoelastic Flows, PH.D. Thesis,
University of Wales Swansea, U.K.

[28] Levich V.G., 1962. Physicochemical Hydrodynamics, Prentice-Hall, Engleword Cliffs,
NJ.

[29] Keunings R., 1985. An Algorithm for the Simulation of Transient Viscoelastic Flows
with Free Surface, J. Comp. Phys., 62, 199-220.

[30] McKinley G.H., 1995. Steady and Transient Motion of a Sphere Sedimenting Through
Shear-thinning and Constant-vicosity Elastic Fluids, BSR Annual Award Lecture, IX th
International Workshop on Numerical Methods in Non-Newtonian Flows.



	ABSTRACT
	stage 1a
	
	
	
	
	Dynamic boundary condition

	Kinematic boundary condition

	REFERENCE:




