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SUMMARY

This work is concerned with the numerical prediction of wire coating flows.
Both annular tube-tooling and pressure-tooling type extrusion-drag flows are
investigated for viscous fluids.  The effects of slip at die-walls are analysed and free
surfaces are computed.  Flow conditions around the die exit are considered, contrasting
imposition of no-slip and various instances of slip models for die-wall conditions.
Numerical solutions are computed by means of a time-marching Taylor
Galerkin/pressure-correction finite element scheme, that demonstrate how slip
conditions on die walls mitigate stress singularities at die exit.  For pressure-tooling and
with appropriate handling of slip, reduction in shear rate at the die-exit may be
achieved.  Maximum shear rates for tube-tooling are about one quarter of those
encountered in pressure-tooling.  Equivalently, extension rates peak at land entry, and
tube-tooling values are one third of those observed for pressure-tooling.  With slip and
tube-tooling, peak shear values at die-exit may be almost completely eliminated.  
Nevertheless, in contrast to the pressure-tooling scenario, this produces larger peak
shear rates upstream within the land region, than would otherwise be the case for no-
slip.

1. INTRODUCTION

This paper documents the application of a time-marching (semi-implicit) Taylor
Galerkin/pressure-correction finite element scheme (STGFEM)1,2 to solve annular
incompressible coating flows for Newtonian fluids, associated with the coatings of wire
and cable, fibre-optic cables or glass-rovings.  Unique aspects of this work include the
specific treatment of free surfaces and the incorporation of slip conditions.  This study
is conducted with the aim of providing a deeper understanding of the design of coating
processes, through a comparative study of both pressure-tooling and tube-tooling type
flow situations. Emphasis is placed upon the analysis of flow conditions around the die
exit: particularly so on shear and strain rates, and identification of the influence of slip.
In such a fashion, a long-term goal is to improve the understanding of process
performance and hence for this to ultimately impact upon product optimisation.

The wire coating3,4,5 process plays an important role in modern industrial
processing.  This process involves the extension of a molten polymer over a moving
wire, and typically requires a wire preheater, an extruder with a cross-head shaped die,
a cooling trough for the extruded wire, and a take-up and pay off device.  There are two
main types of annular extrusion coating designs: namely tube-tooling, used for wide-
bore coatings, and pressure-tooling, associated with narrow-gauge wires, see Han and
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Rao6.  For the case of pressure-tooling, the molten polymer meets the moving wire
under pressure within the die.  For tube-tooling, the die design is slightly different in
shape. Here, the molten polymer and wire move parallel to one another as they pass
through the die without contact.  On departing the die, the polymer is drawn down onto
the wire by virtue of the additional drag flow component induced by the motion of the
wire. Since contact between polymer and wire occurs beyond the die for tube-tooling,
the shape of the extrudate is of considerable importance.  Control of this external
coating flow can provide improved smoothness of the polymer coating to the
wire/cable, guaranteeing integrity of the surface, that in turn may satisfy quality
assurance measures on mechanical and insulation properties.

The majority of mathematical studies for coating extrusion have concentrated on
high-speed pressure-tooling, whilst comparatively little attention has been devoted to
coating flows in tube-tooling dies.  A number of simplifying assumptions are
customary.  For example, the process may be taken as isothermal, the fluid rheology of
the coating material as viscous (typically inelastic), and the flow analysed under a
lubrication approximation (see for example References 5-8).  Short die channels are
often taken that influence imposed entry and exit boundary conditions9.  Our approach
in this study is to take isothermal viscous assumptions and to treat the flow as
incompressible and concentric.

Let us first consider pressure-tooling. Kasayima and Ito10 theoretically analysed
the drag flow corresponding to the external flow from a pressure-tooling die by
considering many small cross-sections to this flow.  Each section was analysed
separately, assuming constant axial velocity and viscosity on each section.  This
amounts to a semi one-dimensional analysis.  Using Newtonian and power-law
inelastic modelling, they derived expressions for shear, axial velocity, and flow rate.

Significant interest has been focused on the internal polymer flow within the
die, such as for pressure-tooling flows, as analysed theoretically by Paton el al.11 and
McKelvey12 for Newtonian and power-law fluids.  These authors approximated the
flow by considering drag flow and pressure driven flow separately, and expressions
were obtained for shear rate, flow rate, and the radial velocity distribution.  When the
radius of the die is almost that of the wire, the annulus can be approximated by a thin
parallel slit.  Paton et al. demonstrated that the corresponding error under such an
approximation is negligible for pressure-driven flow, though this may be quite
considerable for drag flow.

The case of a complete pressure-tooling flow has been analysed by Caswell and
Tanner8 and Mitsoulis et al.5  Caswell and Tanner8 proposed a new die design to
pressure-tooling with a blunted guider nose tip, which eliminated fluid recirculation at
the contact point of the guider nose tip and wire.  For the instance of tube-tooling, a full
flow specification with both die and extrudate flow is considered in Mutlu et al. 7  We
follow this work in adopting again a fixed melt-cable contact point, as this has already
proven to be an acceptable assumption.

A number of papers on experimental studies have appeared, investigating the
stability of the die extrudate, see for example those by Hatzikiriakos & Dealy13 and
Ramamurthy14.  Slip at and around the die exit plays an important role in the behaviour
of the extrudate flow, as discussed by Silliman and Scriven15. In the Hatzikiriakos &
Dealy article, flowrate (Q) and pressure (P) changes were investigated separately, as to
the influence exhibited on linear polymer high density polyethylene (HDPE). These
authors calculated the slip velocity along the solid boundary surface as a function of
wall shear stress, and investigated its contributive role to oscillations on the surface of
the fluid extrudate.  The work of Ramamurthy focussed on polyethylenes at low
deformation rate and corresponding extrudate irregularities, more commonly known as
melt fracture. Ramamurthy suggested that the surface melt fracture phenomenon is
localised to the die exit region. This is attributed to the large local stresses that arise and
critically depends upon the breakdown of adhesion at the point of separation of the
polymer melt with the die.  Based upon this realisation, a power law interpretation has
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emerged for wall slip.  Melt fracture may arise in two forms of classification; namely
surface or gross irregularities.  The former, occurring under steady flow conditions,
can range from slight disturbance to the sharkskin effect. This corresponds primarily to
the breakdown of adhesion resulting in a finite fluid (slip) velocity at the die wall.  The
second melt fracture type, manifested as gross irregularities, can range from mild helical
to random distortions of the extrudate melt. Principally, we are concerned here with the
influences that may bring about the former surface irregularities.

Numerical solutions involving slip have been documented  by Silliman and
Scriven15 for Newtonian fluids and Phan-Thien16 for viscoelastic fluids.  Both these
studies targetted imposition of slip in a steady two-dimensional, planar extrusion flow
scenario, with a fixed flowrate and a sharp slot edge to the die exit. This may depart
from experimental practice, where a fixed pressure-drop may be imposed across the
flow (as opposed to a fixed flowrate) that generates transient variations with slip
(intrinsically unsteady), see Hatzikiriakos & Dealy13.  A dynamic approach has been
adopted in a most recent study by Den Doelder et al.17, where they compare the wall
slip and the constitutive approach for modelling spurt instabilities in polymer melt
flows.  Phan-Thien studied the influences of slip via a time-marching Boundary
Element method as an iterative procedure, satisfying a steady slip velocity condition.
This led to a dependency on wall shear stress, that must surpass some critical value to
trigger slip, based on the experimental data and ideas proposed in Ramamurthy14.  In
such a manner, planar viscoelastic flows were analysed employing an exponential Phan
Thien/Tanner (PTT) model.  This provides some insight as to how the level of critical
wall shear stress influences the onset of slip within the die, the magnitude of slip
velocities that result, and the shape of the consequent swelling.  In contrast, Silliman
and Scriven15 introduced slip conditions via the Navier slip law, using the naturally
occurring stress-related boundary terms that arise in a weak-form weighted-residual
Galerkin variational formulation implemented through a finite element method. For
Newtonian fluids, this study of wall-slip revealed that raising the Reynolds number
decreases the die-swell, and reduces the influence of the die exit on the jet flow velocity
profile.  Hence, it is observed that slip tends to have a straightening out effect upon the
free-jet surface profile, as does the action of surface tension similarly.

In a series of articles, we have documented the use of the STGFEM formulation
for the numerical prediction of wire-coating flows.  In all such studies, no-slip
conditions were assumed within the die.  Inelastic modelling was used in Binding et
al.18 to predict the shear and extensional flow behaviour of low density polyethylene
(LDPE) melts associated with a pressure-tooling flow.  There, various viscous models
were compared with reference to stress and pressure fields generated, ranging from
pure shear to pure extensional, with combinations in between.  The influence of short
residence times of polymer particles within the die was recognised and a viscoelastic
analysis was commended to predict residual stresses in the coatings.  This subsequently
led to a set of viscoelastic studies aimed at drawing flows, see Gunter et al.19, that
addressed benchmark extensional flows: namely a sink-flow, a model draw-down flow
and a conical section draw-down flow. Therein, Oldroyd-B and exponential PTT
models were employed, with both coupled and decoupled schemes.  For such
convection-dominated flows, it was observed that numerical accuracy depended
crucially on sufficient mesh refinement in the streamwise direction (with streamline
upwinding). Control of cross-stream noise to the solution can be affected by increasing
cross-stream mesh refinement and the number of Jacobi iterations to improve local
accuracy.  Such cross-stream  perturbations were unaffected by streamwise numerical
adjustments.  Likewise, Mutlu et al.7 presented solutions for a complete tube-tooling
flow; a viscoelastic analysis for LDPE melts with a single-mode exponential PTT
model, employing coupled and decoupled schemes.  In a companion article, Mutlu et
al.9 studied the numerical sensitivity of solutions to stress pre-history (effect of
boundary conditions) in draw-down, isolated tube tooling, and combined tube tooling-
draw-down flows.  This revealed the importance of the precursor flow to deliver the



4

appropriate inlet flow conditions to the particular flow in hand.  In the most recent work
of Matallah et al.20 for tube-tooling flow, we have been able to perform both single-
mode and multi-mode analyses, contrasting the differences in response between the use
of LDPE and HDPE melts as coatings, with respect to stress, pressure and kinematic
fields.  These authors found stress and pressure-drop levels were doubled for HDPE
over LDPE melts and pointed to the influence of the individual relaxation mode
components upon residual stressing to the coating.  The present work is directed
towards the continuation of the above study, but concentrating upon slip and its
influence on flow behaviour.

2. GOVERNING EQUATIONS

The governing equations of generalised momentum and continuity for
Newtonian fluids, in the absence of body forces, and incompressible isothermal flow
are expressed as:

ρ ρU T U U pt = ∇ ⋅ − ⋅ ∇ − ∇ , (1a)

∇ ⋅ =U 0, (1b)

T = 2µD, (1c)

D U U= ∇ + ∇1
2 ( )= , (1d)

where variables velocity (U) , pressure (p), extra stress tensor (T) and rate of
deformation tensor (D) are defined over space and time, with temporal derivative
represented as (Ut) and matrix transpose as (=). Material parameters are given via
density (ρ) and viscosity ( µ ).

The familiar Navier-Stokes governing equations can then be derived for a
constant µ .  By selecting the characteristic scales of length L and velocity V, non-
dimensionalisation can be affected as follows:

U U* = 1
V , p pL

V
* = µ0

, t tV
L

* = ,

Z ZL
* = 1 , r rL

* = 1 , µ µµ
* = 1

0
,

∇ = ∇* L , D

Dt

L
V

D

Dt* = ,

where µ0 is a reference viscosity taken here as µ. Substitution into equation (1) renders
the corresponding non-dimensional field equations,

ReU T U Ut p= ∇ ⋅ − ⋅ ∇ − ∇Re , (2a)

∇ ⋅ =U 0, (2b)

where  Re = ρ
µ
LV

0
, the non-dimensional group number termed the Reynolds number.

Under conditions pertaining to creeping flow Reynolds numbers are significantly less
than unity, and inertial influences are minimal.  This scenario is typical of polymer
extrusion flows.
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3. NUMERICAL SCHEME

3.1 Discretisation

The Navier-Stokes equations (2) for two dimensional, annular, incompressible,
steady flow of Newtonian fluid are solved by means of a semi-implicit time-stepping
procedure, namely a Taylor Galerkin/pressure-correction finite element scheme1,2.
These Taylor Galerkin schemes are based on a Taylor series expansion of the solution
in the time-step, and use a two-step Lax-Wendroff approach to access second order
time derivatives.  In this manner, a temporal discretisation is affected prior to a spatial
Galerkin approximation.  This is largely achieved in an explicit manner via the Taylor
Galerkin procedure, though implicitness does arise through the treatment of diffusion
terms.  Hence, a sequence of fractional-staged equations results based on operator
splitting.  In the first stage, a non-divergence free velocity field is computed through a
predictor-corrector doublet, that invokes a half time-step calculation.  The second stage
involves solution of a Poisson equation for the temporal difference of pressure.  Lastly,
a divergence free velocity field is computed dependent upon pressure difference. In
semi-discrete form, the three fractional stages per time step are

Stage 1a
2

1
2

1
22Re ( ) [ ( ) Re ] ( ),∆t

n n n n nU U D U U D D
+ +

− = ∇ ⋅ − ⋅ ∇ − ∇ + ∇ ⋅ −p

Stage 1b

Re * *( ) [ ( ) ] [Re ] ( ),∆t
n n

n
npU U D U U D D− = ∇ ⋅ − ∇ − ⋅ ∇ + ∇ ⋅ −

+
2

1

2

Stage 2
∆t
2 U∇ − = ∇+2 1( ) ,*p pn n

Stage 3

  
2Re

t∆ ( ) ( ),
*U Un n n

p p
+ +− = −∇ −1 1

where the time step index over the interval [n,n+1] is denoted by n.  Here, we observe
the half time step ( )n + 1

2  velocity field gathered after stage 1a and the intermediate
velocity, U*, that emerges after stage 1b.

Spatial discretisation is achieved through quadratic and linear piecewise
continuous interpolation on triangles for velocity and pressure, respectively.  Then, in
conjunction with Galerkin variational weighting, the solution is computed from the
above formulation based on the three fractional stages.  Stage one and three are
governed by mass matrices, which are solved using a Jacobi method.  The pressure
difference of the middle stage is solved by a direct Choleski method, relying upon the
properties of the pressure matrix being symmetric and positive definite with a banded
structure.  The time-stepping procedure is monitored for convergence to a steady state
via relative increment norms (both maximum and least squares measures) subject to
satisfaction of a suitable tolerance criteria.  Termination is taken in the least squares
norm.

3.2 Extrudate swell

A free surface location method is employed as a modified iterative technique by
which the shape of the die extrudate is derived.  For steady state Newtonian flows, a
number of different alternative methods are available to determine free surface position.
Three such approaches are itemised below. The first is a fixed mesh approach,
involving various specific techniques to track the position of the free surface though the
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mesh, as suggested by Bathe21. The idea has some drawbacks however.  The precise
free surface position is not calculated, and its position within the mesh is measured only
by the mesh elements in which the free surface lies.  Consequently for reasonable
accuracy, heavy refinement of the mesh is necessary, even for relatively small
fluctuations in the free boundary position.

A second approach involves remeshing and a three stage iterative cycle. This
was considered by Silliman and Scriven15 and Omodei22.  Firstly, the free surface shape
must be assumed. Next one of the boundary conditions at the free boundary is relaxed,
and the solution of the boundary value problem on the resulting domain is sought.
Lastly, the previous disregarded boundary condition is used to update the shape of the
free surface boundary. This process is then repeated for each iterative cycle until a
predefined convergence criterion is met. A few drawbacks arise from this type of
approach, the main one being the speed degradation at each iteration, due to the fact that
a completely new analysis must be made for each iteration. Another disadvantage is the
fixed-point type of iteration, which slows convergence and also the moderately high
lack of convergence for the iterative cycle.

A third more recent approach has been used by Ruschak23, Saito and Scriven24,
Ettouney and Brown25, and Kistler and Scriven26. This technique also uses remeshing,
but instead of successive iteration of the free boundary position with the field variables,
the position of nodes at the free boundary is applied directly to the problem as degrees
of freedom. The resulting non-linear governing equations are then solved by a Newton-
Raphson iterative technique which simultaneously calculates the free boundary position
and the field variables. An advantage of using this method is a second order rate of
convergence. The main disadvantage of using this method lies in it complexity of
implementation.  This is due to the non-local variations with respect to the free
boundary degrees of freedom, which are incorporated into the system Jacobian of the
governing equations. Another disadvantage is the requirement for a refreshed system at
each successive iteration.

The second approach itemised above is that favoured in the present study, for
which more detail appears in Reference 27.  An iterative process of four steps is
required to compute  the free surface coordinates of the extrudate swell. The first step
initialises a guessed position of the free surface. The second step is to impose vanishing
traction boundary conditions at the free surface, relaxing the kinematic condition of zero
flux across the surface. In this manner, a solution is computed upon the domain using
the STGFEM procedure. This will generate a flow field that violates the kinematic
surface condition.  At a third step, this position is repaired by recomputing an new
surface position that satisfies a streamline condition for the current velocity field,
emanating from the die edge. In a fourth step a new mesh must be constructed to fit the
new domain, which is achieved here by proportionally adjusting the coordinates of the
present mesh. Steps two through four are then repeated successively until the kinematic
condition is satisfied.

3.3 General form of boundary conditions

The general form of the boundary conditions at a solid wall may be classified
into three main types as follows.

3.3.1 No-slip condition

No-slip, or stick at the wall, is a Dirichlet type boundary condition and the
velocity may be expressed there in the form

n̂ U⋅ = 0 , t̂ U⋅ = 0,

where variables are defined as unit normal vector n̂, unit tangential vector t̂ , and wall
slip velocity vector U.
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3.3.2 Slip condition 1

This is the Navier slip law, a slip condition that is determined via tangential
components alone.  It provides for a combined type of Dirichlet-Robbins boundary
condition,

α α0 1
ˆ ( ˆ ˜ ˆt n T) t U⋅ ⋅ − ⋅ = 0, n̂ U⋅ = 0 .

The additional variables here are defined as stress tensor T̃ I= − +p ijτ , pressure p,

stress τ, and constant slip coefficients α0, α1 ≥ 0.

3.3.3 Slip condition 2

Slip conditions based on normal and tangential components of traction and
velocity realise the Robbins type boundary conditions, viz.

α α0 1
ˆ ( ˆ ˜ ˆt n T) t U⋅ ⋅ − ⋅ = 0, β β0 = 0ˆ ( ˆ ˜ ˆn n T) n U⋅ ⋅ + ⋅1 ,

where β0, β1 ≥ 0 are slip coefficients with effect to normal components,  and α0, α 1 are
as above.

It should be noted that when α 0 = β0 = 0, slip condition 2 reverts to a no-slip

condition.  Also, if β0 = 0, slip condition 2 collapses to slip condition 1.  Thus slip
condition 2 is the master classification, from which the other two specific instances
outlined above may be extracted.

3.4 Slip velocity setting

The phenomenon of melt fracture (when the extrudate exhibits irregular
behaviour) is often found to occur at low deformation levels in the polymer processing
industry. The general perception of the cause of this behaviour is the influence of the
critical shear stress at the die walls. The breakdown of adhesion between the polymer
melt and the die wall is found to be a primary cause of surface irregularities. This
breakdown is typically called "slip", and the finite velocity generated at the die wall is
termed the "slip velocity". The physical factors that give rise to slip are known to be
both chemical and physical in nature. Ramamurthy14 and Jiang et al.28 proved from their
capillary analysis that the slip velocity can be written as a function of the wall shear
stress. Micro-structural flow analysis of Brunn29, Aubert and Tirrell30, Goh et al.31 of
the slip phenomenon suggested that slip occurred due to the tendency of polymer
molecules at the die wall to align in a more organised pattern with the flow direction,
than those away from the wall.  This accounts for the degradation in momentum at the
walls. Also, since the die wall is impenetrable to the polymer molecules, their
concentration steadily reduces to zero at the die wall (basic molecular diffusion
principles), reducing the viscosity of the melt accordingly.

Three different representations and implementations for slip are considered in
this present work to describe the behaviour of the polymer flow and to analyse the
effects of wall slip.  We identify the details of each below.

3.4.1 Navier slip law

As shown by Silliman and Scriven15, the Navier slip law may be incorporated
naturally into a variational formulation of the governing flow equations.  A slip
coefficient (α) for condition 1 may be adopted at the die surface prior to the die exit.
The general form of boundary condition deals explicitly with velocity, stress and slip
respectively.  The boundary condition dealing solely with velocity, is satisfied through
specification of the associated interpolation shape functions, {φj}. The natural boundary
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condition for stress is combined with the residual boundary terms of the Galerkin
process. The slip boundary condition, also known as the Robbins boundary condition
may be embedded within such a problem statement.  This is accomplished through the
variational formulation, so that the integral term incorporated, dealing with the slip
boundary condition is of the form,

α φi d
Γ

Γ∫ Ur , α
α
α

= 1

0

.

Here, Γ is the relevant slip boundary section,  r is the radial coordinate , and φi is the
finite element residual-weighting function.

3.4.2 Phan-Thien slip rule

Phan-Thien16 applied slip at the wall, by expressing the slip velocity as a
function of wall shear stress.  In this method, a steady slip velocity is imposed
governed by the wall shear stress exceeding some critical value.  The functional
prescription imposed here is,

Uslip = Umean f(X) , Umean = 
Q

R
ns

π 2 ,

f(X) = 1-exp(-a0X) , X
crit

= τ
τ

,

where variables are defined as slip velocity Uslip, mean velocity Umean, flowrate
assuming no-slip boundary condition Qns, radius of channel width R, constant slip
coefficient a0, wall shear stress τ, and critical shear stress τcrit.

3.4.3 Pure slip

The case of pure slip is specified through the Navier slip law, ensuring
vanishing shear stress at the die wall boundary, viz.

ˆ ˜ ( ˜ ˆ ) ˆt T n t⋅ = ⋅ ⋅ =σ 0

where  σ̃  represents the Cauchy stress tensor.

4. PROBLEM SPECIFICATION

In this study we concentrate on three types of flows, a short-die pressure-
tooling flow, a full pressure-tooling case and a tube-tooling flow. The first case
provides a preliminary look at a model flow for pressure-tooling, without the full die
complexity, concentrating on die-exit conditions and the interface between pressure-
driven shear flow and drawing flow.  No-slip and various implementations of slip are
applied at the die wall prior to die exit: including Navier-slip law, Phan-Thien slip rule
and pure slip. This permits an investigation of slip conditions and their influence on die
exit flow conditions, through variables such as shear rate.  Also of interest is the
adjustments that this causes in the free-jet drawing flow (swelling) that subsequently
forms the coating upon the wire.  By necessity, this implies the need for a free surface
location method.

A steady slip velocity is imposed via the Phan-Thien slip. Pure slip ensures zero
tangential traction to the slip boundary and the Navier slip law provides a balance of
tangential traction against a frictional component expressed through the slip velocity.
These latter two implementations that involve tractions are achieved in a natural
boundary integral manner via the variational formulation (see Silliman and Scriven15). A
critical value of wall shear stress is employed as a mechanism to trigger slip.
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Distinction can be drawn between pressure and tube tooling designs, as depicted
schematically in figure 1. For tube tooling, the upper and lower boundary zones of
Z5Z6Z7 and Z8Z9Z10 are free surfaces in the draw-down and coating region.  In the case
of pressure tooling only the upper zone beyond the die is a free surface, and the coating
flow (polymer melt) meets the moving wire within the die.

4.1 Short-die pressure-tooling

The domain of consideration for this annular pressure-tooling flow is illustrated
in figure 1a. For this problem a sufficiently fine mesh was generated with 6x24
elements, 637 nodes, 1449 degrees of freedom, and minimum size of element 0.0645
units as demonstrated in figure 2a. This model test problem largely resembles the
classical die-swell flow but with the additional consideration of an imposed drag flow
from a moving lower (wire) boundary . There are two regions of different character to
the flow, a shear flow within the die and a free jet drawing flow beyond. Boundary
conditions are provided via an imposed inlet flow profile of fully-developed pressure-
driven annular flow.  This setting predefines the assigned flowrate, fixing it henceforth,
with no-slip conditions imposed on the die wall. Throughout all computations, the
lower boundary is considered as moving at a constant specified speed. A streamline
defines the location of the free jet boundary surface upon which vanishing traction
applies, and the outlet flow is taken as a fully developed plug flow. The characteristic
length and velocity are equivalent to the inlet channel radius, inclusive of wire radius,
(or one radial unit of coating length) and wire speed respectively. The associated
dimensions of the domain are provided in figure 1, where wire radius is 0.6 units.

4.2 Pressure-tooling

A schematic diagram of the full pressure-tooling flow is shown in figure 1b, for
which the associated mesh of 12x74 elements, 3725 nodes and 8425 degrees of
freedom is displayed in figure 7a. As above, the assigned pressure-driven annular entry
flow meets the moving wire at station Z10 (see figure 1b) inside the die.  On exiting the
die, there is swelling at the free boundary region Z6Z7. For the standard implementation
involving  no slip, the boundary conditions read as follows. At the die wall of sections
Z2Z6 and Z1Z10, no slip applies; at the free surface section Z6Z7, tractions vanish and the
arbitrary level of pressure is fixed; at outflow  Z7Z8, a plug flow is imposed travelling
with the moving wire.  The lower domain boundary corresponding to the moving wire,
Z8Z10, moves at the prescribed wire speed.

Characteristic length  and velocity scales are selected as coating length R2 and
wire speed. The die length is 3 units, wire radius is 0.09 units, inlet hydraulic radius
(Z1Z2) is 0.5 units, exit hydraulic radius (Z7Z8) is 0.2 units and land length Z5Z6 is 0.05
units.  Die converging angles at locations Z4, Z5 and Z10 are 26o, 17o and 24o.

4.3 Tube-tooling

The tube-tooling flow is composed of a shearing die flow, combined with a
draw-down and coating section beyond the die, as shown schematically in figure 1c.
Figure 10a demonstrates the fine mesh employed for this case, comprising of 12x88
elements, 4425 nodes and 10007 degrees of freedom.

The boundary conditions for no slip follow largely the specification for
pressure-tooling, with the exception that the sides of the draw-down section Z5Z6 and
Z9Z10, are treated here as free surfaces.  The characteristic length R2 is taken as the
coating length upon the wire (also equates to the radial distance from the inlet top die
boundary wall to the centre of the wire).  The characteristic velocity scale is equivalent
to the wire speed.  The wire dimensions, the die length and inlet hydraulic radius are all
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as specified above for pressure-tooling.  The die converging tube has angles of 30o at
Z4 and Z11.

5. RESULTS AND DISCUSSION

Unless otherwise stated all results pertain to Newtonian flow at minimal levels of
inertia, equating to Re = 10-4.

5.1 Short-die pressure-tooling:

5.1.1  No-slip conditions

The results for no-slip computations and the short-die pressure-tooling flow are
illustrated in figures 2 to 3. Simulation with a 288 element mesh (figure 2a) gave the
velocity vectors and accompanying radial and axial velocity contour plots of figures 2b
to 2d. The flow profiles reflect an adjustment from an initial shear flow to a plug flow,
see also Reference 27 and 32.  Any die swell incurred for this type of drag flow is
minimal. The shear rate contours of figure 2f and the top surface line plot (see on to
figure 4b) illustrate how the shear rate encounters a rapid rise near the die exit, followed
by a dramatic decay immediately in the jet drawing flow. Pressure drop across the die
alone is in the order of 40.1 units (figure 2e), where the die is twice the length of the
exit gap width. A peak pressure zone is observed near the top surface die exit point in
the jet of about -17.4 units. Figure 3a demonstrates the effect of increasing inertia in
terms of I2, the second invariant of the rate of strain tensor, the progressive variation
covering a four-decade ascension from 10-4 to 10. Here, inertia is increased via material
properties (viscosity), whilst maintaining a fixed flowrate. There are only minor
adjustments to the flow patterns in figure 3b, with slight increase of die swell at the
larger values of Reynolds number (peak value of 10). This is as to be anticipated for a
constant flowrate setting.  Expectations would be different for comparisons based on
increasing velocity scale instead.

5.1.2  Slip conditions

Slip results are recorded for each of the three slip cases instances cited in section
4.1, of Navier Slip law (NV slip), Phan-Thien slip rule (PT slip), and Pure slip, to be
contrasted against the foregoing no-slip case.  Three choices of critical wall shear stress
settings have been tested of 10.6, 11.3 and 12.3 units. The elevation of critical wall
shear stress has the effect of delaying the onset of slip till the threshold value of wall
shear stress has been exceeded, drawing this initiation point closer to the die exit with
increasing threshold value.

The short-die pressure tooling problem was selected as the model case upon
which to conduct investigation of the various implementations of slip outlined above,
prior to consideration of full tube and pressure-tooling specifications. This lead to a
parameter sensitivity analysis for the Navier Slip law, considered with a critical wall
shear stress τcrit of 10.6 units. Simulations were performed for various slip coefficient

values (α) ranging from 0 to 100, noting that vanishing α  reflects pure-slip, whilst

large α provides dominant no-slip conditions. For α  = 0, 1, 10 (table 1) there is little

variation in swelling ratio ( χ = jet radius

die exit width
) and maximum slip velocity (Vslip) values

at the die wall. The maximum deviation in χ is of order 0.4 and in Vslip is 30 percent.  It

is noted that for α = 100 wall slip velocity is maximised, while die swell is minimised.

It is instructive to compare the results for NV Slip as a function of α , against those for

the case of Pure slip (α = 0). The most significant differences in χ are observed at α  =
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100, with enhance slip velocity for lesser swell.  At the smallest value of  τcrit = 10.6,
the short-die pressure tooling slip velocities at the upper die wall are compared for the
three cases stated above (figure 4a). The slip velocity behaviour can be seen to vary
considerably in each case, with the NV (α=100) slip law reaching the highest speeds
(and lowest swelling ratio), followed by Pure slip and then PT slip. In all instances, the
onset of slip occurs at 0.22 units distance prior to the die exit (denoting the origin).

Table 1. Short-die pressure-tooling, Navier slip law for various α, τcrit=10.6:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

    α Vr Vz I2 P χ Vslip

         min -0.002 0.000 -14.00
    0    max   0.220 1.453 15.25  31.40 1.012 0.901
         min -0.002 0.000 -14.06
    1    max   0.221 1.453 15.28  31.38 1.012 0.903
         min -0.002 0.000 -14.66
   10   max   0.226 1.453 15.58  31.19 1.011 0.919
         min -0.001 0.000 -23.11
 100   max   0.296 1.453 20.06  28.58 1.008 1.175

A more detailed comparison of I2 at the top surface, Vr, Vz, pressure, swelling
ratio and the maximum slip velocity at the die wall can be found in table 2. This table
also includes complete comparisons for two other critical wall shear stress settings of
11.3 and 12.3 units. Overall, maximum shear rates reduce by half and pressure drops
across the flow (equating to maximum pressure values) decrease with introduction of
slip. The greatest impact on pressure, swell and slip velocity is borne out through the
NV slip option, here considered for α=100.

Figure 4b summarises the behaviour of I2 at the top flow surface for the three
slip implementations at τcrit=10.6 and the no-slip case. The slip instances reduce the
magnitude of the discontinuity from the no-slip case by shifting upstream the stick-slip
discontinuity from the die exit point, to within the die and where slipping first occurs,
thus agreeing with Silliman and Scriven15 and Phan-Thien16.  This is confirmed via the
slip velocity profile plots along the top surface in figure 4a. The largest jump from zero
to the first non-vanishing slip velocity at the die wall occurs for NV slip, followed by
the Pure slip and then the PT slip cases. Hence this is reflected in the I2 plot of figure
4b, where the NV slip option generates the largest I2 value within the die for the slip
implementations. Conversely at the die exit, the most dramatic increase in I2 value
corresponds to no-slip, with NV slip and Pure slip being devoid of any upward trend.
These comments are valid even withstanding the difference in mesh structure for the
various zones in question. The I2 double oscillation profile, most pronounced in the PT
slip case, is primarily caused by the two transitions in wall velocity, one at the stick-slip
point and the other at the die exit. The elevation parameter a0 of the PT slip rule strongly
influences this second profile oscillation at the die exit. Increasing the critical wall shear
stress to 11.3 and 12.3 units has the effect of shifting these transitions closer to the die
exit (as demonstrated through figures 5 and 6). The magnitude of die swell encountered
for each of the slip and no-slip cases is shown in figures 4c, 5c, 6c and indicates that
slip reduces swell, with NV slip giving the minimal swell. The extent of this variation
in swell is of the order of 2 to 5 percent of the die exit width.

At all three τcrit settings tested in table 2, the shear rate (I2) for Pure slip is
smaller than other slip and no-slip cases. Hence and as a consequence, since a principal
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process optimisation guideline is to minimise peak shear rates, further investigation
focuses upon the pure slip case for the full tube and pressure-tooling studies below.

Table 2. Short-die pressure-tooling, no-slip and various slip cases:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

Vr Vz I2 P χ Vslip

No     min -0.035 0.000 -17.36
slip    max   0.269 1.450 27.94  40.08 1.067 0.000

τcrit=10.6
PT     min -0.021 0.000 -10.83
slip    max   0.210 1.452 21.79  36.50 1.029 0.457
Pure  min -0.002 0.000 -13.99
slip    max   0.220 1.453 15.24  31.40 1.012 0.901
NV    min -0.001 0.000 -23.11
slip    max   0.296 1.453 20.06   28.58 1.008 1.175

τcrit=11.3
PT     min -0.024 0.000 -11.87
slip    max   0.218 1.453 22.95  37.49 1.051 0.438
Pure  min -0.009 0.000 -17.72
slip    max   0.217 1.453 18.04  34.64 1.017 0.777
NV    min -0.005 0.000 -24.02
slip    max   0.250 1.453 21.74  33.56 1.014 0.908

τcrit=12.3
PT     min -0.024 0.000 -11.12
slip    max   0.237 1.453 21.86  38.02 1.031 0.409
Pure  min -0.016 0.000 -21.77
slip    max   0.230 1.453 20.92  36.82 1.024 0.627
NV    min -0.015 0.000 -25.99
slip    max   0.234 1.453 23.25  36.48 1.022 0.689

5.2 Pressure and tube-tooling, die flow analysis

To gain some basic insight into the flow patterns and behaviour for the process
conditions in question, some preliminary computations were performed on the die
sections alone. This enables an assessment to be made of the extent of shear versus
extension, their localisation and a contrast between pressure and tube-tooling flows.
Die-exit conditions are taken as fully-developed flow, tantamount to assuming an
infinitely long land length.  For Newtonian fluids, maximum shear rates (based on I2)
quadrupled from 41.3 units for tube-tooling to 181.3 units for pressure-tooling, with
comparable increase in extension rates (based on I3/ I2, third and second invariants of
the rate of deformation tensor) from 5.3 to 18.7 units.  Pressure drops across the die
increased from 851.5 units for tube-tooling to 875.4 units for pressure-tooling.  We
observe below that such findings are almost entirely reproduced when full tooling cases
are considered with extrudate.  In contrast, for inelastic power law fluids (index 0.31),
maximum shear rates triple over Newtonian values, being more closely restricted to the
boundary wall region in the land section, and in particular for pressure-tooling, being
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more concentrated at the upper boundary die exit lip. Extension rates are barely affected
by shear thinning, whilst pressure drop levels decrease by some three decades.

5.3 Pressure tooling :

5.3.1  No-slip conditions

The no-slip pressure-tooling results are illustrated in figures 7. The mesh of
1776 elements (figure 7a) shows high levels of refinement prior to and across the land
region (the "pinched" zone of the die) and die-exit regions, where detailed analysis is
required. Figures 7b to 7e show the velocity vector and contour plots. The vector plots
identify flow profiles for the inlet and land zones separately, showing the gradual
acceleration in the velocity flow fields. The contour plots of radial and axial velocity
components illustrate the constant velocity field lines and their peak intensities. The
shear rate line contours of figure 7g show a peak value of 213.2 units at the die exit,
with significant shearing over the land region, whilst this was considerably more
localised in the short-die case. This represents a ten-fold increase in peak value of I2 at
die exit from 27.9 units for the short-die case. Taking into account the difference in
non-dimensionalisation scales associated with each problem, in reality this increase is
minimal. There is notable  extension in the converging die-tube with peak extension rate
of 18.7 units being located in the contraction zone, associated with the entry to the land
region (figure 7h). At the melt-wire contact point and in contrast to the Short-die case,
shear rates are 10 percent of maximum values and extension rates rise to one third of
peak values. The pressure field lines of figure 7f show a relatively minor pressure drop
across the die, reaching a minimum of -96.3 units at the die exit. There is only minor
adjustment apparent from the die-only analysis results, with an almost identical pressure
drop experienced across the die, with or without the attached free jet. The profile of the
shear rate I2 at the top boundary of the die is plotted in figure 8b, which can be
contrasted against the corresponding short-die situation of figure 4b. For the full
pressure-tooling, there is the characteristic double peak profile, the first occurring at the
beginning of the land region and the second at the die exit location. In the intermediate
zone, shear rates drop to a level of 65 percent of the peak value.

5.3.2  Slip conditions

Slip condition results are reported for the full pressure-tooling flow, utilising the
extreme of pure slip. Two values of critical wall shear stress are implemented. One
value is τcrit = 123 (figure 8), for which slip applies at die wall up to and including the
die-exit point.  For a second value of τ crit = 135 (figure 9), conditions revert to no-slip
at die-exit.  Taken in combination, this provides some insight on the interplay between
the imposition of slip and no-slip conditions pertaining at the die-exit.

One may first look to the shear rate plots, figure 8b and compare with figure
9b. For slip conditions and τcrit=135, the peak of shear rate is doubled above the no-slip
case (see table 3) at the die-exit, taking up an almost identical die-swell profile to that
for no-slip (see figure 9c). The slip velocity profile is illustrated in figure 9a, showing
the rapid decline to no-slip at the die-exit.

In contrast, for slip conditions and τcrit=123, peak slip shear rate reduces (by
about 9 percent) and shifts upstream of the no-slip alternative (figure 8b), as in the
short-die problem above. A peak shear rate value of 194.7 units now occurs at the entry
to the land region, and those at the die-exit are significantly reduced from the no-slip
scenario. The shape of the extrudate adjusts immediately after the die (figure 8c), the
swell is less pronounced and has a slower rate of build up than for the no-slip instance.
The slip velocity profile of figure 8a displays a relatively constant form up to die-exit
and contrasts against that of figure 9a.

Extension rates barely differ between instances with or without slip. Pressure
drop across the flow was noted to decrease with introduction of slip at both levels of
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τcrit.  The variation documented in table 3 amounts to between 25 to 37 percent. One
concludes that for pressure-tooling and with appropriate handling of slip, reduction in
shear rate at the die-exit may be achieved.

Table 3. Pressure tooling, no-slip and pure slip conditions at two τcrit values:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

Vr Vz I2 P χ Vslip

No     min -0.438 -96.3

slip    max   1.141 3.555 213.2  1042.2 1.377 0.000

τcrit    min -0.416 -67.4

123    max   0.704 2.984 194.7 652.3 1.357 2.715

τcrit    min -0.415 -79.9

135    max   1.034 2.985 383.7 783.4 1.360 2.297

5.4 Tube tooling

5.4.1  No-slip conditions

The analysis of the tube-tooling was performed with a 2112 element mesh
(figure 10a). This involves increasing mesh refinement approaching the angled, land,
and draw-down regions of the die-tube section. Close-up velocity vector profiles at the
inlet and outlet of the die are supplied, as well as axial and radial components in contour
form. Figures 10b to 10e show the expected results and re-echo the previous
descriptions for the pressure tooling case.  The pressure drop of 866.7 units within the
die is almost completely contained in the land section of the die (see figure 10f).

A maximum shear rate of 48.6 units is observed in figure 10g on the die walls
within the land region.  This is to be compared against 213.2 units in figure 7g for
pressure-tooling, some four times larger. It is noteworthy and a general observation,
that maximum shear rates for tube-tooling are invariably about one quarter of those
encountered in the pressure-tooling flows under equitable conditions.  Extension rates
peak at 6.3 units at the beginning of the land region, where the flow meets the turn in
the die entering the land region, which contrasts with 18.7 units in figure 7h for
pressure-tooling, some three times larger. Smaller, isolated local extension rate peaks
are observed at the exit point on the lower boundary of the die.  All these field results
agree with values obtained at the same flow rate for a die-only analysis, where a fully-
developed die-exit flow is assumed.  This would indicate that these predominant flow
features within the die are not seriously affected by die-exit conditions.

Figure 11a and 11b demonstrate the behaviour of the generalised shear rate (I2)
in profile form along both top and bottom surfaces of the flow. Here slip and no-slip
results are compared directly. For the no-slip conditions, there is a rise in value in the
converging die-tube, that reaches a sustained plateau across the land region, prior to
encountering a dramatic drop and levelling out in the draw-down. Both top and bottom
surface profiles reflect similar form in this respect, with plateau values in the land
region being about 20 percent higher for the bottom surface. Also, the shift in peak
value is seen to switch between the surface cases and the land entry and exit points. For
the top surface alone and contrasting with the pressure-tooling results of figure 8b, the
essential difference in the tube-tooling design is a protracted plateau level and a reversal
of peak shear rates from the exit to the entry of the land region.
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5.4.2  Slip conditions

The shear rate profiles for pure slip conditions within the die, as governed by a
critical wall shear stress of τcrit=25 units, are included in figures 11a (top surface) and
11b (bottom surface). As quantified in table 4 and in contrast to foregoing no-slip
results, peak shear rates are larger in the land region and shifted upstream (reaching
52.01 units at the lower die wall), extension rates barely differ, and pressure drops
halve (to 408.6 units). Such peak shear rates substantiate a 29 percent increase above
that for no-slip.  Also, these peak values shift from the upper boundary die-wall of the
land region for no-slip, to the lower wall for slip.

One feature of the top and bottom boundary shear rate profiles apparent in figure
11a and 11b is that peak values at die-exit may be almost completely eliminated.
However, in contrast to the pressure-tooling scenario, larger peak shear rates are
stimulated upstream, within the land region, than would otherwise be the case for no-
slip conditions. On the top die-surface, for no-slip the largest shear rates are observed at
the turn into the land region. These are exaggerated when slip is imposed, occur
downstream and provoke a "double peak" profile. For the bottom die-surface, the
largest shear rates arise at the die-exit when no-slip is assumed; these are
correspondingly shifted upstream and magnified when slip is introduced.  The profiles
of the surface slip velocities of figure 11c and the free surface in figure 11d, for slip and
no-slip conditions, are in keeping with the above observations.

Inclusion of results for a larger value of critical wall shear stress setting of
τcrit=29.2 (table 4, figure 12) illustrates the effect of imposing slip conditions across the
land region, but reverting to no-slip at the top surface die-exit. The associated shear rate
profile on the top surface of figure 12a picks out the second discontinuity in velocity
gradient at the die-exit lip, though the shear rate peak there is lower than that observed
at the entry to the land region. Shear rate profiles on the lower die wall, extension and
pressure fields, and slip velocity at the top surface do not vary appreciably from those
for the former τcrit setting. A slightly larger pressure drop of 421.1 units and swelling
ratio is noted.

Table 4. Tube tooling, no-slip and pure slip conditions at τcrit values:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

Vr Vz I2 I2 P χ Vslip

top bottom
No    min -0.215 0.000   -14.11

slip    max   0.141 1.021 41.34 40.35 866.7 1.255 0.000

τcrit    min -0.215 0.000   -30.84

25.0  max   0.099 1.009 44.26 52.01 408.6 1.212 0.672

τcrit    min -0.215 0.000   -18.37

29.2  max  0.173 1.009 44.26 52.01 421.1 1.290 0.670
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6. CONCLUSIONS

Through our analysis of pressure-tooling and tube-tooling coating flows,
contrasting each of the tooling scenarios, along with slip and no-slip conditions, we
arrive at the following general conclusions.  For Short-die pressure-tooling, elevation
of critical wall shear stress delays the onset of slip to an initiation point closer to the die
exit with increasing threshold value. Maximum shear rates reduce by half and pressure
drops decrease upon introduction of slip. The greatest impact on pressure, swell and
slip velocity is borne out through the Navier slip law option.  In contrast to Pure slip (α
= 0), the most significant differences in die swell are observed for NV Slip and α  =
100, with enhanced slip velocity for lesser swell.  The inclusion of slip reduces the
magnitude of the stick-slip discontinuity from the no-slip case, shifting this upstream
from the die exit point.

Analysing the full pressure-tooling flow, there is the characteristic double peak
profile in shear rate, the first occurring at the land entry  (absent for the Short-die) and
the second larger peak at the die exit.  For slip conditions right up to die-exit with
τcrit=123, peak shear rate reduces and shifts upstream of that for no-slip.  A peak shear
rate occurs at the entry to the land region, and those at the die-exit are significantly
reduced from the no-slip scenario.  The shape of the extrudate adjusts immediately after
the die, the swell is less pronounced and has a slower rate of build up than that for the
no-slip alternative.  For slip conditions and τcrit=135, that reverts to no-slip conditions at
die-exit, the peak of shear rate is doubled there above that for no-slip and then, die-
swell reflects no-slip findings.  One concludes that for pressure-tooling and with
appropriate handling of slip, reduction in shear rate at the die-exit may be achieved.

In contrasting full tube-tooling against equivalent pressure-tooling flows, it is
apparent that maximum shear rates for tube-tooling occur on the die walls within the
land region and are about one quarter of those encountered in pressure-tooling.
Extension rates peak at land entry, where the flow meets the turn in the die entering the
land region, with tube-tooling values being one third of those observed for pressure-
tooling.  For the top surface alone and contrasting with the pressure-tooling results, the
essential difference in the tube-tooling design is a protracted plateau level and a reversal
of peak shear rates from the exit to the entry of the land region.

Considering slip for tube-tooling, peak shear rates shift from the upper
boundary die-wall of the land region for no-slip, to the lower wall for the case with slip
and increase by one-third in value. Such peak values at die-exit may be almost
completely eliminated with slip.  Nevertheless, in contrast to the pressure-tooling
scenario, larger peak shear rates are stimulated upstream within the land region, than
would otherwise be the case for no-slip conditions.  Reverting to no-slip at the top
surface in the neighbourhood of the die-exit, picks out the second discontinuity in the
associated shear rate profile at the die-exit lip, that is characteristic of no-slip.  This
second discontinuity is lesser in value than that corresponding to the land entry.

The present study has ignored elastic effects as a first approximation.  It is
recognised that extrudate swell will be limited thereby and that shifting to a viscoelastic
framework may well prove a more severe context demanding yet further considerations.
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FIGURE LEGEND

Table 1. Short-die pressure-tooling, Navier slip law for various α, τcrit=10.6:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

Table 2. Short-die pressure-tooling, no-slip and various slip cases:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

Table 3. Pressure tooling, no-slip and pure slip conditions at two τcrit values:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

Table 4. Tube tooling, no-slip and pure slip conditions at two τcrit values:
velocity, shear rate, pressure, swelling ratio, and slip velocity.

Figure   1: Schema for extrusion coating flows
(a)  short-die pressure-tooling, (b)  pressure-tooling, (c)  tube-tooling

Figure   2: Short-die pressure-tooling: no slip
(a)  mesh pattern, 6x24 elements, (b)  velocity vectors, (c)  Vr contours,
(d)  Vz contours, (e)  pressure contours, (f)  I2 contours

Figure   3: Short-die pressure-tooling: various Reynolds numbers, no slip
(a)  I2 on top surface, (b)  die swell

Figure   4: Short-die pressure-tooling: various slip laws, τcrit = 10.6
(a)  slip velocity at die wall, (b)  I2 on top surface, (c)  die swell

Figure   5: Short-die pressure-tooling: various slip laws, τcrit = 11.3
(a)  slip velocity at die wall, (b)  I2 on top surface, (c)  die swell

Figure   6: Short-die pressure-tooling: various slip laws, τcrit = 12.3
(a)  slip velocity at die wall, (b)  I2 on top surface, (c)  die swell

Figure   7: Pressure-tooling: no slip
(a)  mesh pattern, 12x74 elements, (b)  velocity vectors at inlet,
(c)  velocity vectors at outlet, (d)  Vr contours, (e)  Vz contours,
(f)  pressure contours, (g)  I2 contours, (h)  extension rate contours

Figure   8: Pressure-tooling: no slip and pure slip law, τcrit = 123
(a)  velocity at die wall, (b)  I2 on top surface, (c)  die swell

Figure   9: Pressure-tooling: no slip and pure slip law, τcrit = 135
(a)  velocity at die wall, (b)  I2 on top surface, (c)  die swell

Figure 10: Tube-tooling: no slip
(a)  mesh pattern, 12x88 elements, (b)  velocity vectors at inlet,
(c)  velocity vectors at outlet, (d)  Vr contours, (e)  Vz contours,
(f)  pressure contours, (g)  I2 contours, (h)  extension rate contours

Figure 11: Tube-tooling: no slip and pure slip law, τcrit = 25
(a)  I2 on top surface, (b)  I2 on bottom surface,
(c)  slip velocity, (d)  die swell

Figure 12: Tube-tooling: no slip and pure slip law, τcrit = 29.2
(a)  I2 on top surface, (b)  slip velocity
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Figure 1: Schema for extrusion coating flows
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Figure 2: Short-die pressure-tooling: no slip
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Figure 2: Continued Short-die pressure-tooling: no slip
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Figure 3: Short-die pressure-tooling: various Reynolds numbers, no slip
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Figure 4: Short-die pressure-tooling: various slip laws, �crit=10.6
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(a) slip velocity at die wall
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Figure 5: Short-die pressure-tooling: various slip laws, �crit=11.3
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Figure 6: Short-die pressure-tooling: various slip laws, �crit=12.3
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Figure 7: Pressure-tooling: no slip
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Figure 7: Continued Pressure-tooling: no slip
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Figure 8: Pressure-tooling: no-slip and pure slip law, �crit=123
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Figure 9: Pressure-tooling: no-slip and pure slip law, �crit=135



(a) mesh pattern, 12x88 elements
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(c) velocity vector at outlet
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Figure 10: Tube-tooling: no slip
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Figure 10: Continued Tube-tooling: no slip
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Figure 11: Tube-tooling: no slip and pure slip law, �crit=25
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Figure 12: Tube-tooling: no slip and pure slip law, �crit=29.2


