
Computation of Free Surface Flows with a Taylor-
Galerkin/Pressure-correction Algorithm

V. NGAMARAMVARANGGUL AND M. F. WEBSTER*

Institute of Non-Newtonian Fluid Mechanics,

Department of Computer Science,
University of Wales, Swansea, SA2 8PP, UK.

Int. J. Num. Meth. Fluids, 27 th September 1999.

SUMMARY

A semi-implicit Taylor Galerkin/pressure-correction finite element scheme
(STGFEM) is developed for problems that manifest free surfaces associated with the
incompressible creeping flow of Newtonian fluids.  Such problems include stick-slip
and die-swell flows, both with and without a superimposed drag flow, and for plane,
axisymmetric and annular systems.  The numerical solutions are compared with
available analytical and numerical solutions, both in the neighbourhood of singularities
and elsewhere.  Close correspondence in accuracy is extracted to the literature for both
stick-slip and die-swell flows.  Stick-slip flow is used as a precursor study to the more
complex free surface calculations involved for die-swell in extrudate flow.  Two
different  free surface techniques are reported and results are analysed with mesh
refinement and varying structure.

1. INTRODUCTION

The focus of this paper is the investigation of a finite element time-stepping
scheme based on pressure-correction in its application to free surface flows for
Newtonian fluids. Intrinsic to this study is the implementation of free surface location
techniques.  The numerical method is based upon a semi-implicit Taylor-
Galerkin/pressure-correction finite element method (STGFEM)1,2 that has been
successfully implemented in a variety of different flow circumstances.  Specific
problems considered are stick-slip and die-swell flows under creeping conditions.
These flows are analysed in two dimensional plane, axisymmetric and annular
coordinate systems.  Annular flows are taken as pressure-driven with a superimposed
drag flow, chosen as characteristic case studies relevant to the industrial process of
wire-coating.

For stick-slip flow, comparison is made against the analytical solution of
Richardson3 for plane creeping flow.  Many problems, described via systems of partial
differential equations, display singular solutions near corners or crack tips.  The region
between stick and slip manifests just such a singularity.  The flow behaviour in the
neighbourhood of such singular points is of particular interest, where high stress
concentration or sharp velocity gradients prevail.  This influences the solution locally
and demands a high concentration of low order elements for adequate representation.
To reduce this effect, Okabe4 presented the theory of semi-radial singularity mapping,
that provides for stress and strain near the singularity with bounded strain energy.
Following the solution of Richardson, various numerical methods were introduced to
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improve accuracy.  Ingham and Kelmanson5 estimated the solution in the
neighbourhood of the singularity and accelerated the rate of convergence using a
singular boundary element method (SBE).  Kermode et al.6 calculated the solution near
a singular point using a finite element method (FEM)7 and a least-squares fitting
procedure.  They retained the first three terms of the singular expansion series.
Georgiou et al.8 improved the solution accuracy over continuous methods in the
neighbourhood of the singular point using a singular finite element method (SFEM).  In
a subsequent study, Georgiou et al.9 further developed the integrated singular basis
function method (ISBEM) in application to stick-slip and die-swell flows.  These
singular function methods provide a sound basis for comparison of the quality of
solutions generated by the present methodology, above and beyond that of Richardson.

Extrudate flow from a die is a special case of a stick-slip flow, where the free
surface shape itself must be estimated.  This is an important issue in rheology and has
considerable significance to polymer processing operations in industry.  Richardson3

also supplied an analytical solution for this case with integral transforms, for large
surface tension under creeping flow conditions and without gravitational effects.
Tanner10 has provided data from the literature on the use of several numerical schemes
to compute die-swell flow, e.g. finite element, finite difference and boundary element,
and comments on the better performing algorithms to estimate the position of the free
surface streamline.  Tanner catalogues results for swelling ratio covering axisymmetric
and planar dies for Newtonian and viscoelastic flows.  An asymptotic result is also
quoted10 as a simple approach for estimating practical extrudate swell calculations,
where the surface tension of the extrudate is not a dominant factor.

A number of authors have employed FEM techniques for creeping die-swell
flow.  Using a classical FEM implementation with fine meshing, Nickell et al.11

demonstrated solutions for viscous incompressible jet and free surface flows of
Newtonian fluids.  Chang et al.12 studied die swell for Newtonian and viscoelastic
fluids by Galerkin and collocation methods.  Crochet and Keunings13 dealt with slit,
circular, and annular dies for Newtonian and Maxwell fluids introducing a mixed FEM.
Crochet and Keunings14 went further to show that mesh refinement, with increased
concentration of elements at the singularity, has a major impact on die swell
calculations. We cite Silliman and Scriven15 for their work on free surface treatment for
Newtonian fluids, though their principal focus was concerned with slip (see our
companion study16) and surface tension effects on free surface shape. Phan-Thien17

also considered slip effects with a boundary element method, in planar flows for
viscoelastic fluids.  This study is relevant for the proposed alternative free-surface
location technique therein.  Beverly and Tanner18 used boundary and finite element
methods to consider extrusion of Newtonian fluids at finite Reynolds number for
planar, axisymmetric and three-dimensional dies.  They found that in an unconstrained
extrudate the particles in the free extrudate will follow spirals or helices.  In passing, we
point out that thermal effects have also been found to influence free surface shape.19

Beyond the consideration of numerical solutions, some experimental results are
presented in Butler and Bush20 and Ahmed et al.21  Butler and Bush provided
experimental evidence for dilute viscoelastic fluids (polyisobutylene-polybutene) in
axisymmetric isothermal flows. Ahmed et al. found correspondence between
experimental observations and the numerical solutions derived from a FEM, in planar
entry flows and die-swell flows for molten polyethylenes.

Our interests lie in the generalisation of the STGFEM to incorporate the
treatment of free surfaces and, in particular, in applications for non-Newtonian flows.
In the case of planar stick-slip flow, the STGFEM approach is shown to provide
accurate numerical results as compared to analytical solutions for velocity and pressure.
Close correspondence is extracted for our numerical solutions near the singularity with
those of the literature.  The influence of die-swell is established in contrast to stick-slip
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flow.  We are able to quantify the difference that drag flow has on stick-slip flow, via
the change in pressure drop, peak shear rates, and adjustment in free stream velocity.
Likewise, we are able to draw on comparison between die-swell and die-swell/drag
flow, to indicate the reduction in swelling ratio and angle, and peak shear rates.  In
addition, this paper provides a useful pilot study for the analysis of annular pressure-
driven drag flows, typical of those that arise in tube or pressure-tooling settings for
wire-coating.

2. GOVERNING EQUATIONS

For Newtonian fluids and incompressible isothermal flow in the absence of
body forces, the governing equations are those of generalised momentum and
continuity that may be expressed as :

ρ µ ρtU U U U= ∇ ⋅ ∇ − ⋅ ∇ − ∇( ) p (1a)

∇ ⋅ =U 0 (1b)

where variables velocity (U) and pressure (p) are defined over space and time with
temporal derivative represented as (U t). Material parameters are given via density (ρ)
and viscosity ( µ ).

For constant µ , the celebrated Navier-Stokes equations emerge.  To non-
dimensionlise,  we select the following characteristic scales: length  L,   velocity  V,
time  L

V ,  pressure  µ0V
L .  We may define the following dimensionless variables and

differential operators:

U*= 1
V U , p*= L

V pµ0
, t*= V

L t

Z*= 1
L Z , r*= 1

L r , µ µµ
* = 1

0

∇ = ∇* L , D

Dt

L
V

D

Dt* =

where µ0 is a reference viscosity.

Substitution of the above dimensionless variables and differential operators into
equation (1) and (2), yields the non-dimensional generalised Navies-Stokes equations,
that may be stated in the following form:

ReU U) U Ut p= ∇ ⋅ ∇ − ⋅ ∇ − ∇( Re (2a)

∇ ⋅ =U 0 (2b)

where  Re = ρ
µ
LV

0
, the non-dimensional group number termed the Reynolds number.

3. NUMERICAL SCHEME

3.1 Discretisation

To solve the Navier-Stokes equations (2a), together with the incompressibility
constraints (equation 2b), we employ a semi-implicit time-stepping procedure, namely a
Taylor-Galerkin/pressure-correction finite element scheme1 as cite above.  Briefly, the
Taylor-Galerkin based algorithm is a fractional step method, that semi-discretises first
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in the temporal domain, using Taylor series expansions in time and a pressure-
correction procedure, to extract a time-stepping scheme of second-order accuracy. The
discretisation is completed via a spatial Galerkin finite element method.  We assume that
the flow domain is discretised into a triangular mesh, and that piecewise continuous
linear (pressure) and quadratic (velocity) interpolation functions apply on such
elemental regions.  The Taylor-Galerkin algorithm has three distinct fractional stages
per time step as follows:

Stage 1 : given initial velocity and pressure fields, non-divergence-free u
n+

1

2

and u* fields are calculated via a two-step predictor-corrector procedure.  The
corresponding mass matrix governed equations are solved iteratively by a Jacobi
method.

Stage 2 : using u*, calculate the pressure difference (pn+1-pn) via a Poisson
equation, applying a Choleski method of solution.

Stage 3 : using u* and pressure difference (pn+1-pn), determine a divergence free
velocity field un+1 by Jacobi iteration.
Adopting quadratic and linear interpolations , U(x,t) and P(x,t), to the solution where

U(x,t) = Uj(t) Φj (x), P(x,t) = Pj(t) ψ j(x)

we may proceed to solve equations (2a)-(2b). The fully discrete formulation STGFEM

over a single time step, ∆t t tn n= −+1
, may be represented in the following matrix-

vector notation :

Stage 1a

[ ]( ) { [ Re ( ) ] }Re2 1
2

1
2

∆t u

n n
u

T nM S U U S U N U U L P+ − = − + +
+

Stage 1b

[ ]( ) [ ] Re[ ( ) ]Re *
∆t u

n
u

T n
n

M S U U S U L P N U U+ − = − + −
+

1
2

1

2

Stage 2
K P P LU( ) *n n

t
+ − = −1 2

∆

Stage 3
Re

t∆ M U U L P P( ) ( )*n T n n+ +− = −1 1
2

1

where variables are defined as: nodal vectors at time tn for velocity (Un) and pressure
(Pn), an intermediate non-solenoidal nodal velocity vector (U*), mass matrix (M),
momentum diffusion matrix (Su), a pressure stiffness matrix (K), convection matrix
(N(U)) and divergence/pressure gradient matrix (L).

In matrix notation, we have

M
ij
=  r di jφ φ

Ω
Ω∫

Kij=  r di j( )∇ ⋅ ∇∫ ψ ψ
Ω

Ω

N(U)
ij
=  r U

x
di k

l
l

j

k
φ φ

∂φ
∂Ω

Ω∫ ( )

(Lk)ij
=  r

x
di

j

k

φ
∂φ
∂Ω

Ω∫
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(Su)
ij
=  (Slm+ Vlm)

ij

(Slm)
ij
=  r

x x
dlk

i

k

j

k

µ χ
∂φ
∂

∂φ
∂

( )
Ω

Ω∫  , if l=m

(Slm)
ij
=  r

x x
di

m

j

l
µ ∂φ

∂
∂φ
∂

( )
Ω

Ω∫  , if l≠m

where k,l = 1,2 and  x
1
= r , x

2
= z

χ
lk
= 2 , if l=k and χ

lk
= 1 , if l≠k

(Vlm)
ij
= 

2
2

φ φi j

r
  ,  if l=m=1 and (Vlm)

ij = 0  if l,m≠1

The time-stepping procedure is monitored for convergence to a steady state via relative
increment norms (using both maximum and least squares measures) subject to
satisfaction of a suitable tolerance criteria, here taken as 10-5.

3.2 Free surface location

The extent of extrudate swell in a die-swell flow may be determined by
implementing a free surface location method via a modified iterative technique (for
example, in industrial casting processes).  According to Crochet et al.22, the following
three boundary conditions may be defined on a free surface:

vrnr + vznz = 0 (3)

trnr + tznz = S( )1 1
1 2ρ ρ+ (4)

trnz - tznr = 0 (5)

with variables specification of radial velocity (vr), axial velocity (vz), components of the
unit normal to the free surface (nr,nz), surface force normal to the surface (tr,tz),
principal radii of curvature (ρ1,ρ2) and surface tension coefficient (S).

Typically, when modelling a free surface iteratively, conditions (4) and (5) are
enforced as boundary conditions.  Then the normal velocity is calculated using equation
(3) and this is used to describe the shape of the upper extrudate boundary for say die-
swell flow, as illustrated in figure 1c.  In the free jet flow the distance from the axis of
symmetry is

r z R dz v z
v z

r

zz

( ) ( )
( )

= +
=

∞

∫
0

 , (6)

where R is the tube radius.
In this paper, the integral in equation (6) is evaluated by Simpsons quadrature

rule, thus providing an estimate of the extrudate shape.  The comparison of

Richardson’s3 asymptotic results for swell ratio ( χ =
R

R
j , Rj is jet radius, R is tube

radius) with those from a finite element calculation is catalogued in Silliman and
Scriven.15  Phan-Thien17 focuses on the extrudate shape as it varies due to slip at the
wall and compares the swelling ratio for various critical wall shear stresses, employing
an alternative free surface updating strategy.  The implementation of the process is
straightforward. First, the free surface must be estimated from a previous solution.  The
function describing any free surface, at time t is defined as h = h(z,t) so that at the free
surface, the following equation holds and must be updated at each time step
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∂
∂

∂
∂

h h
h

t
v v

z
G t tr z= − =( ) ( ( ), ( ))U (7)

where U = (vr,vz).  The free surface equation (7) is updated in time, by either a first or
second-order scheme.  Considered in a pointwise manner in space, the first-order Euler
scheme with chosen time step ∆t, is provided by:

h(z,t+∆t) = h(z,t) + ∆t G(U(t),h(z,t)) .

To derive a second-order scheme, the temporal series is pursued to higher order terms :

h(z,t+∆t) = h(z,t) + ∆t G(U(t),h(z,t)) + 1
2 (∆t)2 ∂

∂t
 G(U(t),h(z,t)) .

An alternative second-order scheme is a two-step implementation due to Heun,

′ +h = h U h( , ) ( ( ), ( , )),z t tG t z t∆

h(z,t+∆t) = h(z,t) + 1
2 ∆t [G(U(t),h(z,t)) + G(U(t), ′h ( , )z t )] .

The results from implementation of Euler and Heun schemes prove remarkably similar,
and therefore only those for the Euler scheme are discussed in this article.

4. PROBLEM SPECIFICATION

There are essentially two types of problems studied here, stick-slip flow and
die-swell flow. A variant within each category is to consider, in addition, a drag flow
component. Poiseuille stick-slip flow is taken within a Cartesian framework, and also
under an annular configuration when drag flow is imposed simultaneously. For the case
of Poiseuille die-swell, the benchmark axisymmetric setting is taken first, this being
followed by an annular instance with drag-flow. A visual schemata of the boundary
conditions for the stick-slip flow, stick-slip/drag flow and die-swell flow are given in
figure 1. Velocity conditions are imposed as essential conditions, whilst stress
conditions arise naturally in weak form (see Silliman and Scriven15).  Initial conditions
for this time-stepping scheme are taken as either quiescent for stick-slip instances, or
for die-swell flows, from a precomputed steady-state solution with an estimated free-
surface location.

4.1 Planar stick-slip flow

The stick-slip flow problem consists of two regions with distinct boundary
conditions, a channel section and a free jet flow section. Considering the planar case,
stick or no-slip, boundary conditions apply at the channel walls, to adjust subsequently
to slip boundary conditions beyond the channel, as shown in figure 1a. This implies
that tangential velocity and shear stress vanish on the free surface, as does cross-stream
velocity and normal stress (Cauchy stress defined as σ) at the outlet.

We use the notation, PS, to imply Poiseuille flow, as given by a one-
dimensional velocity profile of the dimensionless form Vx(y)=Vmax(1-y2), with
maximum inlet velocity Vmax. Characteristic scales of length and velocity are adopted of
half channel width and average inlet velocity, respectively. This problem is solved
using the STGFEM above on three uniform and one biased mesh, the details of which
are specified in table 1 and illustrated in figure 2.  The smallest element in the biased
case is located adjacent to the singularity.  Comparison of the results obtained is made
against those of Richardson3 and Nickell et al.11 in section 5.1. To this end, the
implementation is considered for creeping flow in the upper half plane through
symmetry.  A vanishing pressure datum is set on the top slip surface and outlet
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boundary. Dimensionless quantities are taken as: x1=-2, x2=2, y0=0, y1=1, and
Vmax=1.5 units.

Table 1  Finite element meshes for stick-slip flow

Mesh Element Total Element Size of element
(∆h)

(a) Coarse mesh   5x20 200 0.200

(b) Medium mesh 10x40 800 0.100

(c) Fine mesh 15x60 1800 0.067

(c) Biased fine mesh 15x60 1800 0.024

4.2 Axisymmetric stick-slip flow (ASSF)

The boundary conditions for the axisymmetric case of stick-slip flow are similar
to those for the planar stick-slip flow described in section 4.1, figure 1a. The only
difference in the governing conditions lies in the introduction of a cylindrical coordinate
system.  A Poiseuille flow is imposed at inlet. Advantage may be taken of symmetry
radially, so that solutions are sought in the top half-plane, noting that this implies a
lower symmetry boundary where the radial velocity vanishes. Characteristic scales of
length and velocity are taken as channel width and maximum inlet velocity.
Dimensionless quantities result of channel radius and length of unity, jet length of two.
Henceforth, for all flows considered a finite small value of Reynolds number is
assumed to emulate practical creeping conditions, Re=10-4. For this case, we have
generated a biased fine mesh for adequate resolution, which is finer than that employed
for the planar counterpart problem, with elements 18x54, nodes 4033, and size of
element 2.6083x10-2, as demonstrated in figure 8a.

4.3 Stick-slip/drag flow (SSDF)

This is a more complex annular flow configuration than conventional
axisymmetric stick-slip flow, for which the mesh of figure 8a is employed.  Such a
problem instance is initiated from an inlet annular pressure-driven base flow with a
superimposed drag flow on the inner boundary. Remaining boundary conditions follow
stick-slip flow, as cited above. A schematic illustration is provided with boundary
conditions in figure 1b. The velocity vz at the inlet is defined by equation (A.1) of the
appendix.  Such a specification may be found in wire-coating for example, where the
inner boundary represents a wire moving at a constant speed, taken here of non-
dimensional radial dimension a = 0.15 units.  Characteristic scales are taken for length
as inlet hydraulic radius R and for velocity as in section 4.2 for axisymmetric stick-slip
flow.  This leads to equivalent flow rates in both flow settings.  Dimensionless
quantities result as: z1 = -1, z2 = 2, jet length of 2, wire speed Vwire = 0.5, and b = 1.15
units.

4.4 Die-swell flow

The die swell problem may be identified via two regions of different character,
the shear flow within the die and the free jet flow beyond it.  Each region has its unique
set of boundary conditions and the problem is posed in an axisymmetric frame of
reference. Poiseuille flow is imposed at the inlet.  The outer wall boundary experiences
stick conditions in the die section, changing to slip conditions at the free meniscus
surface beyond the die. Channel radius and maximum inlet velocity are taken as
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characteristic scales, following section 4.2.  A schematic representation of the problem
is presented in figure 1c, with notation for Cauchy stress (σ), unit normal vector (n)
and unit tangential vector (s) to the respective surface.

Under the assumption of negligible surface tension, die-swell flow is simulated
for a range of refined meshes, coarse, medium and fine, with two different mesh
structures. This permits an analysis of consistency, order of accuracy and provides
insight as to the influence of mesh structure on the solution. The meshing details are
given in figure 10, where  ∆h is a measure of the smallest size of element.

Table 2  Finite element meshes for die-swell flow

Mesh Element Total Element Direction ∆h*10-2

(a) Coarse UD mesh   6x18 216 6.4550

(b) Medium UD mesh 12x36 864 3.0533

(c) Fine UD mesh 18x54 1944 1.9667

(d) Coarse DU mesh   6x18 216 6.4550

(e) Medium DU mesh 12x36 864 3.0533

(f) Fine DU mesh 18x54 1944 1.9667

4.5 Die-swell/drag flow

This problem is a combination of those stated previously, taking the drag flow
described under stick-slip with the die-swell specification.  The free surface conditions
remain unchanged, and the inner boundary (wire) moves at a constant speed of 0.5
units.  The same characteristic scales of length and velocity, and dimensionless
quantities of section 4.3 are adopted in this case.  The inlet profile is determined from
equation (A.1) of the appendix. This problem is simulated on the same three levels of
mesh refinement as for the die-swell problem, where we have pre-selected the better
performing mesh option with UD structure, see table 2, figure 10 and comments below.

5 RESULTS AND DISCUSSION

5.1 Planar stick-slip flow

First, the coarse, medium and fine meshes of table 1 and figure 2 are
considered.  The location of the stick-slip singularity is indicated by arrow in Figure 2.
On the medium mesh, the velocity vector plot of figure 3a illustrates the general pattern
of the flow for the upper  half plane, that is visually identical for meshes (a), (b), (c) of
table 1. This shows an initial Poiseuille flow that gradually adjusts to a plug flow.
Figures 3b and 3c represent the horizontal (Vx) and vertical (Vy) velocity component
line contours.  Figure 3b shows Vx, with no-slip at the upper boundary to channel exit,
whereupon Vx gradually increases, becoming faster with increasing distance along the
top surface (reflecting slip conditions).  The vertical velocity (Vy) line plot of figure 3c
vanishes at inlet and outlet, top surface and symmetry axis, and displays closed
contours of constant value in the neighbourhood of the singularity, see Nickell.11  The
centre of the plot demonstrates a peak maximum value of 0.17 units.

The shear rate I2 contour plot (figure 4b, representing the second invariant of the
rate of strain tensor) demonstrates the formation of a singularity at the die exit, which is
again represented clearly in the line plot of figure 4c.  The shear rate at the top surface
(figure 4c) increases exponentially towards the die exit (x=0) to a maximum of 8.28
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units.  On moving away from the die, a sharp drop is displayed with shear rate tending
to zero at x =2 units.  Figure 4a shows a contour plot of pressure for this problem. A
maximum value in pressure is observed of 6.89 units at the inlet boundary, which
represents the pressure drop across the flow; a minimum pressure of -2.79 units occurs
near the singularity.

Table 3 gives the comparison of maximum shear rate I2 which occurs at the top
free surface, and for pressure P throughout the domain, for the three levels of mesh
refinement. The maximum value of shear rate occurs at the singular die exit point and
doubles from coarse to fine mesh solutions. The maximum value of P represents the
pressure drop across the flow and is fairly stable around 6.75 units. Minimum values of
P correspond to pressure pockets adjacent to the die exit within the jet flow.

Table 3  Shear rate and pressure for planar stick-slip flow: various meshes

Solution Course Mesh Medium Mesh Fine Mesh

I2      max 5.86 8.28 10.14

P        min -1.35 -2.79 -3.91

max 6.76 6.89 6.75

Turning to comparison against analytical solutions, we consider flow profiles
for velocity and pressure.  The velocity profile for x ≤ 0 (figure 5a) shows a parabolic
flow that gradually flattens.  Similarly for x ≥ 0, the velocity profile of figure 5b
reveals an initial flattened parabolic form, which gradually adjusts to a linear pattern
with increasing x.  Table 4 and figure 6, provide tabular and graphical comparisons of
velocity results with STGFEM scheme on coarse, medium and fine meshes, against the
analytical solution of Richardson.  The analytical solution for the streamwise velocity
component Vx was derived from the stream function, as identified via the formula of
Richardson3 provided in the appendix.  Table 5 and figure 7a, provide equivalent data
for pressure, where the Richardson solution has been reproduced based on the
graphical information recorded in Reference 3.  The error in the results decreases
consistently and proportionally with mesh refinement over coarse, medium and fine
meshes.

Table 4  Analytical and computed velocity along axis of symmetry: various meshes

x axis Richardson coarse mesh
200 elements

medium mesh
800 elements

fine mesh
1800 elements

-1.0 1.4964 1.4956 1.4958 1.4959
-0.8 1.4899 1.4889 1.4890 1.4892

-0.6 1.4758 1.4751 1.4747 1.4749

-0.4 1.4484 1.4496 1.4479 1.4479

-0.2 1.4027 1.4086 1.4042 1.4035

 0.2 1.2798 1.2866 1.2737 1.2701

 0.4 1.1967 1.2229 1.2059 1.2006

 0.6 1.1308 1.1698 1.1494 1.1403

 0.8 1.0834 1.1303 1.1074 1.0996

 1.0 1.0516 1.1032 1.0787 1.0702

Table 5 Analytical and computed pressure along axis of symmetry: various meshes
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x axis Richardson
±  0.0001

coarse mesh
200 elements

medium mesh
800 elements

fine mesh
1800 elements

-1.6 5.7264 5.5620 5.5786 5.5924
-1.2 4.4627 4.3587 4.3750 4.3887
-0.8 3.2488 3.1542 3.1688 3.1818
-0.4 2.0299 1.9834 1.9923 2.0003
 0.0 1.0348 0.9916 0.9924 0.9980
 0.4 0.4179 0.3759 0.3781 0.3801
 0.8 0.1393 0.1174 0.1203 0.1208
 1.2 0.0398 0.0354 0.0353 0.0354
 1.6 0.0149 0.0095 0.0094 0.0094
 2.0 0.0000 0.0000 0.0000 0.0000

Figure 7a shows the variation in pressure along the centreline in contrast to the
Richardson analytical solution, and those on coarse, medium and fine meshes.  All
predictions show consistency and close correspondence for pressure to the analytical
solution (see table 6), decreasing linearly within the die, becoming more parabolic in
shape in the jet region, as pressure tends to vanish. The corresponding results on
accuracy for velocity and pressure are illustrated in table 6 with the comparison based
on maximum error norm measure.  The trend of behaviour for velocity with mesh
refinement is displayed in figure 7c, which indicates O(h1.9) inside and O(h1.0) beyond
the die.  Hence, the velocity solution displays almost second-order accuracy in the die
flow and first-order beyond.  For the fine mesh results of table 6, the error detected in
velocity increases from 0.06 percent within the die to 1.77 percent beyond. For
pressure, the error degradation is far less dramatic and the jet flow solution displays
slightly less error than is the case for the die flow. Note, the solution scaling in error
norms for pressure is taken as unity for the jet flow as the size of the solution is less
than unity. The error is 2.34 percent within the die. Beyond the die, the error is
represented as 3.78 percent.

Table 6  L∞ error for velocity and pressure against analytical solution: various meshes

L∞ error Coarse Mesh

∆h=0.20

Medium Mesh

∆h=0.10

Fine Mesh

∆h=0.07

velocity (in die) 0.004175 0.001102 0.000595

velocity (beyond die) 0.049145 0.025848 0.017731

pressure (in die) 0.028702 0.025803 0.023395

pressure (beyond die) 0.041986 0.039850 0.037820

In table 7, the STGFEM velocity results (at x=0.2 units on the free surface after
the die exit) of the three mesh refinements are compared with the analytical solution of
Richardson, the numerical SBE results of Ingham and Kelmanson, and the SFEM and
ISBFM results of Georgiou et al. (recorded to precision quoted in original references,
correcting for the noted anomaly cited in Georgiou et al.8 of Richardson’s result). The
STGFEM is found to be consistent across meshes, providing a convergent trend in
velocity with mesh refinement.  The velocity on the finest mesh lies between the
analytical result of Reference 3 and the numerical results of Reference 5, 8, 9, falling
within an error of about 3 percent.  The corresponding figure 7b shows the velocity
adjustment with increasing x near the die exit, as the fluid travels away from the
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singularity (x=0).  This figure also compares the analytical solution with others from
the literature. From this plot and the values of table 7, we note for uniform meshing
velocity agreement in trend along the top surface with Ingham et al.5 and Georgiou et
al.,8,9 though slightly overestimated in value.  The departure from the analytical solution
in the results of Reference 5,8,9 may be somewhat attributed to the overall uniformity
in meshing they adopt.  For the biased fine meshing option, there is an increased
tendency towards the analytical solution of Richardson, that reflects the improvement to
be had with such an approach.  At x=0.2, the difference from the Richardson solution
drops to O(.1%).

Table 7 Analytical and computed velocity results at x=0.2 on free surface after die exit

Method Velocity

Analytical3 0.618040

SBE5 0.572608

SFEM8 0.571896

ISBFM9 0.571259

STGFEM (coarse mesh) 0.690559

STGFEM (medium mesh) 0.643575

STGFEM (fine mesh) 0.625190

STGFEM (biased fine mesh) 0.619786

5.2 Axisymmetric stick-slip flow and stick-slip/drag flow

For both axisymmetric stick-slip flow (ASSF) and stick-slip/drag flow (SSDF)
a fine mesh of figure 8a is used. Comparisons between these two flows for values of
shear rate I2, and pressure P are evident in table 8 at the same level of entry flow rate.

Table 8  Axisymmetric stick-slip and stick-slip/drag flow: shear rate and pressure

Solution ASSF SSDF

I2         max 7.93 6.28

P           min -3.92 -3.01

max 4.88 4.02

The velocity vector plot for stick-slip/drag flow is displayed in figure 8b, that reveals an
initial annular flow, adjusting rapidly at the pipe outlet, to finally assume a plug flow.
The radial and axial velocity line contour plots for both cases are virtually identical to
the case of planar stick-slip flow and are not repeated for conciseness (see table 8 for
relevant quantities).  Figure 8c shows the pressure line contour plot, for which the
initial inlet maximum value of 4.02 units decreases in a linear fashion whilst
approaching the singularity, where a minimum pressure of -3.01 units is observed.
The shear rate contours of figure 8d, increase in value at the top surface, reaching a
peak shear rate of 6.3 units at the singular point, after which the shear rate drops
sharply to zero.  This is due to the dependence of shear rate upon the velocity gradient,
that increases sharply in the neighbourhood of the die-exit location.  The general trends
of behaviour in velocity, pressure and shear rate are exposed more starkly by direct
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comparison between those for pure stick-slip flow (ASSF) and those for stick-slip/drag
flow (SSDF).

The comments above are borne out by the line plots of figure 9.  A comparison
of axial velocity Vz along the free top surface for the two flows, ASSF and SSDF, is
shown in figure 9a.  The final value of free stream velocity is reduced by twenty one
percent in the drag flow case, due to the influence of the moving wire on the
deformation.  Comparisons of pressure and I2 for ASSF and SSDF in the axial direction
is made in figure 9b and 9c, respectively.  The change in pressure drop between these
two flows of figure 9b is 17.6 percent, with an SSDF value of 4.02 units and an ASSF
value of 4.88 units.  Hence, drag flow imposition gives rise to a decline in the rate of
pressure drop as one might expect.  Patterns are similar to the planar stick-slip case of
figure 7a.  The shear rate profiles of figure 9c follow the general form of figure 4c for
planar stick-slip flow.  The behaviour of I2 in the neighbourhood of the singularity is
exposed, see also table 8.  Here, field patterns are similar in figure 8d to those of figure
4b.  The SSDF value of 6.28 units represents a reduction of twenty one percent from
the ASSF value of 7.93 units.  Clearly, this is directly attributable to the additional drag
flow component.

5.3 Die-swell flow

The vector velocity plot of figure 11a shows an initial inlet Poiseuille flow that
adjusts to a final plug flow.  The radial velocity lines under die-swell conditions (figure
11b), reflect the stick-slip transition at the upper boundary.  The contour plots of
figures 11b-11e reflect close agreement with the findings of Nickell, et al.,11 even
taking into account the differences in meshing.  The radial velocity increases towards
the centre of this zone, the maximum value of 0.14 units occurring at the centre.  Figure
11c illustrates contour lines for the axial velocity. It should be noted that Vz increases at
the top boundary after the die exit, whilst on the symmetry axis it diminishes from an
inlet value of unity to an exit free jet value of around 0.4 units (figure 12a).

The shear rate (I2) line contours of figure 11e show a localised singularity
whose maximum is 10.75 units.  In conjunction with figure 12c, we may discern that
the shear rate at the top boundary initially commences from a constant value of 1.4
units, but increases exponentially upon nearing the singularity until it peaks at 10.75
units.  The shear rate then drops rapidly with further increase in z, departing from the
singularity (z>0), to eventually vanish at approximately z= 1.2 units.  The contour plot
of pressure in figure 11d indicates a maximum inlet value of 4.9 units and minimum
value -7.1 units at the singularity.  Comparisons are made in table 9, for shear rate
maxima I2 and pressure P extrema, on the three levels of refinement and two different
mesh structures.  Since the adjustment between coarse and fine mesh results is minor in
pressure and minuscule for velocity, plots in the axial direction are shown only for the
fine mesh.  From table 9, the difference in I2 with mesh refinement is observed to be
relatively large in the neighbourhood of the singularity. This is strictly a local
phenomenon. On comparing the shear rate profile elsewhere, there is very little
difference overall, amounting to one percent at most between the coarse and fine
meshes, with no observable difference between the medium and fine versions.

Table 9  Die-swell flow: shear rate and pressure

Solution Cmesh UD Mmesh UD Fmesh UD Cmesh DU Mmesh DU Fmesh DU

I2    max 5.36 8.33 10.75 6.24 9.67 12.16
P     min -3.06 -5.32 -7.10 -2.62 -4.90 -6.43

max 4.96 4.94 4.94 4.97 4.96 4.96

On comparing ASSF and die-swell flow for fine meshes in figure 12, I2 and
pressure profiles are very similar within the die due to the imposition of equivalent inlet
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flow rates for both flows.  The shear rate extrema at the singularity achieve maxima of
10.75 units for die-swell flow and 7.93 units for ASSF, representing an increase of
thirty six percent (figure 12c).  Since for both cases (for the fine UD mesh) stick-slip
conditions apply before the die exit, and the flow model lengths are the same, there is
little difference between pressure drop values (0.01%).  On exit from the die the effect
of the die-swell on the free surface results in a slight drop in pressure.  This is entirely
in keeping with our prior results for planar stick-slip flow of figure 7a, where decline
rates were contrasted against analytical values.  Under the same imposed inlet flow rate,
the difference in the velocity on the free surface between axisymmetric stick-slip flow
and die swell flow is displayed in figure 12a.  The free stream jet exit velocity is twenty
one percent lower for die-swell flow than for stick-slip flow.  Hence as anticipated, we
confirm that allowing the free surface to swell, significantly reduces the flow speed to
compensate.

Figure 13a provides the comparison of the derived die-swell surfaces for the six
different meshes.  The corresponding values for swelling ratio are provided in table 10,
where a direct comparison with results from the literature is performed.  Figure 13b
shows the effect of mesh refinement on L∞ error for diagonal orientation meshes DU
and UD, for values see table 11.  With mesh refinement, maximum values of L∞ errors
for mesh UD and DU are O(h1.6) and O(h1.3), respectively.  The swelling ratio is found
to depend on the size of the smallest element and the orientation of the elements.  The
DU orientation gives approximately fifty percent larger L∞ error than the UD orientation
(see table 11), affecting swelling ratio results accordingly.  This superior UD mesh
performance is attributed to the richer interpolation offered by the UD orientation for
such quantities as velocity gradients, that are represented in a discontinuous
distributional sense via the variational treatment (note also the connection to locking-
corner meshing for primary variables). This, we believe pervades many of the solutions
reported in the literature, wherever continuous interpolation for primary variables is
adopted. Rectangular meshing would suffer from these drawbacks in a likewise
manner, being even more restrictive in the variation of functionality offered around the
singular point.  From table 10, we find that the swelling ratio of the medium refinement
meshes, UD and DU, is close to that of Tanner10, the error being 0.2 percent for the
UD mesh.  The swelling ratio of the fine UD mesh is the closest estimate to that of
Nickell et al.,11 with an error of 0.3 percent in that case.  Tanner also provides an
asymptotic estimate of χ=1.130.  This correspondence with the literature may be taken
as a strong indication of acceptable accuracy in our results.  As indicated above, the
orientation of the diagonal element in the mesh that intersects with the singularity, is an
important factor and influences the accuracy of the corresponding solutions.  To
demonstrate this issue the error in the swelling ratio is charted in table 11 against
Nickell et al. results, on the two DU and UD mesh sets. Trends in convergence are
clearly superior for the UD mesh sets in comparison to those for DU.  A hybrid fine
mesh strategy also implemented, of DU in the die (Figure 10f) and UD in the jet (Figure
10c), gave a marginal improvement over the UD option in swelling ratio to reach the
asymptotic value of χ=1.30.  It is also noted that the separation angle, θ, between the
horizontal and the exterior swelling edge of the first element after the singular point, is
smaller for the UD meshes.  This angle tends to a value of 17.5o with mesh refinement
on the UD meshes, as compared to 20.8o for the DU alternative.
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Table 10  Swelling ratio for die-swell flow

Investigator χ χ(%)

Tanner10 1.136 13.6

Nickell et al.11 1.128 12.8

Chang et al.12 1.139 13.9

Crochet and Keunings13 1.126 12.6

Coarse UD mesh 1.141 14.1
Medium UD mesh 1.134 13.4

Fine UD mesh 1.131 13.1
Coarse DU mesh 1.147 14.7
Medium DU mesh 1.137 13.7

Fine DU mesh 1.133 13.3
Fine DU_UD mesh 1.130 13.0

Table 11  Swelling ratio error for UD and DU meshes against Nickell et al.11 results

Mesh L∞ error*10-2 θ (degree) ∆h*10-2

(a) Coarse UD mesh 1.1525 18.2881 6.4550

(b) Medium UD mesh 0.5319 17.8016 3.0533

(c) Fine UD mesh 0.2660 17.5737 1.9667

(d) Coarse DU mesh 1.6944 21.4798 6.4550

(e) Medium DU mesh 0.7979 20.9369 3.0533

(f) Fine DU mesh 0.4433 20.4761 1.9667

 Fine DU_UD mesh 0.1525 17.6604 1.9667

In contrast, on testing the Phan-Thien free surface procedure, correspondingly
larger swelling ratios are derived.  It has been found necessary to impose an additional
velocity free surface boundary correction with this procedure to ensure tangential
conditions and vanishing shear stress.  Without such a correction, the results on swell
and angle are considerably inaccurate.  Table 12 displays swelling ratio and angle
computed on coarse and fine UD meshes.  The corresponding swelling ratios are 35.4
and 35.0 percent, respectively, with separation angles of 23.7o for the coarse and 23.6o

for the fine mesh.  Both of these estimates are marked in their departure from the results
of Nickell et al. and other investigators.  For example, on the fine mesh, the error in
swelling ratio from that of Nickell et al. is 19.7 percent.  Hence for current purposes,
and as implemented here in a pointwise fashion following the original author, this
method is discarded on the grounds of inaccuracy.

Table 12  Swelling ratio and angle for Phan-Thien strategy

Mesh χ θ (degree)

Coarse UD mesh 1.354 23.6660

Fine UD mesh 1.350 23.6121
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5.4 Die-swell/drag flow

For this final flow instance under consideration, we allot for mesh (c) of table 2
and figure 10c, as the swelling ratio errors on UD meshes are considerably lower than
those for the DU meshes. A principal point of interest is to analyse the effect of the
additional component of drag flow upon the undisturbed die-swell flow. In this regard,
comparison is made in table 13 for shear rate I2 maxima and observed extrema for
pressure P.  For die-swell/drag flow, shear rate I2 and pressure drop are reduced when
compared with die-swell flow by 21 and 19.6 percent, respectively.  The contours of
figure 14 bear this out.  For figure 14a in contrast to figure 11d, the pressure contours
reflect the reduced effect on the negative pressure pockets (-5.58 units) near the
singularity over the die-swell case (-7.1 units). Likewise, values of shear rate maxima
alter from figure 14b (8.47 units) to that for die-swell in figure 11e (10.75 units).

The finer and more localised detail comparing these two flow scenarios is
extracted in the line plots of figure 15. Figure 15c illustrates the pressure P on the inner
surface, and figure 15d the shear rate (I2) at the free surface.  The line pressure plot
reveals that drag flow gives rise to a negative dip in pressure on the inner surface
beyond the die exit.  This was not present when drag flow was introduced for stick-slip
flows (see figure 9b), and so is a consequence of the die-swell setting.  Also, the
decline in pressure drop is prominent.  The shear rate profile of figure 15d (table 13)
can be compared against both figure 9c, for ASSF-SSDF (table 8), and figure 12c, for
ASSF-die-swell.  In the die-swell setting, drag flow incurs a reduction in peak I2 values
(10.75 to 8.47 units), comparable to the effect noted for stick-slip (7.93 to 6.28 units).
Alternatively, in the contrast between die-swell and stick-slip (with or without drag
flow) there is a consistent trend in elevation of peak I2 values once swelling is present
(here by thirty five percent).

Table 13  Die-swell flow and die-swell/drag flow: shear rate and pressure

Solution die-swell flow die-swell/drag flow

I2         max 10.75  8.47

P           min -7.10 -5.58

max  4.94  3.97

The radial and axial velocity contour plot for the die-swell/drag flow are similar
in appearance to figures 11b and 11c, and are not reproduced for the sake of
conciseness. Figure 15a and 15b provide line plot comparisons between die-swell flow
and die-swell/drag flow for velocity and die swell, respectively, at the free surface
employing the fine UD mesh.  At the outlet, the free stream velocity of die-swell/drag
flow is reduced by twenty one percent over that of pure die-swell, so that swelling
reduces accordingly by 4.2 percent.  This is in keeping with the correspondence in flow
rate at the outlet and our findings for the stick-slip scenario.  The separation angle for
die-swell/drag flow is 17.19o, which is a reduction of 2.2 percent on the former die-
swell case.  This accounts for the above quoted reduction in swelling ratios between
these two flow instances.

6. CONCLUSIONS

This study has provided an analysis of a Taylor-Galerkin/Pressure-Correction
method in its application for model free surface flow problems. First, through the
investigation of stick-slip flow we have been able to establish comparison against
analytical and other numerical solutions, for which we find agreement to within order
one percent.
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For die-swell flows, with the added complication of apriori unknown free
surface location, we find close correspondence on swelling ratio to that reported in the
literature, to within order 0.1 percent. Through a careful study of mesh structure, we
have also found that the accuracy of the solutions generated is sensitive to the
orientation of the mesh in the location of the die exit. Here, we have demonstrated that a
poor selection of meshing may affect accuracy by up to fifty percent.  Accuracy has
been demonstrated to pertain to second-order, with or without free surface location
involved.  This is so even in the presence of a die-exit singularity to the flow in
question.

In the comparison of stick-slip to die-swell flows under equivalent imposed inlet
flow rate, the free stream jet velocity is twenty one percent lower for die-swell flow
than for stick-slip flow, whilst pressure profiles barely differ. The shear rate extrema at
the singularity peak at 10.75 units for die-swell flow, but attain the lower value of 7.93
units for stick-slip flow. Hence, shear rate extrema are elevated by thirty five percent
once die-swell is incorporated.

We have also addressed the issue of associating an additional drag flow
component to these two base type flows. This has afforded the opportunity to compare
scenarios both with and without drag flow. Our findings reveal that shear rates at the
singularity are reduced by as much as twenty one percent with the addition of drag flow
for both slick-slip and die-swell flows.  It is conspicuous that the same level of
reduction in shear rate is observed for both flows. This we attribute to the local
influence at the singularity that the inclusion of drag flow has.  Likewise, pressure
drops are also found to decrease by 17.6 percent for stick-slip and 19.6 percent for die-
swell flow. In the die-swell instance alone, the swelling ratio is observed to reduce by
4.2 percent upon the addition of drag flow.

This research study may be viewed as a stepping stone towards the solution of
more complex industrial based flows that involve coatings of one form or another. This
is typically the case for example in processes such as wire coating, roller-coating and
printing.
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APPENDIX

To derive the annular inlet flow profile, we follow Bird23 and use the non-
dimensional equation for annular pressure driven flow,

V rz
Pb

L
r
b a

b

a
b

LVwire

Pb

r
b( ) { ( ) [( ) ]ln( )}

ln( )
= − + − +

2

4
2 1 2 4

21 1µ
µ

(A.1)

where variables are defined as viscosity µ, length Z1Z2 (figure 1b) L, pressure drop
between inlet and outlet P, wire speed Vwire, inner annular radius a and outer radius b.

Subsequently, we may derive the flowrate at inlet and relate this to pressure drop, via

Q = 2π rVz
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Hence, once flowrate Q is prescribed (say from an outlet plug or free jet flow), we may

evaluate the pressure drop from the constant term, Pb
L

2

4µ , utilising equation (A.1) for
Vz(r) within equation (A.2).

We have recourse to the stream function solution for planar stick-slip flow, as
developed in the article of Richardson3:
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To analyse accuracy in terms of mesh size, we may express the finite element
solution for velocity  as a power series expansion about the analytical solution,

Ufe(∆h) = Uanal+ C(∆h)α .

This allows us to consider a L∞ relative error measure for velocity against the analytical

solution of Richardson on various meshes, each denoted by element size ∆h,

max

max

UAnal UFe

UAnal

−
.

Here, variables are defined as the numerical solution UFe, the analytical solution UAnal,
size of the smallest element ∆h, constant C, and the order of error constant α.
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FIGURE LEGEND

Table   1  Finite element meshes for stick-slip flow
Table   2  Finite element meshes for die-swell flow
Table   3  Shear rate and pressure for planar stick-slip flow: various meshes
Table   4  Analytical and computed velocity along axis of symmetry:  various meshes
Table   5  Analytical and computed pressure along axis of symmetry:  various meshes
Table   6  L∞ error for velocity and pressure against analytical solution:  various meshes
Table   7  Analytical and computed velocity results at x=0.2 on free surface after die exit
Table   8  Axisymmetric stick-slip and stick-slip/drag flow: shear rate and pressure
Table   9  Die-swell flow: shear rate and pressure
Table 10  Swelling ratio for die-swell flow
Table 11  Swelling ratio error for UD and DU meshes against Nickell et al.11 results
Table 12  Swelling ratio and angle of Phan-Thien strategy
Table 13  Die-swell flow and die-swell/drag flow: shear rate and pressure
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FIGURE LEGEND (continued)

Figure   1: Schema for flow problems
(a)  stick-slip, (b)  stick-slip/drag, (c)  die-swell

Figure   2: Planar stick-slip flow: mesh patterns
(a)  coarse mesh, 5x20 elements, (b)  medium mesh, 10x40 elements,
(c)  fine mesh, 15x60 elements, (d)  biased fine mesh, 15x60 elements

Figure   3: Velocity results for planar stick-slip flow: medium mesh, Re=0
(a)  velocity vectors, (b)  Vx contours, (c)  Vy contours

Figure   4: Planar stick-slip flow: medium mesh, Re=0
(a)  pressure contours, (b)  I2 contours, (c)  I2 on free surface

Figure   5: Planar stick-slip flow: medium mesh, cross-channel velocity profiles, Re=0
(a)  x≤0, (b)  x≥0

Figure   6: Planar stick-slip flow: analytical and numerical solutions for velocity field
along centreline y=0, Re=0

(a)  x<0, (b)  x>0
Figure   7: Planar stick-slip flow: analytical and numerical solutions, Re=0

(a)  pressure line plot along centreline y=0,
(b)  velocity at free surface (0<x<0.3),
(c)  velocity error norms against Richardson [3]

Figure   8: Stick-slip/drag flow: Re=10-4

(a)  mesh pattern, 18x54 elements, (b)  velocity vectors,
(c)  pressure contours, (d)  I2 contours

Figure   9: Stick-slip flow and stick-slip/drag flow, Re=10-4

(a)  Vz on free surface,
(b)  pressure on axis of symmetry for stick-slip flow and inner surface for
stick-slip/drag flow, (c)  I2 on free surface

Figure 10: Die-swell flow: mesh patterns
(a)  coarse UD mesh, 6x18 elements, (b)  medium UD mesh, 12x36 elements,
(c)  fine UD mesh, 18x54 elements, (d)  coarse DU mesh, 6x18 elements,
(e)  medium DU mesh, 12x36 elements, (f)  fine DU mesh, 18x54 elements

Figure 11: Die-swell flow: fine UD mesh, Re = 10-4

(a)  velocity vectors, (b)  Vr contours, (c)  Vz contours,
(d)  pressure contours, (e)  I2 contours

Figure 12: Stick-slip flow and die-swell flow, fine UD mesh, Re=10-4

(a)  Vz on free surface,
(b)  pressure on axis of symmetry for stick-slip flow and die-swell flow,
(c)  I2 on free surface

Figure 13: Die-swell flow: comparison of solutions, Re=10-4

(a)  swell free surface with mesh refinement,
(b)  die-swell error norms against Nickell et al. [11]

Figure 14:  Die-swell/drag flow: fine UD mesh, Re=10-4

(a)  pressure contours, (b)  I2 contours
Figure 15: Die-swell flow and die-swell/drag flow, fine UD mesh

(a)  velocity, (b)  die swell,
(c)  pressure on axis of symmetry for die-swell flow and inner surface for
die-swell/drag flow, (d)  I2 on free surface
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(a) coarse mesh, 5x20 elements

(b) medium mesh, 10x40 elements

(c) �ne mesh, 15x60 elements

(d) biased �ne mesh, 15x60 elements

Figure 2: Planar stick-slip ow: mesh patterns
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Figure 3: Velocity results for planar stick-slip ow: medium mesh, Re=0
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Figure 4: Planar stick-slip ow: medium mesh, Re=0
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Figure 5: Planar stick-slip ow: medium mesh, cross-channel velocity pro�les,

Re=0
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Figure 6: Planar stick-slip ow: analytical and numerical solutions for velocity
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Figure 7: Planar stick-slip ow: analytical and numerical solutions, Re=0



(a) mesh pattern, 18x54 elements

(b) velocity vectors
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Figure 8: Stick-slip/drag ow: Re=10�4
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Figure 9: Stick-slip ow and stick-slip/drag ow, Re=10�4
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(a) coarse UD mesh, 6x18 elements (d) coarse DU mesh, 6x18 elements

(b) medium UD mesh, 12x36 elements (e) medium DU mesh, 12x36 elements

(c) �ne UD mesh, 18x54 elements (f) �ne DU mesh, 18x54 elements

Figure 10: Die-swell ow: mesh patterns
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Figure 11: Die-swell ow: �ne UD mesh, Re = 10�4
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Figure 11: Continued Die-swell ow: �ne UD mesh, Re = 10�4



0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.33 0.67 1.00 1.33 1.67 2.00

Ve
loc

ity

Z-coordinate

ASSF
Die-Swell Flow

(a) Vz on free surface

-0.7

0

0.7

1.4

2.1

2.9

3.6

4.3

5.0

-1.00 -0.67 -0.33 0 0.33 0.67 1.00 1.33 1.67 2.00

Pr
es

su
re

Z-coordinate

ASSF
Die-Swell Flow

(b) pressure on axis of symmetry for stick-slip ow and die-swell ow

Figure 12: Stick-slip ow and die-swell ow, �ne UD mesh, Re=10�4
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Figure 12: Continued Stick-slip ow and die-swell ow, �ne UD mesh, Re=10�4
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Figure 13: Die-swell ow: comparison of solutions, Re=10�4
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Figure 14: Die-swell/drag ow: �ne UD mesh, Re=10�4
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Figure 15: Die-swell ow and die-swell/drag ow, �ne UD mesh, Re=10�4
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