
 

 

 

Abstract—The simulation of extrusion process is studied widely 

in order to both increase products and improve quality, with broad 

application in wire coating. The annular tube-tooling extrusion was 

set up by a model that is termed as Navier-Stokes equation in 

addition to a rheological model of differential form based on single-

mode exponential Phan-Thien/Tanner constitutive equation in a two-

dimensional cylindrical coordinate system for predicting the 

contraction point of the polymer melt beyond the die. Numerical 

solutions are sought through semi-implicit Taylor-Galerkin pressure-

correction finite element scheme. The investigation was focused on 

incompressible creeping flow with long relaxation time in terms of 

Weissenberg numbers up to 200. The isothermal case was considered 

with surface tension effect on free surface in extrudate flow and no 

slip at die wall. The Stream Line Upwind Petrov-Galerkin has been 

proposed to stabilize solution. The structure of mesh after die exit 

was adjusted following prediction of both top and bottom free 

surfaces so as to keep the location of contraction point around one 

unit length which is close to experimental results. The simulation of 

extrusion process is studied widely in order to both increase products 

and improve quality, with broad application in wire coating. The 

annular tube-tooling extrusion was set up by a model that is termed 

as Navier-Stokes equation in addition to a rheological model of 

differential form based on single-mode exponential Phan-

Thien/Tanner constitutive equation in a two-dimensional cylindrical 

coordinate system for predicting the contraction point of the polymer 

melt beyond the die. Numerical solutions are sought through semi-

implicit Taylor-Galerkin pressure-correction finite element scheme. 

The investigation was focused on incompressible creeping flow with 

long relaxation time in terms of Weissenberg numbers up to 200. The 

isothermal case was considered with surface tension effect on free 

surface in extrudate flow and no slip at die wall. The Stream Line 

Upwind Petrov-Galerkin has been proposed to stabilize solution. The 

structure of mesh after die exit was adjusted following prediction of 

both top and bottom free surfaces so as to keep the location of 

contraction point around one unit length which is close to 

experimental results. 

 

Keywords—wire coating, free surface, tube-tooling, extrudate swell, 

surface tension, finite element method.  

I. INTRODUCTION 

S imulation of wire coating problem is a way to deal with 

real problems especially for difficulties that might be 

encountered experimentally in extrusion processes of 
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polymeric solutions. The technique can have vast applications 

in the industry of wires, cables, fiber optics and numerous 

types and sizes of containers that are widely used in houses, 

factories and vehicles around the world. 

 In general, wire coating process modeling consists of 

two particular dies: pressure tooling within which the wire 

coating process begins coating the die cast, and tube tooling in 

which wire is coated by polymer melt outside the die. For the 

second die, the location where the polymer melt flows to 

contact the wire at the beginning of coating is called the 

contraction point. The factors influential to the contraction 

point are pressure, velocity, viscosity, surface tension of 

polymer melt, and wire speed. These are considered under the 

following assumptions: incompressible, laminar, isothermal 

flow and no gravity. In addition, surface tension has been 

considered in extrudate swell with no slip condition at die 

wall. 

 Computational studies for wire coating flows are abound in 

literature with industry-related concerns. For two dimensional 

axisymmetric incompressible fluid employing finite element 

method (FEM) under isothermal condition, Caswell and 

Tanner[1] have designed wire coating die for low speed non-

Newtonian fluid through power law model. Han and Rao[2] 

studied wire coating extrusion in theory and experiment for 

pressure-tooling die using the materials of low density 

polyethylene (LDPE) and high density polyethylene (HDPE) 

via applying the same model. In 1986, Mitsoulis[3] simulated 

the creeping flow of Newtonian and Power law fluid for wire 

coating problem in axisymmetric system. Binding et al.[4] 

studied high speed wire coating process for inelastic 

constitutive model. They varied viscosity models and 

commented on the limitation of modeling approach. Then, 

Mutlu et al.[5] employed  tube-tooling die for coating 

problem. In their work, viscoelastic coating flows were 

simulated and solved by FEM technique for the PTT model 

due to the past work of Ngamaramaramvaranggul and 

Webster [6,7] made us know that PTT model can be fit well 

for viscoelastic fluid better than other models because it can be 

predict the properties of high elastics for comparison curve 

shown in Tanner’s book [8]. Stability was attained by mean of 

coupled and decoupled schemes for single mode. Recently, 

Matallah et al.[9]  considered with tube-tooling wire coating 

flow for HDPE applying FEM technique for the multi-mode 

Phan-Thien/Tanner (PTT) constitutive model. In another 

research, Ngamaramvaranggul and Webster[7] have focused 

on  wire coating problem for  LDPE. They publish a paper of 

two dimensional annular pressure-tooling wire coating flow 

using FEM to solve an isothermal and free surface flow for 

single-mode PTT model. 
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 In the present article, tube-tooling wire coating flow has 

been studied under the influence of surface tension to adjust 

free surface shape according to the study of Anastasiadis[10] 

about effect of surface tension on polymer melts so in 1998 he 

used the sessile drop method to predict a free surface curve. 

Later on a numerical method how to solve his work has been 

shown by Neumann and Spelt [11]. An exponential PTT 

constitutive and momentum equations have been solved by 

semi-implicit Taylor-Galerkin scheme under treatment of 

streamline upwind Petrov-Galerkin (SUPG), which was used 

by Hughes and Brooks [12] for its strong consistent 

stabilization nature. the past work of Ngamaramaramvaranggul 

and Webster [6,7] made us know that PTT model can be fit 

well for viscoelastic fluid better than other models because it 

can be predict the properties of high elastics for comparison 

curve shown in Tanner’s book [8]. Stability was attained by 

mean of coupled and decoupled schemes for single mode. 

Recently, Matallah et al.[9]  considered with tube-tooling wire 

coating flow for HDPE applying FEM technique for the multi-

mode Phan-Thien/Tanner (PTT) constitutive model. In another 

research, Ngamaramvaranggul and Webster[7] have focused 

on  wire coating problem for  LDPE. They publish a paper of 

two dimensional annular pressure-tooling wire coating flow 

using FEM to solve an isothermal and free surface flow for 

single-mode PTT model. 

 In the present article, tube-tooling wire coating flow has 

been studied under the influence of surface tension to adjust 

free surface shape according to the study of Anastasiadis[10] 

about effect of surface tension on polymer melts so in 1998 he 

used the sessile drop method to predict a free surface curve. 

Later on a numerical method how to solve his work has been 

shown by Neumann and Spelt [11]. An exponential PTT 

constitutive and momentum equations have been solved by 

semi-implicit Taylor-Galerkin scheme under treatment of 

streamline upwind Petrov-Galerkin (SUPG), which was used 

by Hughes and Brooks [12] for its strong consistent 

stabilization nature. 

 

II. GOVERNING EQUATIONS 

For incompressible isothermal fluid with no gravity, the 

continuity equation is obtained from the conservation of mass 

in terms of velocity gradient. The Navier-Stokes equations 

from the conservation of momentum contain viscous term, 

convective acceleration and pressure gradient. Both non-

dimensional equations are expressed in the forms:  

 

                             0U                   (1) 
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Here, U is fluid velocity vector, T is stress tensor, p is 

isotropic fluid pressure,   is differential operator and Re is 

non-dimensional Reynolds number 

0

Re


UR
  

In this problem,    is fluid density, U is characteristic 

velocity in term of wire speed, R is characteristic length in 

term of die radius and 
0  is the zero-shear viscosity which 

combines a polymeric solute viscosity 1  and a solvent 2  as 

210   . Further information regarding non-

dimensionalization is available in Ngamaramaramvaranggul 

and Webster [6].  

    The equation of viscoelastic fluid for exponential Phan-

Thien/Tanner (EPTT) model [7] has considered below. 
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III. NUMERICAL DISCRETIZATION AND PROBLEM 

SPECIFICATION 

Numerical method is used to solve differential forms of 

equations (1), (2) and (3)  by transforming the continuous form 

of differential equations to discrete set of linear equations as 

following scheme. 

a. Fractional step 

In this paper, the fractional step is used to solve non-

linear partial differential equations (2) and (3) with semi-

implicit time step Taylor expansion termed as Taylor-Galerkin 

algorithm[7]. The discretization stages are as follows,  



 

 

Stage 1a: 

This stage is related to updating both stress and non-solenoidal 

velocity fields. The half time step of velocities and stresses can 

be derived from the equations below: 
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This stage is used for solving half time step of velocity and 

stress by a method of Jacobi iterative solver. Solutions of this 

stage are the input for stage 1b as below.  

Stage 1b: 

The transient stage of intermediate velocities and a full time 

step of stresses are updated as in the following equations: 
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Having obtained the results from previous stage, the 

intermediate velocities and a full time step of stresses are 

calculated by the same method of stage 1a; namely, Jacobi 

iteration. When stresses have converged at this stage the 

velocities yet have not; therefore, velocity quantities at this 

stage are applied to compute pressure in stage 2 and then full 

time step of velocities at the final stage.     

Stage 2: 

Full time step of pressure is related to velocity according to the 

equation: 
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U
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Pressure is computed through Cholesky decomposition after 

intermediate velocity values from stage 1b are computed. 

Hence, the full time step pressure is conducted to correct the 

full time step velocity in next stage. 

Stage 3: 
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Solve full time step velocities by Jacobi iterative method.  

 

   After time expansion by finite difference method, the weight 

residual of Galerkin method has been used to discretise space 

in order to set up the equations of stages 1-3 as the system of 

algebraic linear equations therefore the complex non-linear 

differential equations become to simple linear equations.        

b. Surface tension 

 In 1998, Anastasiadis[10] has studied the effect of surface 

tension on two types of polymer melts, linear low-density 

polyethylene (LLDPE) and high-density polyethylene (HDPE) 

by applying the sessile drop method to find a free surface 

curve as shown in figure 1. Further details have been provided 

by Neumann and Spelt [11]. 

 
 

Figure 1. Schema of the sessile drop 

 

The relationship between coordinates x and z in dimensionless 

form is given by the Bashforth–Adams in 1882 [13]. The free 

surface shape of a pendant/sessile drop as shown in figure 1 

can be constructed based on the following equations: 
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where  the dimensionless variables, X, Z, and S are 

                     defined as cxX  ,  

               is angle between the tangent and the profile 

                                at point (x,z) 

              (x,z) is a coordinate of point in drop profile  

 S is distance from the drop apex to coordinate (x,z) 

 a  is radius of curvature at the drop apex 

 g  is gravitational acceleration constant (m/s
2
)(LT

-2
) 

   is polymer density (kg.m
-3

)(ML
-3

) 

 
LV  is the interfacial tension between the liquid and   

                    its vapor 
Anastasiadis [10] has calculated all parameters and used them 

to predict the shape of pendant/sessile drop for polymer melt at 

temperatures up to 300°C. Free surface shape has been 

calculated by varying B values at B ={ -2.429, -1.5539, -0.989, 

-0.779, -0.680, -0.649, -0.570, -0.440} and an optimum B 

value for HDPE of -0.680 has been used to modify streamline 

path for free surface location, which has already been 

explained by Ngamaramvaranggul and Webster [14,15]. After 

the calculation of free surface path without surface tension, the 

approximation of first position is a bit higher so we have 

obtained condition of surface tension to adjust the free surface 

path.  The coordinate (x,z) for free surface shape of sessile 

drop that appearing in equations (4)-(6) has been solved by 

predictor-corrector method of Runge-Kutta up to four order 

[16]. The approximation of second free surface curve for 

coordinate (x,z) is a bit lower than the first curve at the 

beginning and growth up to near the position of first curve for 

a while then dropped immediately so the second position has 

been determined from the beginning position until the highest 

position and cut the last part when it dropped. The average 

path from both locations has been calculated to be proper 

position. 

 

c. Flowchart 

 The easy way to depict the schema for solving a numerical 

finite element method through 3 fractional steps explained 

above can be outlined schematically in figure 2. The basis 

algorithm shows the simulation of isothermal flow for single-

mode with couple scheme as following explanation.   

 

First, generate finite mesh for input file that is used for setting 

up shape functions and matrices in order to formulate the 

system of linear equations then solve the equations by 

fractional steps at the same time of applying the stream line 

upwind Petrov-Galerkin to maintain the stability and accuracy.  

 

After solution is computed, calculate free surface location 

and adding surface tension for die swell. Adjusting mesh 

according to new location and modify solution that is belong 

to new position. Check the final solution whether it is going to 

converge. Repeat the beginning step if the solution is too far 

from the acceptable result until it is less than the small amount 

that we set to 10
-5

.  At the end of the process, save the 

converge solution in file and analyse the result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart for wire coating flow program 

IV. PROBLEM SPECIFICATION  

A schema of tube-tooling die is shown in figure 3 and the 

considered domain is displayed as simple finite element mesh 

in figure 4. For this problem, the fine mesh has been generated 

with 4,714 elements; 9,755 nodes and 61,015 degrees of 

freedom (DOF).  

 
 

 
 

 

 

 

 

 

 

 

 

Figure 3: Schema of tube-tooling die 
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Figure 4. Simple Mesh pattern 

 

 

Schema of boundary domain is shown in figure 5. At inlet 

boundary (AA/), 0  rrru  , )(rfvz   , 

)(rhrz   and  )(rgzz  .  At die walls (ABCD, A/ B/ 

C/D/), there is no slip so 0 zr vu . For top and bottom 

free surfaces (D/ E/F/, DE), 0p  

 

 
 

 

Figure 5. Schema of boundary domain 

V. RESULTS AND DISCUSSION RESULTS AND DISCUSSION 

     As shown in Figure 6, the velocity vector is in annular flow 

at the inlet and plug flow at the outlet. The color contours are 

exhibited for Weissenberg number equals 200 (We=200) in 

Figure 7a-g with the highest value of radial velocity at the die 

exit (Figure 7a) due to swell but no considerable change in the 

velocity value. Axial velocity almost vanishes at the inlet 

whilst it is maximized in section DCDC   as indicated in 

Figure 7b according to conservation of flow rate the entrance 

has larger area and smaller velocity when compared against 

section DCDC  . 

 Development of the annular flow at the inlet to the plug 

flow at the outlet is shown in Figure 6 with the maximum set at 

about 1.62 units. Pressure varies linearly in a descending 

manner from maximum to minimum with a gradient equivalent 

to seventeen units as shown in Figure 7c at die exit. The flow 

is deformed when passing a corner leading to a high shear rate 

as displayed in Figure 7d at every corner when direction 

changes especially in the corner of smaller section DCDC  .  

It has been observed that extension rate of Figure 7(e) at small 

part of die geometry is a big value because the flow has been 

squeezed. 

 

 
 

Figure 6. Velocity vector 

 

 

 
 

 (a) Radial velocity ru      (b) Axial velocity zv  

 

 

 
  

 (c) Pressure P                      (d) Shear stress Trz 

 

Figure 7. Color contour of We=200 for  

              (a) radial velocity ru , (b) axial velocity zv , 

(c) pressure P,              (d) shear stress Trz 

 



 

 

 
  

 (e) Shear rate                       (f) Extension rate 

 

Figure 7. Color contour of We=200 for   

                                            (e) shear rate,   (f) extension rate 

 

 At various Weissenberg numbers, line contours for top 

surfaces are compared and nearly the same trend is detected 

for every We; therefore, every figure is displayed for the 

largest We of 200 in Figures 8(a)-(d).  

 Figure 8a displays the value of shear rate at top surface, 

which rises sharply at point C   and the die exit to 241.84 

units because of sharp corner and swell.  The extension rate is 

high at die exit and oscillated beyond die as shown in Figure 

8(b). The flow is deformed at corner C   and the die exit 

causing shear stress to increase to 2.29 units as can be seen in 

Figure 8c. Normal stress of figure 8d indicates a sharp rise of 

3.71 at point C  . 
 

            
(a) Shear rate at top surface 

 

             
(b) Extension rate at top surface 

 

 

            
(c) Shear stress Trz at top surface 

 

            
(d) Normal stress Tzz at top surface 

 

Figure 8. Line contour for  

              (a) shear rate, (b) extension rate, 

              (c) shear stress Trz, (d) normal stress Tzz  

              at top surface 

 

 

 Line contours for the bottom surfaces reflect similar 

behavior to their counterparts for the top surface so the 

explanation holds for Figures 9(a)-(d). Shear rate of Figure 

9(a) rise suddenly at every corner especially at the die exit at 

the value around 200 units consistent with the swell after the 

die.  Figure 9(b) shows extension rate with a high peak value 

of 0.6 at the die exit which corroborates Figure 7(e) with an 

oscillation range from 0 to 0.5. 

 In Figure 9(c), shear stress Trz demonstrates dual peaks at 

points 1z  and 0z .  The curve is oscillated slightly 

before 1z  and beyond die.  Normal stress Tzz trend is 

displayed in Figure 9(d) and the figure bears close 

resemblance to that of the shear rate with the value only one 

third of the shear rate. 
 



 

 

 
(a) Shear rate at bottom surface 

 

 
(b) Extension rate at bottom surface 

 
 

        
(c) Shear stress Trz at bottom surface 

 

       
(d) Normal stress Tzz at bottom surface 

Figure 9. Line contours for  

                (a) extension rate (b) shear rate, 

                (c) shear stress Trz, (d) normal stress Tzz  

                at bottom surface 

 The flow after die exit is swelled at top and bottom free 

surface as shown in Figure 10 and it draws down to coat the 

wire after die as is observable in Figure 7. 

 

 

 
(a) Top surface 

 

 
(b) Bottom surface 

 

Figure 10. Swell for (a) top surface and (b) bottom surface 

VI. CONCLUSION 

 In case of large Weissenberg number (We) that presents the 

high elastic property, the curves from many figures are very 

oscillatory and it concerns to the ability of program 

computing. In the current work, the contraction point has been 

calculated for high We via imposition of surface tension effect 

on the whole process of computing. After the solution has 

converged, the contraction point shifts to the point (0.09, 

0.98), which indicates close agreement to the value disclosed 

by the cable factory. Consideration of surface tension effect is 

useful for the die swell, which draws down whilst surface 

tension is absent for die swell problem along horizontal case. 
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