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SUMMARY 

 

Annular pressure-tooling extrusion is simulated for a low density polymer melt 
using a Taylor-Petrov-Galerkin finite element scheme. This represents industrial-scale 
wire-coating. Viscoelastic fluids are modeled via three forms of Phan-Thien/Tanner (PTT) 
constitutive laws employed for short-die and full specification pressure-tooling. Effects of 
variation in Weissenberg number (We) and polymeric viscosity are investigated. Particular 
attention is paid to mesh refinement to predict accurate results. The impact of variation in 
shear-thinning and strain-softening properties is considered upon the modelling 
predictions. For the short-die flow, the influence of the lack of strain softening is 
identified. For the full-die flow and more severe deformation rates, the linear PTT model 
failed to converge. In contrast, the exponential PTT model is found to be more stable 
numerically and to adequately reflect the material response. Comparing short-die and full-
die pressure-tooling results, shear rates increase ten fold, while strain rates increase 
hundred times. 

1. INTRODUCTION 

This study covers the numerical simulation of complex flows, highly viscoelastic 
in nature, which occur during industrial wire-coating processes. Typically, pressure-
tooling and tube-tooling are two distinct die designs applied in the coating process. For 
thinly coated (narrow-bore) wires, pressure-tooling is employed, where the wire-coating 
process begins within the die cast. On the other hand, tube-tooling relies on draw-down 
effects resulting from contact between wire and polymer melt outside the die, to produce 
thick (wide-bore) cable coatings. This article concentrates on the pressure-tooling design. 

Wire-coating, in the pressure-tooling context, constitutes a process of two flow 
regimes: a shear dominated flow within an annular die, and an extension-dominated flow 
along the wire-coating region beyond the die. Injection of the molten polymer into the 
tooling die establishes a pressure driven flow. Contact between the molten plastic tube and 
the wire is made within the die, where the travelling wire induces a drag flow, drawing out 
the polymer melt to form a sheath around the cable. Coating production lines for narrow-
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bore wire use relatively high speeds, around 1 meter per second, and the deposition of the 
fluid on a rigid moving wire is treated as a free surface problem. Coverage of this 
problem, background and the literature is provided below. 

In our past work1 with fixed surfaces, we have adopted differential viscoelastic 
models, such as the exponential Phan-Thien/Tanner (PTT) model. This permitted us to 
predict stress development, based upon the recommendations proposed in Binding et al.2 
(see section 2, below). There, state-of-the-art finite element (FE) techniques are required 
to cope with the high deformation rates encountered and associated high Weissenberg 
numbers, of the order 102 to 104. Previous predictive methods of this sort are represented 
in References 3-7. For Newtonian viscous flows, a semi-implicit Taylor-
Galerkin/pressure-correction procedure was used by the present authors8 for solving wire-
coating flows, pressure-tooling and tube-tooling, both with and without slip conditions 
imposed within the die. 

 With the inclusion of free surfaces, our earlier work on model problems addressed 
stick-slip and die-swell flows, see References 9-10. There, attention was focused on the 
effects of drag flow for Newtonian planar and axisymmetric flows9 and in contrast to the 
theory. Likewise, a second article10 extended this work to embrace viscoelastic flows with 
an Oldroyd-B model representation. Stress stabilisation is performed by invoking a 
streamline upwind Petrov-Galerkin (SUPG) technique, in conjunction with a recovery 
method for velocity gradients. The present study goes further in two directions: 
incorporating more physically realistic constitutive models (PTT) and in addressing 
industrially relevant pressure-tooling die designs. Free surface schemes are implemented 
as in References 8-10, to model the extrudate flow. Our aim in this investigation is to 
provide a comparative study of shear-thinning and strain-softening properties, detecting 
their respective influence upon the flow fields generated. In this respect, we employ 
linear, quadratic and exponential PTT models. As a by-product, we are able to isolate the 
underlying properties that dictate smooth numerical solutions, and those that lead to 
premature numerical divergence. Flows are analysed under creeping conditions in a two-
dimensional annular coordinate setting. 

2. BACKGROUND ON WIRE-COATING 

Computational and experimental studies are reported widely in the literature for 
wire-coating flows. In the modelling work, assumptions taken (see Mutlu et al.5) include 
incompressibility for the coating, concentricity of the wire, commonly isothermal 
conditions and speeds of wire of up to one meter per second. The most popular approach 
has been to adopt finite element discretisation for two-dimensional annular systems. Both 
die designs of pressure and tube-tooling are discussed, with emphasis upon pressure-
tooling, unless stated otherwise. 

Tadmor and Bird11 (1974) considered the problem of a wire traveling on an axis 
parallel, but not co-linear to the die. Since the wire was centred with a guider before 
entering the die, and the wire was under high tension, the problem is more ideal than 
practical. Their work confirmed that concentricity is restored by the net lateral forces, and 
this lends to additional justification to a concentric flow assumption. 

Recent attention by a number of authors has focused on the numerical simulation 
of pressure-tooling flow for viscous fluids, such as those of Caswell and Tanner12, 
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Pittman and Rashid13, Mitsoulis14, Mitsoulis et al.15, and Wagner and Mitsoulis16. Their 
work dealt mainly with shear flow under both isothermal and non-isothermal conditions. 
Molten polymers have been noted to exhibit highly elastic behaviour when subject to large 
deformation11. Only recently, numerical techniques have proven capable of reaching 
solutions for sufficiently high and relevant levels of elasticity: limited attempts include 
those of References 12 and 17. Many other attempts involving either lubrication or 
inelastic approximations have been conducted to addressed these shortcomings12,15,18-20. 

A whole flow field analysis, regarded as a benchmark in wire-coating analysis, 
was presented by Caswell and Tanner12 (1978).  This involved an isothermal FE study, 
without the use of a lubrication approximation. Some interesting findings emerged, 
including the formation of recirculating regions and the free surface determination at the 
die-exit. The majority of their analysis dealt with inelastic power-law and Newtonian 
fluids. 

A theoretical and experimental investigation of power-law fluids in the wire-
coating process was put forward by Han and Roa19 (1978). Both tube and pressure-tooling 
designs were discussed. The wire speeds they used were however, lower than typically, 
encountered industrially. Increasing wire-speed subsequently effects the reduction of axial 
pressure gradient and recoverable elastic strain within the molten polymer at the die-exit. 

Carley et al.21 (1979) performed a non-isothermal flow analysis for conical and 
cylindrical dies. Although their energy equation did not include the radial convection 
term, they were able to model the melt rheology involved reasonably well for a wide 
range of shear rates. 

A high-speed wire-coating study was performed by Chung22 (1986), obeying the 
Spencer-Gilmor equation of state. An FE model was used with a lubrication 
approximation in a cylindrical system. The analysis made apparent the importance of 
taking material compressibility into account, beyond specific wire speeds, and its effect 
upon the final wire-coating for power-law fluids. In such a context, the authors advocated 
care at wire speeds exceeding 0.5 meters per second, with respect to the issue of 
compressibility. 

Mitsoulis14 (1986) studied the wire-coating flow of power-law and Newtonian 
fluids.  The FE analysis indicated that for realistic predictions, it was necessary to capture 
the following features in the modelling: normal stresses, temperature-dependent viscosity, 
and other material properties. Also, Mitsoulis concluded that the inclusion of shear-
thinning reduced the (small) levels of die-swell at the die-exit, as well as the recirculation 
that occurred within the die. In a subsequent article, Mitsoulis et al.15 (1988) provided a 
detailed numerical investigation into high-speed industrial wire-coating. Two flow 
formulations were used: a planar FE analysis for non-isothermal flows, and a lubrication 
approximation for isothermal, power-law fluids. The latter form was found to give the 
better flow predictions. The non-isothermal pressure solution was found to be in good 
agreement with the experimental results of Haas and Kewis23 (1974). 

The predictions of Binding et al.2 (1996) made apparent the inadequacy of 
inelastic models in the accurate modelling of stress and pressure drop throughout the 
process. These authors made use of inelastic modelling techniques for a pressure-tooling 
flow, to investigate the mixed extensional-shear flow behaviour of low-density 
polyethylene melts. A range of viscous models were contrasted, from pure shear models, 
to mixed and pure extensional models, referencing the stress and pressure fields 
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generated. Recommendations were made for the accurate prediction of residual stresses in 
the melt coating, commending a viscoelastic analysis to account for the influence of short 
residence times of the particles within the flow. 

For tube-tooling flows and fixed free-surface estimation, we have conducted 
single-mode PTT simulations in Mutlu et al.4-5 (1998) and Matallah et al.24 (2000). Using 
the same Taylor-Galerkin/pressure-correction procedure as identified above, tube-tooling 
was analysed in sections in Mutlu et al.5, isolating draw-down flow and studying the 
effects of stress pre-history and various boundary conditions. This led to a further study on 
coupled and decoupled solution procedures for a range of model fluids, approaching those 
of industrial relevance. In Matallah et al.24, single-mode model calculations were 
compared to those of multi-mode type for LDPE and HDPE grade polymers. The multi-
mode computations revealed the dominant modes of most significance in the process and 
gave insight as to the levels of residual stress in the resultant coatings. Further work on 
multi-mode modelling of Matallah et al.1, emphasised the influence of die-design on 
optimal process setting. Three, as opposed to seven modes, were found adequate to 
sufficiently describe the flow. The draw-down residence time, which dictates the 
dominance of certain modes within the relaxation spectrum, was found to be the primary 
factor to influence the decay of residual stressing in the coating. 

It is upon this basis that we undertake the present study, focusing upon pressure-
tooling die-design and the inclusion of free surface movement. Variation in flow response 
as a consequence of material rheology is of particular interest. 

3. GOVERNING EQUATIONS 

 In this work, Phan-Thien/Tanner models25-26 are selected for being more 
physically realistic than say, the constant shear viscosity Oldroyd-B model. The non-
dimensional constitutive equation for a generalized PTT model can be written in the 
general form: 

 }-e{- ])([)(Wf2We ††
1t τττττττ ⋅+⋅+⋅⋅+⋅+= DDUUUD ∇ξ∇∇∇µ , (1) 

where 
 DT 22µ+= τ , (2) 

 21 µµµ += , (3) 

 )( †
2
1 UUD ∇∇ += . (4) 

Here, τ is the polymeric component of the extra-stress tensor T, D is the rate of 
deformation tensor, U is the velocity vector, We is a Weissenberg number (see below), µ1 

and µ2 are polymeric and solvent viscosity, superscript †  denotes matrix transpose, ∇ is 
the gradient operator, T is the extra-stress tensor and p is pressure. The function, f, 
specifies the various versions of this class of models, namely as: 

linear model:  )(trace1f
1

We τµ
ε+=  (5) 

quadratic model:  2We
2
1We )](trace[)(trace1f

11
ττ µ

ε
µ

ε ++=  (6) 

exponential model: )](traceexp[f
1

We τµ
ε=  (7) 
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where model parameters ε(ε≥0) and ξ(0≤ξ≤2) are non-dimensional characteristic fluid  
parameters that can be evaluated by fitting to the experimental data. The Oldroyd-B model 
is recovered when f=1, ε and ξ vanish. 

 Such PTT model variants may display a wide variety of shear-thinning and strain-
softening behaviour. With the above constitutive equation of state (1), we must couple the 
associated equations for mass conservation and momentum transport to define the 
governing system. Hence for incompressible, isothermal flow, in the absence of body 
forces, we have: 

0=⋅U∇  (8) 

 pReRe t ∇∇∇ −⋅−⋅= UUTU  (9) 

The complete system is defined via equations (1), (8) and (9).  

 Non-dimensionalisation of the governing equations requires scales for velocity of 

U for the wire speed, L for coating length (see Figure 4(b)), U
L for time, L

Uµ  for stress and 

pressure. The viscosity µ is made up of the polymeric viscosity µ1 (vanishes for 
Newtonian fluids) and solvent viscosity µ2, where µ=µ1+µ2. The non-dimensional 
Reynolds number is defined as µ

ρULRe = , and Weissenberg number as L
U 1We λ= , where ρ 

denotes fluid density, and λ1 an averaged relaxation time. 

 The PTT models, such as those described by Bird et al.27, are here referred to as 
PTT (ε,ξ,µ1). Then, as a special case, the Oldroyd-B model (constant viscosity) is given as 
PTT (0,0,µ1). The material parameters that control shear and elongational properties of the 
fluid are ε (for ε≥0) and ξ (where 0≤ξ≤2), respectively. 

4. NUMERICAL SCHEME 

4.1 Discretisation 

 The system of governing equations for stress, conservation of mass and transport 
of momentum, as mentioned above (see equations (1), (8) and (9)), with inclusion of 
appropriate initial and boundary conditions, is solved by a Taylor-Petrov-Galerkin-
pressure correction finite element scheme (as commended by Matallah et al.1 and Carew 
et al.28). The procedure involves a fractional-staged approach to solve the primary 
velocity, pressure and stress variables of the system, with incorporation of a time stepping 
scheme to enable calculation of complex flow stationary solutions in viscoelastic fluids. 
The time-stepping scheme includes a semi-implicit treatment for the momentum equation 
to avoid restrictive viscous stability constraints. Solution of each fractional-staged 
equation is accomplished via an iterative solver. That is, with the exception of the 
temporal pressure-difference Poisson equation, which is solved through a direct Choleski 
procedure. 

 The semi-implicit Taylor-Galerkin/pressure-correction method may be presented 
in semi-discrete temporal format as: 
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Stage 1a: 
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2
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1
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1
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2
1
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∆
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Stage 1b: 

)(]Re[]p2([)(
t

Re n*
2

nn
2

n* 2
1
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∆
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2
1

2
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Stage 2: 

*n1n )pp(
Re2

t
U⋅∇=−+2∇∆

. 

Stage 3: 

)p-p()
t

Re n1n*1n ++ −∇=− UU(
∆

2
. 

Above, n is the time step number and U* is a non-solenoidal vector field. The velocity and 

stress components of Stage 1a are taken for a half time step (i.e., n+ 2
1 ), while for Stage 1b 

the U* velocities and stresses are computed over a full time step (n+1). In combination, 
Stage 1 constitutes a predictor-corrector doublet. This concludes derivation of stress 
components for a complete time step. Pressure differences over this period are calculated 
from the Poisson equation (Stage 2), depending upon the intermediate vector field U*. 
Solution of this Poisson equation yields the solenoidal velocity over a full time step, as 
shown in Stage 3. As reported by Carew et al.28, no gain in stability or accuracy is made 
by correction of the stress tensor at Stage 3, so this is omitted here also. Spatial 
discretisation of the domain Ω involves division into Ne elements, viz, 

 ∑
=

=
eN

1e

eΩΩ . (10) 

The piecewise continuous basis functions are defined over two-dimensional triangular 
elements, with linear interpolation for pressure, and quadratic for velocity and stress: 

(τrr,τrz,τzz,τθθ)n = (T1
j,T2

j,T3
j,T4

j)nφj, 

 (Vr,Vz)
n = (Uj,Vj)

nφj, 

  (p)n = (Pk)
nψk. 

The index k is associated only with vertex nodes, whilst index j relates to both vertex and 
mid-side nodes. 

The SUPG method is employed to cope with the highly elastic, convection 
dominated nature of the constitutive equations, and to suppress streamwise noise in the 
discrete solution (Carew et al.28). The high precision of the solution is maintained by 
suppressing cross-stream discretisation error through mesh refinement and the use of 
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multiple Jacobi iterations (see Gunter et al.3) . Recovery of velocity gradients within the 
constitutive equation also enhances stability of the system. 

 Determination of time step (typically O(10-4)) is made on the basis of a Courant 
stability constraint for all meshes. More detailed discussion on this scheme can be found 
in References 10, Gunter et al.3 and Carew et al.28 

4.2 Free surface procedure 

To determine the free surface position, we employ a modified iterative free-surface 
location method in this paper, following a similar approach to that we have used 
previously for Newtonian problems. In such a manner, the degree of extrudate swell in a 
viscoelastic die-swell flow may be determined. The following three boundary conditions 
apply at a free surface, see Crochet et al.29, 

 vrnr + vznz = 0, (11) 

 trnr + tznz = S(
21

11

ρρ
+ ), (12) 

 trnz – tznr = 0, (13) 

where: S is the surface tension coefficient, vr is the radial velocity, vz is the axial velocity, 
the unit normal vector to the free surface is n=(nr,nz), principal radii of curvature vector is 
(ρ1,ρ2), and surface traction vector is t= (tr,tz)= σ. n with Cauchy stress σ. 

 Conditions (12) and (13) are typically used as boundary conditions for iterative 
free surface modelling. By calculating the normal velocity from equation (11), the shape 
of the upper extrudate boundary can be described, as shown in Figure 1(a) for extrudate 
from a die. The radial distance from the axis of symmetry in the free jet flow is: 

 dz)z(R)z(R
2

1

z

z z

r
12 ∫+=

v

v
. (14) 

 In this work, the integral in equation (14) is evaluated by Simpson’s quadrature 
rule, thus providing an estimate of the extrudate shape. The distance from the axis of 
symmetry, within each element ei at axial position z, is represented below: 
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v
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for length of element, 2iziz zzh −−= , th
i ie =  element, and finite element nodal velocity 

components ( ii e
z

e
r ,vv )(iz). 

The procedure of solution is as follows. First, the kinematics for a converged 
Newtonian solution are used as initial conditions with a relaxed stress field and the fixed 
free-surface problem is solved. Subsequently, the full problem is computed, involving the 
free surface calculation, where the surface location itself must be determined. 
Continuation from one particular viscoelastic solution setting to the next is then employed. 



 8

Also, we have found it a useful ploy, with respect to stress stabilization for linear PTT 
modelling for example, to enforce vanishing surface extra stress as a first approximation, 
to establish a close estimate of the free-surface position. Once located, then surface stress 
may be relaxed. 

 To satisfy the zero normal velocity, free surface boundary condition and to 
compensate for the adjustment of the free surface, the die-exit nodal coordinates must be 
modified. As a result, the velocity solution at the new surface position must be reprojected 
from the previous surface position (see Figure 1(b)). This is achieved by selecting two 
points (r1,z1) and (r2,z2) for each element at the vertex and mid-side positions. Since the 
magnitude of the total velocity vtotal at the boundary is the same for each element: 

 2
z

2
rtotal vvv += . (17) 

The angle α, between the horizontal z and the boundary defines the free surface position: 

 )
zz

rr
(tan

12

121

−
−= −α . (18) 

Lastly, updated values of velocity components rv′  and zv′  are calculated, viz, 

 )(αsinvv totalr =′ , 

 )(αcosvv totalz =′ . (19) 

5. SHEAR AND ELONGATIONAL BEHAVIOUR OF PTT MODELS 

Most non-Newtonian fluids exhibit non-constant viscosity, for example, displaying 
shear-thinning where the viscosity is a decreasing function of increasing shear rate. This is 
illustrated in Figures (2) in pure shear. Figure (3) reflects a similar set of plots, but 
demonstrating the functional dependence of viscosity under increasing strain-rate in pure 
uniaxial extension. This is termed the elongational or extentional viscosity behaviour. The 
merits of the PTT model over the Maxwell model are clearly highlighted by Phan-Thien 
and Tanner30, noting that, the Maxwellian elongational viscosity goes infinite at finite 
strain rates. Under the parameter sets identified in this study, linear versions of the PTT 
model do not display significant strain-softening properties. In contrast, by retaining 
higher order terms of the Taylor series expansion, this property may be recaptured, with 
the emergence of quadratic and exponential PTT models. 

The shear and extensional viscosity functions, µs and µe, of the PTT model 
variants may be expressed as a function of f itself via 

 
22

1
2

1
2s )2(f

f
)(

γλξξ
µµγµ

&
&

−+
+= , (20) 

and 

 
ελξ

µ
ελξ

µµεµ
&&

&
1

1

1

1
2e )1(f)1(2f

2
3)(

−+
+

−−
+= . (21) 

In pure shear, µs for the exponential PTT(1,0,0.88) model is charted for a range of 
We-values, 1≤We≤200, in Figure 2(a). The gradual drop in shear viscosity from a 
maximum initial zero plateau to a second Newtonian level of -0.9 units is observed at all 
We-values. The only discernable difference in behaviour between We-values is the rate of 
change of shear viscosity over the shear rate range 10-3≤γ& ≤102. This rate change increases 
with We, so that the most rapid corresponds to We=200.  Figure 2(b) illustrates the more 
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rapid drop in shear viscosity with increasing ε-value: this provides greater shear-thinning 
properties. Such a feature is incorporated in our short-die, pressure-tooling modelling by 
inclusion of a case where ε=1.  

Shear viscosity profiles in Figure 2(c) are plotted for µ1-values, ranging from 0.88 
to 0.995. The remaining parameters are taken as ε=1, ξ=0 and We=200. Typical shear-
thinning characteristics are observed, where shear viscosity drops from an initial value of 
zero to a minimum of -2.3 units (for µ1=0.995). In our finite element computations below, 
some short-die, pressure-tooling instances are implemented for µ1=0.99, reflecting 
increased shear-thinning over µ1=0.88, as well as enhanced numerical stability of 
convergence over µ1=0.995 (further evidence on this issue is given in the results section 
below). In Figure 2(d) and 3(d), contrast in model variants is displayed. For this purpose, 
the maximum We-value of 200 is chosen with PTT(1,0,0.99), for which the trends in shear 
viscosity are presented in Figure 2(d). The parabolic drop due to shear-thinning is 
practically replicated for all PTT models, falling from a first plateau of zero to a second at 
–2 units. The transition from linear to exponential PTT is reflected in a slightly more rapid 
drop to the global minimum and second plateau.  

Extensional viscosity profiles of Figure 3 adopt the same parameter setting as 
those for the pure shear plots of Figure 2. For a Newtonian fluid, at low strain rates the 
elongational viscosity is three times the shear viscosity. Non-Newtonian polymer melts, 
such as represented by the PTT(ε,0,0.99) model at We=200, produce non-monotonic 
elongational behaviour (see Figure 3(b) for 0.1≤ε≤0.5, demonstrating strain-hardening at 
low strain rates prior to strain-softening. 

Under variation in We and for the same combination of parameters as for Figure 
2(a), the elongational viscosity behaviour of Figure 3(a) is shown to adopt an almost 
identical pattern to the shear viscosity. Elongational viscosity levels are consistently three 
times larger than those of the shear viscosity. Such rapid decline in viscosity at We=200, 
reflects industrial experience and calibrations (private communication31). A single 
(averaged) relaxation time, λ1=2 sec, is selected from data typical for this process (see 
other References 1, 2 and 4). With the associated velocity and length scales chosen, this 
yields a maximum value of We=200. Variation of extensional viscosity with the ε-
paramater is charted in Figure 3(b). A number of theoretical investigations32-34 have 
attempted to rationalise the build-up in elongational viscosity to a maximum (“strain-
hardening behaviour”), followed by a decrease with increasing elongation rate (as 
observed in Figure 3(b)). Some experimental studies35-36 have speculated on the notion of 
“molecular entanglement”33 to explain this behaviour. We observe such a response in 
Figure 3(b) at low ε-values for the exponential PTT model. The temporary rise in 
elongational viscosity (a stretching effect), that occurs at low extension rates prior to 
tailing off at high extension rates, is associated with the non-linear exponential term of the 
model. This paper uses the parameter set of µ1=0.99, ξ=0 and We=200, unless specified 
otherwise. The model with ε=1 is considered an appropriate choice to suit present 
requirements due to its monotonic strain-softening behaviour. 

Corresponding strain-softening behaviour is observed in Figure 3(c) with variation 
in µ1. Again, the elongational viscosity is comparable to one-third the shear viscosity in 
magnitude (see Figure 2(c)). The more appropriate value, to suit present circumstances, 
corresponds to the model with µ1=0.99, due to its combination of strain-softening and 
numerical stability attributes. The marked differences in strain-softening properties for 
linear, quadratic and exponential PTT(1,0,0.99) models are observed in Figure 3(d). Only 
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relatively mild strain-softening is observed in the case of the linear PTT model with this 
choice of parameters. The exponential PTT model demonstrates the more extreme strain-
softening behaviour, and is called upon to reflect this position in our short-die pressure-
tooling work (as one might encounter, say, for an LDPE grade polymer at 230oC).  

Under general flow conditions, there is need to record generalized shear and strain-rates, 
that are defined via flow invariants as, respectively: 

 dII2=γ&  and 
d

d

II

III
3=ε& , (22) 

where IId and IIId are the second and third invariants of the rate of strain tensor D. Such 
quantities are represented as 
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6. PROBLEM SPECIFICATION 

 Two types of flows are studied here, namely, a short-die pressure-tooling flow, and 
a full-die pressure-tooling instance. The primary aim of the first case is a preliminary 
investigation into the flow characteristics for pressure-tooling, without the inclusion of the 
full die complexity. Aspects of particular interest include the interface from pressure-
driven shear flow to drawing flow, and the die-exit conditions. There is need to invoke a 
free surface location technique to resolve the surface position and to examine the effects 
on the free jet drawing flow (swelling shape and ratio, χ). This drawing flow is 
responsible for the coating upon the lower moving-wire boundary. Creeping flow 
conditions (low Reynolds number of 10-4) are invoked for both short and full-die pressure-
tooling. 

6.1 Short-die,  pressure-tooling 

 Figure 4(a) illustrates the domain of consideration for this short-die annular 
pressure-tooling flow. Results for such a problem are computed on a relatively fine mesh 
of 6×24 elements, 637 nodes, 1449 degrees of freedom, with minimum element size of 
0.0645 units (Figure 5(a)). Mesh refinement for this flow follows our precursor work10. 
This model problem is comparable to a classical die-swell flow, but also involves an 
imposed drag flow due to the moving wire and a free jet flow beyond the die. A fully 
developed pressure-driven annular flow is imposed at the inlet that provides the inlet flow 
profile boundary conditions. This fixes the flowrate throughout the die, with no-slip 
conditions pertaining at the die wall. The moving wire at the lower boundary travels at a 
constant predefined speed. The location of the free jet boundary surface is defined by a 
streamline, upon which vanishing traction is assumed. A fully developed plug flow 
prevails at the outlet. The characteristic velocity is taken as the wire speed, the 
characteristic length is the inlet channel radius (that includes a wire radius of 0.6 units). 
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A Newtonian and three PTT model variants are implemented, of linear, quadratic 
and exponential type. Various parameter ranges are investigated with We ranging from 1 
to 200 (see back to section 5), and µ1 ranging from 0.88 to 0.995. 

6.2 Full-case, pressure-tooling 

 The domain considered for the complete pressure-tooling flow is represented in 
Figure 4(b), upon which the meshes of Table 1 (Figure 13) are constructed. This problem 
subsumes the short-die flow, covering the land region flow (Z6Z7) and a short jet flow 
zone (Z5Z6). Here, we have an abrupt contact point between the moving wire and 
pressure-driven annular flow that occurs at position Z3 within the die. Wire conditions are 
assumed to apply at this point (see References 2 and 8). The extruded melt swells at the 
free boundary region Z5Z6, where tractions vanish and the pressure is atmospheric 
(σnn=σns=P=0). At the upper and lower die walls (Z1Z3 and Z6Z10), no slip applies. A fully 
developed plug flow travelling with the wire, is imposed at the outflow Z4Z5. The lower 
domain boundary, Z3Z4, corresponds to the wire that moves under a predefined wire 
speed. 

Table 1: Full-die; finite element meshes 

    Mesh Element Total element Total node DOF 

1. Uniform mesh 12×74 1776 3725   8425 
2. Biased coarse mesh    6×114 1368 2977   6759 
3. Biased medium mesh 10×168 3360 7077 16013 
4. Biased fine mesh 15×127 3810 7905 17858 

 
 For this case, the characteristic length is selected as the coating length, R2, and the 
characteristic velocity is associated with the wire speed, Vwire. The die converging angles 
at Z3, Z7 and Z8 are θ(24o), φ(17o) and α(24o), respectively. A wire radius of 0.09 units is 
taken here, the die length is 3 units, inlet and outlet hydraulic radii at location Z1Z10 and 
Z4Z5 are 0.5 units and 0.2 units, with land length equal to 0.05 units. The polymer melt 
enters the die geometry with annular velocity profile Vz(r) (see Reference 9). By 
comparing the analytical and numerical solutions for velocity and stress at the die-exit, the 
accuracy of the solution may be assessed. For fully developed steady simple shear flow, 
the applied inlet boundary stresses τij(r), within the annular pressure-driven flow, can be 
evaluated as: 
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where f is the PTT model function of equations (5)-(7).  The azithmutal stress at the inlet 
vanishes. In each model instance, by substituting equations (25)-(27) into the expressions 
for the PTT functions, equations (5)-(7), the parameter f may be re-expressed in the 
following form: 
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linear model: 
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exponential model:  ]
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In this manner, non-linear algebraic expressions may be derived for the parameter f. 
Hence, via a Newton iteration, these expressions may be resolved to identify f for each 
model, appropriate for steady simple shear flow. Once f has been determined, inlet stress 
boundary conditions may then be gathered from equations (25-27). 

7. RESULTS AND DISCUSSION 

7.1 Short-die,  pressure-tooling 

 Field contours for short-die pressure-tooling are represented in Figures 5(c)-5(j). 
This short-die case is considered first, as a precursor to a full specification to simplify 
some of the many difficulties involved and pinpoint a comparative investigation, 
removing the complexity associated with the die flow itself. The full case will therefore 
illustrate the influence of the die flow upon the process. For a 288 element mesh (Figure 
5(a)), the velocity vector and contour plots, consisting of radial and axial velocity 
components, are illustrated in Figures 5(b) to 5(d). The adjustment in flow profile from a 
shear flow to a plug flow is clearly observed; see also Reference 10. A small reduction in 
pressure of 0.46 units occurs throughout the length of the die (Figure 5(e)), where the die 
length to exit gap width ratio is of the order 2:1. The pressure drop across the flow in this 
case reaches 0.46 units, corresponding to that over the die alone, and the minimum 
pressure of –0.16 units, is observed close to the top surface die-exit. The dramatic increase 
in shear rate I2 to 31.35 units at the top die-exit boundary is observed in Figure 5(f), which 
declines to zero immediately upon entering the jet region (see on). Figure 5(g) reflects the 
level of extension within the jet flow region, which rises to a maximum ε& -value of 0.14 
units. Such a level is less than 0.05 percent of that due to shear and indicates which ranges 
of deformation are most relevant for the flow, with respect to Figure 2 and 3. A 
correspondingly low Trr-value of 0.008 occurs likewise in Figure 5(h). The Trz and Tzz-
profiles (Figures 5(i), 5(j)) demonstrate peak singularities at the (upper) boundary die-exit 
region. 

 In Figure 6, pressure drop (∆p) is charted along the wire, against various parameter 
settings.  ∆p for a range of We is plotted in Figure 6(a). Linear reductions in pressure 
before the die-exit are observed, with We=200 giving the smallest pressure difference. 
This peak We-value is used in our further studies to suit industrial requirements, as 
mentioned above. The most extreme level for initial pressure of 40 units corresponds to 
the Newtonian case (We=0): so that, with introduction of shear-thinning, ∆p declines, as 
one would anticipate. Figure 6(b) illustrates the effects of variation in µ1 on pressure for 
the exponential PTT model. The trend in the plot with the paramater choice of µ1=0.99 
correlates to the field pressure contours of Figure 5(e). Reduction in µ1 from 0.99 to 0.88 
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gives an almost ten fold increase in pressure drop. The three PTT models variants (linear, 
quadratic, exponential) all give similar pressure profiles over the length of the die and 
beyond (Figure 6(c)). The exponential PTT variant provides a slightly lower pressure drop 
than that for the linear model. We conclude that ∆p is more sensitive to adjustment in We 
and µ1, and less so to choice of model. 

Table 2: Short-die; exponential PTT(1,0,0.88), solution variation with We  

Solution    
variables 

We=0 We=1 We=10 We=100 We=200 

    I2  max 28.77 42.05 31.80 29.08 28.90 

   ε&   max 0.084 0.368 0.193 0.049 0.048 

   ∆p 39.81 10.89 5.69 4.89 4.84 

   Trz  max 6.834 1.152 0.156 0.020 0.011 

   Tzz  max 40.57 3.60 0.51 0.07 0.04 

   χ 1.039 1.039 1.051 1.045 1.044 

In Figure 7, variation in shear rate at the top surface is examined. Figures 7(a)-7(b) 
correspond to the exponential PTT model. Higher We-values suppress the shear rate peaks 
at the die-exit, values varying from 42.05 units for We=1 to 28.9 units for We=200. In 
contrast, decreasing µ1 from 0.995 to 0.88 achieves a 14% reduction in the shear rate spike 
(Figure 7(b)). We particularly note the trends of Figures 7(c) for the linear PTT model 
behaviour on the top surface. This plot suggests that the relatively constant (flat) 
elongational viscosity behaviour of Figure 3(d) is responsible for the oscillations in shear 
rate profile at the die-exit region (lack of strain-softening), reaching a peak of 14.4 units. 
This result clearly demonstrates the looming inadequacies of the linear PTT model to 
represent such a flow. Considerably smoother and more stable shear rate plots are 
reproduced with the quadratic and exponential PTT models (Figure 7(d)). Note here, that 
shear rate peaks are much higher than for the linear model, attaining values of up to 34.0 
units for the quadratic PTT model. 

Table 3: Short-die; exponential PTT(1,0, µ1), We=200, solution variation with µ1 

Solution 
variables µ1=0.88 µ1=0.99 µ1=0.995 

   I2  max 28.90 31.35 33.80 

   ε&   max 0.048 0.144 0.363 

   ∆p 4.841 0.462 0.263 

   Trz  max 0.011 0.014 0.017 

   Tzz  max 0.038 0.041 0.041 

   χ 1.044 1.054 1.092 

The effect of increasing We is to lower strain and shear rate peaks, as represented 
in Table 2 for the exponential PTT model. This table corresponds to the shear rate profiles 
of Figure 7(a), where models with lower We produce higher shear rates at the top surface. 
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Modification of µ1, produces the strain and shear rates of Table 3. Increase in µ1 is seen to 
increase shear and strain rate maxima, reaching peaks of 33.8 and 0.363 units, 
respectively, for µ1=0.995. Across the three PTT models considered, shear rate maxima 
are of the order 102 greater than those in strain rate. Contrasting the quadratic and 
exponential versions in Table 4, the lower shear rate peak at the die-exit (Figure 7(d)) is 
provided by the exponential PTT model. This is confirmed in the shear rate profile plots 
of Figure 7(c). With the exponential PTT model, the strain rate maxima of 0.144 units 
corresponds to that in the free-jet of Figure 5(g). 

Table 4: Short-die; PTT(1,0,0.99), We=200, solution variation with model 

Solution 
variables 

Linear Quadratic Exponential 

    I2  max 14.40 33.95 31.35 

    ε&   max 0.963 0.372 0.144 

    ∆p 0.613 0.509 0.462 

    Trz  max 0.414 0.153 0.014 

    Tzz  max 6.222 0.381 0.041 

    χ 1.100 1.088 1.054 

Figure 8 quantifies plots for shear stress, Trz, with variation in parameters across 
the top surface. Trz-values are shown in Figure 8(a) for a range of We. The Newtonian, 
initially negative level, drops sharply to –25 units just prior to the die-exit, before an even 
more violent recovery on entry to the free jet region. For We=1, a much reduced negative 
entry flow value of Trz=–1 units applies within the die (shear-thinning effect). For We≥10, 
minor levels of shear stress are generated. In Figure 8(b), higher µ1-values provoke an 
increase in peak Trz-values at the jet-entry region and beyond, with larger Trz within the 
die. Stress levels are low due to the setting, We = 200. This behaviour replicates the shear 
rate patterns of Figure 7(b). Violent oscillations in the linear PTT profiles prior to die-exit 
(Figure 8(c)) are the result of strain-hardening effects (see Figure 3(d)), with a peak value 
of 0.41 units at the pre-die exit. The strain-softening behaviour observed in Figure 3(d), 
stabilises, the Trz-profile for the quadratic and exponential PTT models (Figure 8(d)). 
Smooth profiles result and, in this, we are able to distinguish the influence of strain 
hardening from softening. The Trz peak is larger for the quadratic case due to the larger 
shear rates generated (Figure 7(d)). I2 inlet values in Figure 7(d) for both models are about 
8 units. The shear viscosity log-log plots of Figure 2(d), justify the lower initial shear 
stress of Figure 8(d). In contrast, we plot in Figure 9, Trz-profiles along the wire. From our 
previous work10, we observed that for Oldroyd models, the effect of the additional 
component of drag flow, increases values of axial velocity Vz, shear rate I2, pressure P, 
radial stress Trr and shear stress Trz; in contrast reducing radial velocity Vr, axial stress Tzz 
and azimutal stress Tθθ.  A much higher die-entry shear stress occurs for the Newtonian 
case. For the viscoelastic results, the shear stress of Figure 9(a) tends to zero with 
increasing We due to shear-thinning. The shear stress profiles of Figure 9(b) for increasing 
µ1, show a larger Trz within the die, adjusting to lower values beyond the die. Levels 
correspond to the setting of We=200. Differences between the shear stress profiles of the 
various PTT models at the wire are observed in Figure 9(c). These are a consequence of 
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the near-vanishing shear rate I2 in the post-die flow, as well as the local elongational 
influences, see Figure 3(d). 

 For axial stress profiles, Tzz, and variation with We, there is little change on the top 
surface in Figure 10(a). A spike at die-exit occurs in Figure 10(a): this is magnified 
considerably below We=1 as Newtonian conditions are approached. At We=200 in Figure 
10(b), τzz-values are low on the top surface and rise marginally with increasing µ1. The 
decline at post-die exit follows the kinematics. The free jet is almost a pure extensional 
flow, so that, 

)(errzz εµε &&≈−ΤΤ . 

Hence, since Trr is relatively small (Figure 5(h)) in contrast to Tzz, Tzz depends practically 
upon the strain rate ε&  (Table 4), which peaks in the free jet region. The Tzz maximum of 
the linear PTT model (Figure 10(c)) is due to the mild strain-softening effects (high µe) 
post-die exit (Figure 3(d)). The exponential PTT Tzz-profile is consistently lower than for 
the quadratic PTT model (Figure 10(d)), which in turn, is lower than that for the linear 
model. This is due to the lower elongational viscosity (Figure 3(d)) and shear rates 
sustained (Figure 8(c)) by the exponential PTT, as opposed to the quadratic (or linear) 
PTT model. Axial stress along the wire (Figure 11(a)) drops with increasing We for 
viscoelastic fluids due to shear thinning effects within the die. The gradual decline in axial 
stress for all µ1-values (Figure 11(b)), corresponds to the decrease in pressure (Figure 
5(e)) along the die length. The stress levels are low as We=200. The larger values of µ1 
shift the Tzz-profiles to larger positive values within the die. Variation across the three 
PTT models is covered in Figure 11(c). This is most noticeable for the linear PTT model, 
whose peak of 0.32 units is double that of the quadratic case, and ten times greater than 
that for the exponential PTT instance. Peak values occur for linear PTT just beyond the 
die, for quadratic PTT just within the die, and barely at all for the exponential PTT model. 
The position is similar in shear stress. 

 Die-swell characteristics along the top free surface are presented in Figure 12. For 
the exponential PTT model, results are plotted for a range of We-values in Figure 12(a). 
The die-swell for We=1 is lower due to the inhibiting influence of the shear and 
elongational effects. Increasing µ1 is seen to magnify the die-swell, Figure 12(b). This 
behaviour confirms the observations made previously concerning strain rate (Table 3), 
shear stress (Figure 8(b)), and axial stress (Figure 10(b)). For Figure 12(c), it is apparent 
that retention of the higher order terms of the Taylor series expansions in the PTT model, 
produces a form that reduces the extent of the die-swell. For these three models, swelling 
projections are influenced by the corresponding strain rates (Table 4), shear stresses 
(Figures 8(c), 8(d)), and axial stresses (Figures 10(c) and 10(d)) produced. 

7.2 Full-die, pressure-tooling 

 The range of meshes of Figures 13(a)-13(d) is used for the full pressure-tooling 
simulations. The zonal refinements are outlined in Table 5, with greatest density and bias 
in the land and die-exit regions. Results are plotted upon the biased fine mesh (Figure 
13(d)), unless otherwise specified. With the prior knowledge of the above short-die study, 
the specific parameters employed in this flow are: Re=10-4, We=200, µ1=0.99, ε and ξ are 
unity and zero, respectively. 

 The radial and axial velocity line contour plots of Figures 14(a) and 14(b) show 
rapid acceleration on approach to the die-exit in both velocity components. An intense 
drop in pressure local to the land region is observed in Figure 14(c), reaching a maximum 
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pressure drop of 10.17 units. Shear rate I2 of Figure 14(d), also identifies significant 
shearing over the land region, reaching a peak of 461.72 units at the die-exit, a fifteen fold 
increase to that obtained for short-die, pressure-tooling. Strain rates ε&  in Figure 14(e), are 
an order of magnitude lower than shear rates, and display peaks at melt-wire contact and 
die-exit. At the melt-wire contact point, ε&  increases to 8.37 units. A rapid larger rise 
occurs in the wire-coating section at die-exit. The second peak in ε& -profile at the top 
boundary, characteristic for the full-die, reaches a height of 18.83 units in the post-die exit 
region. The “shock impact” as the fluid makes contact with the wire is most prominent in 
the radial, shear and axial stress contour plots of Figures 14(f) to 14(h). Nevertheless, 
stresses within the die remain small, the greatest axial stress of 0.069 units occurs at the 
free jet-entry region. 

Table 5: Full-die; mesh characteristics, sub-region zones 

Sub-region zone 
Uniform 

mesh 
Biased 

coarse mesh 
Biased 

medium mesh 
Biased 

fine mesh 

1. inlet die  12×6  6×20  10×35  15×20 

2. converging die  12×12  6×25  10×30  15×25 

3. coating region  12×24  6×30  10×35  15×30 

4. land region 12×8 6×3 10×8 15×5 

5. jet region  12×24  6×36  10×60  15×47 

From Table 6, maxima in I2 correspond to the biased fine mesh at the top surface, 
although there is little difference in solution values between meshes at the wire boundary. 
Swelling ratio (χ) is increase by about 15% from coarse to finest meshes. This illustrates 
the importance of sufficient mesh refinement. Mesh refinement has little influence on ε&  
peaks, pressure drop, and stress maxima, the greatest differences O(5%) are observed in 
pressure drop, with O(1%) variation in other variables. 

Table 6: Full-die; exponential PTT(1,0,0.99), We=200, solution variation with 
 mesh refinement 

Solution 
variables 

Uniform 
mesh 

Biased 
coarse mesh 

Biased 
medium mesh 

Biased 
fine mesh 

I2  max,  Top 209.9 213.0 383.0 461.7 

I2  max,  Bot 145.6 139.6 138.7 139.7 

ε&   max 18.73 18.75 18.72 18.83 

∆p 10.49 10.09 10.00 10.18 

Trz  max 0.019 0.022 0.025 0.025 

Tzz  max 0.058 0.064 0.063 0.069 

χ 1.087 1.157 1.258 1.215 

 The pressure along the bottom surface for the exponential PTT model (Figure 
15(a)) corresponds to the line contour plot of Figure 14(c). The higher initial die pressure 
and lower extrudate pressure illustrate the inaccuracies of the uniform mesh in areas of 
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high activity. The quadratic PTT pressure value within the die (Figure 15(b)) is 5% higher 
than that for the exponential PTT model, which confirms the behaviour noted in the 
previous short-die, pressure-tooling results. Pressure difference for the exponential PTT 
model is twenty two times greater for the full case, above short-die pressure-tooling 
(comparing with Figure 6(c)). Note that, these drops in pressure, essentially correspond to 
the same flow zone, that is, over the land-region jet-entry.   

Table 7: Full-die; PTT(1,0,0.99), We=200, solution variation with model 

Solution 
variables 

Quadratic Exponential 

  I2  max,  Top 448.9 461.7 

  I2  max,  Bot 140.4 139.7 

  ε&   max 18.76 18.83 

  ∆p 10.60 10.18 

  Trz  max 0.408 0.025 

  Tzz  max 1.639 0.069 

  χ 1.224 1.215 

Shear rate along the top and bottom surface gave almost identical shapes for each 
mesh tested, the only difference being the die-exit peaks. Hence, shear rate profiles are 
represented here for the fine mesh only in Figure 16. The top surface I2 peak of 461.7 
units at the die-exit (Figure 16(a)) is fifteen times greater than that for short-die, pressure-
tooling (see Figure 7(d)). Further data on I2 maxima may be found in Tables 6 and 7. 
Results for the linear PTT model are omitted from Table 7 because it was not possible to 
gather stable solutions for this model under such high shear and strain conditions, with 
such large We-values. The double (sudden shock) peaks of 124 and 140 units at the 
bottom surface of Figure 16(b), correspond to the contours isolated in Figure 14(d). Such 
peaks do not appear in the short-die case, see Figure 5(f), and hence are a new 
introduction as a consequence of the full-die and melt-wire contact. 

 Top surface shear stress profiles of Figure 17(a) demonstrate the “localised 
effects“ of die-exit point discontinuity for a range of meshes. Shear stress in the free-jet 
region reduces and reflects mesh convergence with refinement. A violent jump in solution 
is observed over the land region. Discrepancies between the various PTT model results for 
shear stress are illustrated in Figure 17(b). Performance of the quadratic PTT model is 
notably quite poor at the die-exit, with a sharp-decay in Trz on the approach to the die-exit, 
followed by a leap to 0.4 units at the actual exit. Comparison of Trz between full-die and 
short-die pressure-tooling instances reveals a 2.7 times increase in maximum value for the 
quadratic PTT, and 1.8 times increase for the exponential PTT version (Tables 4 and 7). 
Such oscillations in Trz are magnified greatly with the linear PTT model, rendering 
satisfactory convergence impossible. This is a reflection of accessing these severe 
industrial-level dynamical ranges. Shear stresses along the bottom surface (Figure 18(a)) 
reveal the significant influence of the moving-wire on the flow at the melt-wire contact 
point (axial position –1.1 units, indicated by arrow in Figures 16-20), and the loss of 
accurate resolution on the coarse mesh in regions of high activity (sharp gradients). The 
“first impact” effect of the moving wire on the fluid at position –1.1 units is magnified in 
Figure 18(b). This is evidence to the effects of the drag flow. The shear stress profile for 
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the exponential PTT model is on the other hand, minimally affected with oscillation in this 
contact zone. 

 There is little difference in axial stress behaviour along the top surface, between 
the various levels of mesh refinement (Figure 19(a)).  That is, with the exception of local 
adjustment around the sharp geometric corners of the die and within the extrudate. 
Notably, in the extrudate, Tzz remains positive on medium and fine meshes, providing 
some residual stress to the coating, albeit small. The axial stress of the quadratic PTT 
model (Figure 19(b)) is seen to peak at 0.65 units within the land region, some 4.3 times 
greater than that for short-die, pressure-tooling (compare with Tables 4 and 7). The 
exponential PTT model Tzz-profile increases only slightly, with Tzz for full-case pressure-
tooling, reaching a magnitude 1.7 times larger than that for the short-die instance. Along 
the bottom surface in Figure 20(a), the finer mesh refinement is observed to give smoother 
transitions in axial stress. The characteristic “double peak” profile at the melt-wire contact 
point and die-exit regions is observed in the axial stress in Figure 20(b). Notably for the 
quadratic model, the axial stress peak at the melt-wire contact point exceeds that at die-
exit and is followed by a sharp relaxation on the approach to the land region, upon which 
a more sustained maxima forms. Again, the exponential PTT model provides smoother 
damped results, much reduced in magnitude, than those for the quadratic case. Hence, 
along the wire, there is a ten-fold increase in values for the quadratic PTT model observed 
from short to full-die pressure-tooling (Figure 11(c) and 20(b)). For the exponential PTT 
model, correspondingly, there is little change. 

 Die-swell profiles along the top free surface (Figure 21(a)) increase progressively 
with mesh refinement. This demonstrates the need for serious care and attention to 
sufficient mesh refinement, if accurate die-swell predictions are required. The fine biased 
mesh provides such. Quadratic and exponential PTT die swell projections from the die-
exit (Figure 21(b)) show little variation, due to the intensity of mesh refinement employed 
on the biased fine mesh. The swelling ratio corresponding to the exponential PTT model is 
15% larger than that for short-die pressure-tooling. A similar observation holds likewise 
for the quadratic PTT model, there showing a 14% difference (Tables 4 and 7).  

8. CONCLUSIONS 

Overall, the short-die pressure-tooling study indicated solution variation with 
parameters µ1 and We, and response of various PTT models. Ranges of shear and 
extension rate were of order 102 and 10-1, respectively. The linear, quadratic and 
exponential PTT models were computed for the short-die, and demonstrate the influence 
of shear and extensional viscosity variations. For short-die flow, there was no melt-wire 
sudden contact and smooth solutions were established on the wire at the die-exit. For the 
full-die study, equivalent solution trends are established with parameter adjustment in µ1 
and We. Stable solutions were only available for the strain-softening models of quadratic 
and exponential PTT form. Ranges of shear and extension rate rose above the short-die 
case to orders 103 and 101, respectively. For dimensional equivalents, one must scale by 
O(103). 

For the short-die tooling, the major observations are summarised as follows. 
Maximum shear rates arise at die-exit, top-surface, whilst for extension rates they lie 
within the free-jet region. Such maxima in shear rate are suppressed with increasing We, 
but increase with increase of µ1. The corresponding situation for strain rates is more 
marked, but displaying similar trends to shear rate. Also, increasing µ1 is seen to magnify 
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die-swell. With adjustment of model, (linear, quadratic to exponential) maxima in shear 
rates increase, whilst they consistently fall for strain rates. Smooth solution profiles result 
for quadratic/exponential PTT, in contrast to those for the linear PTT. This distinguishes 
the influence of strain-hardening from softening and its effect upon numerical stability. 
Strain-hardening effects are responsible for the oscillations (around die-exit) with the 
linear PTT model top-surface profiles in variables I2, Trz and Tzz. Shear-thinning and 
strain-softening stabilise the position for quadratic and exponential PTT model variants, 
rendering stable numerical solutions. Due to shear-thinning at the larger We-values, stress 
levels almost vanish. Axial stress maxima at top surface are due to mild strain-softening. 
Along the wire, axial stress peaks occur beyond the die for linear PTT, just within the die 
for quadratic PTT and practically vanish for exponential PTT. Similar comments apply for 
shear stress. 

For the full-die tooling, solution oscillations, mainly around the die-exit 
singularity, are greatly magnified with the linear PTT model and prevent convergence at 
industrial-level deformation rates. Shear rate maxima on the top surface occur over the 
land-region, and in particular, peak at the die-exit. The level is some fifteen times larger 
than that for the short-die. Shear rate maxima on the wire are lower than that at the top 
surface, by a factor of three. The double (sudden shock) peaks in shear rates at the bottom 
surface for full-die flow, do not appear in the short-die case. These are a new feature, 
introduced as a consequence of the full-die and melt-wire contact. There is a double peak 
along the wire, with the die-exit value being marginally larger than that at melt-wire 
contact. Extension rate maxima are lower than shear rates by one order, but have 
increased one hundred fold from the short-die case. Extension rates peak at the melt-wire 
contact and across land/die-exit region. The maximum corresponds to the die-exit. The 
pressure drop across the flow is almost entirely confined to the land-region, and is 
magnified some twenty two times over that for the short-die. 

The behaviour in stress for full-tooling reveals the "shock impact" as the fluid 
makes contact with the wire is most prominent in the stress. The largest axial stress arises 
within the free jet-entry region. For the quadratic PTT model, stress along the bottom 
surface is greatly influenced by the drag flow effects imposed on the fluid by the moving 
wire. For the exponential PTT model, the corresponding stress behaviour, is on the other 
hand, only marginally affected by oscillations in this contact zone. Greater mesh 
refinement is seen to give smoother transitions of axial stress along the bottom surface. 
For the quadratic PTT model, the axial stress peak at the melt-wire contact point exceeds 
that at die-exit, and is followed by a sharp relaxation on the approach to the land region. 
Thereupon, a more sustained maxima forms giving, the characteristic "double peak" 
profiles. The exponential PTT model is again seen to provide smoother, more damped, 
axial stress variations than occur for the quadratic case. Die-swell profiles along the top 
free surface increase progressively with mesh refinement, demonstrating mesh 
convergence. The swelling ratios for the quadratic and exponential PTT models are 15% 
higher than that observed for short-die tooling. Hence, the influence of the die flow itself 
is exposed. 



 20

FIGURE LEGEND 
 
Table 1: Full-die; finite element meshes 
Table 2: Short-die; exponential PTT(1,0,0.88), solution variation with We 
Table 3: Short-die; exponential PTT(1,0, µ1), We=200, solution variation with µ1 
Table 4: Short-die; PTT(1,0,0.99), We=200, solution variation with model 
Table 5: Full-die; mesh characteristics, sub-region zones 
Table 6: Full-die; exponential PTT(1,0,0.99), We=200, solution variation with mesh 
 refinement 
Table 7: Full-die; PTT(1,0,0.99), We=200, solution variation with model 

Figure   1: Extrudate region; 
 (a) node-element referencing, (b) free surface adjustment 
Figure   2: PTT model: shear viscosity;  
 (a) Exp PTT(1,0,0.88),  (b) Exp PTT(ε,0,0.99), We=200,  
 (c) Exp PTT(1,0, µ1), We=200, (d) PTT(1,0,0.99), We=200 
Figure   3: PTT model: elongational viscosity; 
 (a) Exp PTT(1,0,0.88),  (b) Exp PTT(ε,0,0.99), We=200,  
 (c) Exp PTT(1,0, µ1), We=200, (d) PTT(1,0,0.99), We=200 
Figure   4: Schema for extrusion coating-flows;  
 (a) short-die pressure-tooling, (b) full-die pressure-tooling 
Figure   5: Short-die: exponential PTT(1,0,0.99), We=200; 
 (a) mesh pattern, 288 elements, 637 nodes, (b) velocity vectors, 
 (c) Vr contours, (d) Vz contours, (e) pressure contours, 
 (f) I2 contours, (g) ε&  contours (h) Trr contours, 
 (i) Trz contours, (j) Tzz contours 
Figure   6: Short-die: PTT model, pressure along the wire;  
 variation with (a) We, (b) µ1, (c) model 
Figure   7: Short-die: PTT model, I2 on top surface; 
 variation with (a) We, (b) µ1, (c) linear model, (d) model 
Figure   8: Short-die: PTT model, Trz on top surface; 
 variation with (a) We, (b) µ1, (c) linear model, (d) model 
Figure   9: Short-die: PTT model, Trz along the wire; 
 variation with (a) We, (b) µ1, (c) model 
Figure 10: Short-die: PTT model, Tzz on top surface; 
 variation with (a) We, (b) µ1, (c) linear model, (d) model 
Figure 11: Short-die: PTT model, Tzz along the wire; 
 variation with (a) We, (b) µ1, (c) model 
Figure 12: Short-die: PTT model, die swell on top free 
 surface; variation with (a) We, (b) µ1, (c) model  
Figure 13: Full-die: mesh patterns;  
 (a) uniform mesh, 12×74 elements 
 (b) biased coarse mesh, 6×114 elements 
 (c) biased medium mesh, 10×168 elements 
 (d) biased fine mesh, 15×127 elements 
Figure 14: Full-die: exponential PTT(1,0,0.99), We=200, biased fine mesh; 
 (a) Vr contours, (b) Vz contours, (c) pressure contours, (d) I2 contours, 
 (e) ε& contours, (f) Trr contours, (g) Trz contours, (h) Tzz contours 
Figure 15: Full-die: pressure on bottom surface; 
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 (a) exponential PTT, (b) on biased fine mesh 
Figure 16: Full-die: I2 on top and bottom surface, exponential  PTT(1,0,0.99), 
 biased fine mesh; (a) top surface, (b) bottom surface 
Figure 17: Full-die: Trz on top surface; 
 (a) exponential PTT, (b) on biased fine mesh 
Figure 18: Full-die: Trz on bottom surface; 
 (a) exponential PTT, (b) on biased fine mesh 
Figure 19: Full-die: Tzz on top surface; 
 (a) exponential PTT, (b) on biased fine mesh 
Figure 20: Full-die: Tzz on bottom surface;  
 (a) exponential PTT, (b) on biased fine mesh 
Figure 21: Full-die: die swell on top free surface;  
 (a) exponential PTT, (b) on biased fine mesh 
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Figure 8: Short-die: PTT model, Trz on top surface; variation with (a) We,

(b) �1, (c) linear model, (d) model
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Figure 9: Short-die: PTT model, Trz along the wire; variation with (a) We,

(b) �1, (c) model
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Figure 10: Short-die: PTT model, Tzz on top surface; variation with (a)

We, (b) �1, (c) linear model, (d) model
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Figure 11: Short-die: PTT model, Tzz along the wire; variation with (a)
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(d) biased �ne mesh, 15�127 elements

Figure 13: Full-die: mesh patterns
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Figure 14: Full-die: exponential PTT(1,0,0.99), We=200, biased �ne mesh
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Figure 14: Continued Full-die: exponential PTT(1,0,0.99), We=200, biased

�ne mesh
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Figure 15: Full-die: pressure on bottom surface
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Figure 16: Full-die: I2 on top and bottom surface, exponential

PTT(1,0,0.99), biased �ne mesh
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Figure 17: Full-die: Trz on top surface
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Figure 18: Full-die: Trz on bottom surface
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Figure 19: Full-die: Tzz on top surface
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Figure 20: Full-die: Tzz on bottom surface
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Figure 21: Full-die: die swell on top free surface


