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ABSTRACT 
This paper presents the element-stretching problem for Newtonian fluid by finite element 
methods (FEM) under the semi-implicit Taylor-Galerkin pressure correction principle. The 
assumptions of incompressible fluid, no gravitational effect, and temperature independence 
are used. The two-dimensional governing equations, in which the equations are nonlinear 
partial differential equations, are derived through the conservation of mass and momentum. 

 The configuration of mesh, which is elaborately and dominantly biased, can reflect 
true stretching behaviour. In the paper, the variation of velocities, pressure, stresses, shear rate 
and extension rate have showed up to Hencky strain (ε ) 1.92 

 The simulation programme has been created to compute the solutions, which utilize 
remeshing and interpolating techniques for increased accuracy of solutions. The results exhibit 
the same trend as the experimental solutions. 
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1. INTRODUCTION 
Research in filament stretching is the study of fluid deformation behaviour and its properties 
while the fluid is stretched in time.  Many people have attempted to describe and make a 
mathematical model since the first attempt in 1990 by Matta and Tytus [1]. It was developed 
by Tirtaatmadja and Sridha [2][3], who found that the behavior of  filament stretching is 
retracted at an exponential rate. After 1996 the filament stretching research was popular, for 
example Spiegelberg et al. [4], Solomon and Muller [5], Sizaire and Legat [6], Yao and 
McKinley [7], Gaudet and McKinley [8][9], Hassagar et al. [10], Kolte and Szabo [11] and 
Ainser et al. [12]. 

 Recently, M.S. Chandio et al. [13] studied numerical solution with Newtonian fluid 
by using semi-implicit Taylor-Galerkin/pressure-correction finite element method that was 
obtained by P. Townsend and M.F. Webster [14][15]. The method they used is stable and 
accurate up to large Henky strain levels. In contrast, K.S. Sujatha and M.F. Webster [16] 
simulated the filament stretching on the nano-scale under very large deformation-rates. 

 This paper studies the deformation of Newtonian fluid by showing the change of 
velocites, pressure, stresses, shear rate and extension rate of filament up to Hencky strain of 
1.92. The six nodes are used in finite element method with the semi-implicit Taylor-Galerkin 
pressure correction scheme in two dimensionless cylindrical coordinate system. The 
assumptions of incompressible flow, no gravitational effect, no inertia force, and isothermal 
case are supposed to adopt. Tension forces at the free surface have an effect for setting both 
dynamic and kinematic boundary conditions. For every time-step of stretching, some 
techniques of remeshing, interpolation, and volume conservation are considered. In the 
present study, the comparison of all results have referred extensively to the fundamental work 
of Sizaire and Legat [6], Yao and McKinley [7], K.S. Sujatha and M.F. Webster [16] especially 
for M.S. Chandio et al. by constructing a C computer programme. 
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2. GOVERNING EQUATIONS 
For two-dimensional isothermal incompressible Newtonian fluid, the generalized momentum 
and continuity equations can be expressed as: 
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where , , , , and are the fluid density, the velocity vector, time, the spatial 
differential operator, Cauchy stress tensor and body force vector respectively. The Cauchy 
stress tensor is given in the form 
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where p  is an isotropic pressure and the Kronecker delta tensor  is δ  
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For Newtonian fluid, the extra stress tensor (T ) is obtained by 
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whereD  is the rate of deformation tensor and µ  is a Newtonian viscosity.  

For inelastic homogeneous isotropic fluid behaviour under incompressible isothermal flow, the 
general form of extra stess tensor is described as a function of the rate of deformation tensor 
(Rivlin and Eriksen [17], Reiner[18]) that is: 
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where the shear rate ( )  for simple shear flow is given by: γ•
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and elongation rate ( )  for elongational flow is defined : ε•
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where and are the second and third invariants of the rate of deformation tensor ( ) 

respectively. In cylindrical coordinate system and are obtained by 
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For convenience of comparison and representation, the problem in dimensionless form has 

considered. The non-dimensional variables , , , , , , , , , ,i
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where  λ  is a relaxation time, χ  is a coefficient of tension, ε   is stretching-rate, L  is a 

characteristic length, V   is a characteristic velocity (V ), µ  is reference viscosity 
and index i  

0
•
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3.TAYLOR-GALERKIN METHOD 
The computation converts non-linear P.D.E. into the system of algebraic equations for the 
convenience of computation by converting expressions in terms of a time–dependent 
differential expression into the forward finite different form using Taylor’s series expansion in 
time (with half time step method). For the pressure, the semi-implicit pressure correction 
method was used. After that, equations of pressure and velocities are separated into two by 
Galerkin weak formulation which includes integration by part so that the algebraic equations 
appear as equations (11)-(14). The way to discretise time and spatial derivatives was 
introduced by Donea [19]. 
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stage 2 ( )1/2θ = (Crank-Nicolson [20]) 
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The solutions of all stages have been solved by Jacobi iterative method, namely successive 
over relaxation (SOR), with Penalty approach for handling boundary condition.  The 
computation of integral was approximated by a triangular 4-points Gaussian quadrature 
approach (Reddy [21]). The Gradient recovery is a strategy to improve the stability of solution, 



and has been stated by Hawken et al. [22], Levine [23, 24], Boroomand and Zienkiewicz [25], 
Zienkiewicz and Zhu [26] and Matallah [27], who applied it to adjust the smooth convergence. 
At each time step, the fixed-connectivity remeshing technique is employed by adjusting values 
in domain with interpolation technique while the constant values of the outside part are kept. 
The initial estimation of free surface is computed by an elliptic equation, 
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For each computational step, the conservation of volume is verified from the 
summation of frustum of a cone compared with the initial volume. 

The convergent criteria is considered by ( )1( ) TOLn nE x x x+
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= − ≤  

Here  for velocity and pressure, TOL=10  for SOR computation, and 
 for checking volume. 
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4. PROBLEM SPECIFICATION 

Here, the original domain of fluid in a cylinder of height L  and radius R are displayed as  
figure 1. Both end are attached to the plates and pulled in opposite directions with the same 
speed. At time t, the fluid is stretched in the z-direction with distance L t  and shrunk in the 
r-direction with distance R t  for maintaining mass conservation. According to symmetry, a 
quarter of the domain is considered for simulation (figure 1). 

0 0

)(
( )

4.1 Initial condition  

Initially, the computational domain is rectangular, and fluid is assumed to be at rest, i.e., 
velocity in both directions are zero as shown in figure 1.   
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Figure 1: Domain of the problem 



4.2 Boundary condition 

The solutions must satisfy the boundary conditions. Dirichlet boundary condition and 
Neumann boundary condition will be used as figure 2. 
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Figure 2: Boundary condition for the filament stretching 

In additional, the free surface will be affected by surface tension which is defined by the 
following dynamic and kinematic boundary conditions: 

Dynamic boundary condition 

The condition comes from continuity of contact force along free surface as follow: 
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where  is outward normal vector,  is atmospheric pressure,  is surface tension 
coefficient,  and R  are radius of curvature of free surface shown in figure 3 (Levich [28] 
and Keunings [29]) as follow: 
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where  is displacement normal to initial free surface and it is a function of time but its’ 
value is differ for each height z  as shown in figure 4. 
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Figure 3: Location of free surface 
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Figure 4: Radius of curvature at free surface 
r

Kinematic boundary condition  

This condition comes from the fact that free surface is material line, defined as: 
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4.3 Material parameters 

When computing the Newtonian fluid case, parameters of material in Table 1 are defined on 
the basis of the steady shear data by McKinley [30]. 

Table 1. Material parameters for a polyisobuthylene-polybutene Boger fluid. 

ρ  (density) 890 (kg m-3) 

ε• (stretch rate) 1.6 (s-1) 

0L  (initial length) 2*10-3 (m) 

0R  (initial radius) 3.5*10-3 (m) 

χ  (surface tension 
coefficient) 

28.9*10-3 (n m-1) 

Newtonian calculation  
η (shear viscosity) 98 (Pa s-1) 

 

4.4 Mesh patterns 

In this problem, four  patterns of meshes are shown in figure 5.  
 

   
(a) 2x3 uniform                            (b) 3x5 uniform 

 

   
                            (c) 4x7 uniform                  (d) 4x7 bias 

Figure 5: Mesh patterns 



5. RESULT 
The configuration of the mesh, which is elaborately and dominantly biased, can reflect pure 
stretching behavior. Computational results of r z ,  at each Hencky strain, U  along 

free surface and U  at center line are in line with the work of Chandio et al. shown in figures 
6-9. The evolution of filament structure of Newtonian fluid at different Hencky strain is 
illustrated in figure 10.  
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Figure 6: Radius : comparison each mesh types with Chandio et al. ( ( ))r z

Hencky strain

R
m
in

0 0.5 1 1.5 210-2

10-1

100

101 Compare R at mid-plane (z=0)

Uniaxial
Analytic
2x3 uniform (1)
3x5 uniform (2)
4x7 uniform (3)
4x7 bias (4)

 
 

Figure 7: R  : comparison each mesh types with uniaxial and analytical solution min
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Figure 8: U  profiles along free surface: comparison each mesh types with analytical solution r
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Figure 10: Evolution of filament structure of Newtonian fluid at different Hencky strain 

The velocities satisfying the lubrication model of Spiegelberg et al. [4] and other 
research [6,7,13] is shown in each Hencky strain (ε ) up to 1.92. The r  direction velocity 
(U ) as in figure 11 is relatively small. The greatest change at free surface of figure 12 is 
observed, especially at the bottom right corner, where the value is most negative. This shrinks 
with lower rate as Hencky strain increases, due to the reduction in fluid area, shrinking in the 
opposite direction to r axis. When considering the area throughout the free surface, the value 

 will satisfy lubrication model. The velocity in  direction (U ) gives the result of figure 

13, which illustrates that U  is dependent on velocity of the plates, thus maximum at the 

upper plate and decreasing until it reaches 0 at the lower plate. It can also be seen that U  

changes according to the height z , and at the midplane (

r

rU z z

0

z

z

r = ) it satisfies the lubrication 
model (figure 14). 

The value of Pressure ( ) in the initial will be changed according to distance from 
free surface and when 

P
ε  increased, Atmospheric pressure ( ) will affect the domain more, 

especially at the upper-right corner shown in Figure 15. 
atmP

The stress near free surface will be more smooth (more natural) when the mesh is 
finer, and the bias rate is greater. This comes from the gradient recovery technique. When 
stretching the element, the fluid near bottom plate will be stretched in z -axis and shrunk in 

-axis. r



 This makes T  most negative and make T  most positive at this bottom plate. The 
effect from pulling around the circumference is very small. The effect from shearing will be 
cleared when 

rr zz

ε  is small and this shows that the fluid is not purely uni-axial. But when ε  is 
increased, the effect of shearing is decreased until it is unable to be considered and becomes 
shear-free flow. The stress in many directions can be shown as in Figure 16-17. 

Shear rate ( ) contains component γ• ru
r

∂
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which has the greatest effect on the 

computational process.  When undergoing Gradient recovery, it can be seen that the area near 
free surface γ  does not have smooth stress, and if we stretch it to larger 

• ε , the γ  will 
increased at the bottom line. This tells us that the area is easy to deform. Shear rate is shown 
as in Figure 18. 

•

Extension rate ( ) is affected by the structure of mesh as for γ , which leads to 

unsmooth values near the free surface area. If 

ε• •

ε  is small we can see that ε  will be high 
according to the increasing of 

•

ε , especially at the bottom line where it reaches a maximum. 
This means the area is most fragile and most easy to break down (shown in figure 19). 
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Figure 11: U  colour contours,various Hencky strain r
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Figure 12: U  profiles  along  free  surface, r

                   case 4, compared with analytical  
                   solution 
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Figure 13: U  colour contours,various Hencky strain z
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Figure 14: U  profiles,  centreline  z

                  ( r 0= ), case 4, compared 
                  with  analytical  solution 
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Figure 15: Pressure colour contours, various Hencky strain 
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Figure 16: T  colour contours,various Hencky strain rz
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Figure 17: T  colour contours,various Hencky strain zz
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Figure 18: Shear rate colour contours,various Hencky strain 
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Figure 18: Continued Shear rate colour contours,various Hencky strain 
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Figure 19: Extension rate colour contours,various Hencky strain 

 
6. CONCLUSION 

The structure of the mesh and initial approximation give a lot of effect to each 
computational step. If a configuration is chosen which is near the real situation, the 
computational result will be closed to the real solution. 

Stretching of Newtonian fluid (with fixed viscosity) at the middle of the filament 
gives the most fragile and most easy to deform response. 
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