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Preface

This is the lecture note for the course 2103-530 �Industrial Robots 1� taught at
Chulalongkorn University. Audiences of this course are the fourth year stand-
ing undergraduate students as well as graduate students who are interested in
robotics and never have taken any course in robotics before. This one-semester
course introduces fundamental topics in robotics science emphasizing in its me-
chanical dynamics. In particular, the course takes the serial manipulator as an
examplar and studies the mathematical modeling of it. For this introductory
course, topics to be covered are the kinematics, trajectory generation, mecha-
nism design, and introductory to control of the manipulator. The continuing
course 2103-630 �Industrial Robots 2� will use these basic knowledge in studying
dynamics and control of it.

Although I have worked my best to prepare and revise the lecture note, there
might be some uncaught errors or some poorly explained issues. Therefore, I will
be very grateful for any notice or comment which will help me improving the
material. Please send them to phongsaen@gmail.com. Lastly, I hope this lecture
note will be useful to the students and readers for their studies and careers.

Chulalongkorn University Phongsaen Pitakwatchara

November 2014

Chulalongkorn University Phongsaen PITAKWATCHARA

phongsaen@gmail.com


Chapter 1

Introduction
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1.1 Background 7

Figure 1.1: Bar chart showing the increasing number of the industrial robots used
worldwide.

Robotics is an applied science that emerges from the utilization of knowledge
in many disciplines together for analyzing and designing the robots. Such funda-
mentals sciences are, for example, mechanical engineering which will be useful for
the design and analysis of the mechanisms that can produce the desired motion;
electrical engineering concerns with the electronics and circuits in controlling the
robots; computer engineering that addresses the e�cient algorithms and pro-
gram development. In this introductory course, the topics to be pursued shall be
limited to the mechanical aspects of the serial type manipulators, however.

1.1 Background

According to the Robot Institute of America (RIA), the robot is de�ned as

A robot is a reprogrammable, multifunctional manipulator de-
signed to move materials, parts, tools, or specialized devices through
variable programmed motion for the performance of a variety of tasks.

This de�nition re�ects the characteristics of the industrial robots in 1980's that
have main usage in the assembly lines. Nevertheless, the robots has undergone
substantial development such that the above de�nition cannot cover all today's
existed robots. Few examples are humanoid robots or the insect robots. However,
industrial robots still possess the largest share in the market. The International
Federation of Robotics (IFR) has estimated that, by the end of 2013, the number
of the industrial robots will be raised to 1,120,000 as shown in Fig. 1.1.
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1.2 The Mechanics and Control of Manipulators 8

There are essentially four main components comprising the robotic system,
which are

1. Robot is the physical structure which performs the task corresponding to
the peripheral information and the control processing. The structure may
be divided into two main parts. The �rst one is the locomotion, which is the
mechanism that enables the motion of the robot from one place to another
place. The simplest mechanism, also being the most widely employed,
is the wheel mechanism. Although the legged mechanism is much more
complicated, it gives the robot more freedom to move. Another part of
the structure is the manipulation part which is mainly responsible for the
task execution. Common structures of this part yield the appearance of the
hand and the arm.

2. Actuator is the part which causes the robot motion and makes it perform
the desired task. By the current technology limitation, most actuators em-
ployed in the robotic system today are motors. Often they are equipped
with the reduction and transmission mechanisms. Other common kinds of
the actuators are �uid-power driven actuators such as hydraulics and pneu-
matics. Novel actuators are made of synthesized polymer-form materials
and have their usage in bio-inspired robotic systems, for example.

3. Sensor is the components that acquires many information about the robot
system itself and the environment in real time. These information will be
further processed and transferred to the control unit. Information from
di�erent kinds of sensors may possess di�erent levels of complexity. Position
and velocity information from the encoder and the tachometer are relatively
simple compare to the image data retrieving from the camera.

4. Processing and control unit has the role which is comparable to the human
brain. It receives the raw information from various sensors. They are fused
and processed to appropriate forms as the commands for the control unit
in calculating the corresponding control signals. These are then sent to the
actuators, driving the robot to perform the desired tasks.

Relationship between these four components are depicted in Fig. 1.2. Boundaries
for these unit might be physically vague in some systems due to the integration
of them to produce more e�cient robotic systems.

1.2 The Mechanics and Control of Manipulators

Before studying in details the fundametals of the mechanics of the robot, this
section o�ers a short overview about regulating the robot at large. The problem
is to control the robot end e�ector such that its motion tracks the given desired

Chulalongkorn University Phongsaen PITAKWATCHARA



1.3 Course Overview 9

Figure 1.2: Robot components.

trajectory. This trajectory may be generated such that it causes the grasped
object to be moved to a new desired position.

Generally, the motion of the robot end e�ector happens in the three dimen-
sional space, involving both the position and the orientation. Especially, the
three dimensional orientation is far more complicated than the degenerated in-
plane orientation. Therefore, as a starting it is necessary to �rst describe the
desired three dimensional motion of the end e�ector by means of some suitable
representations.

To achieve the goal of controlling the motion of the end e�ector, the appropri-
ate force and torque must be provided to the robot typically at the joints. These
required force and torque may be calculated via solving the robot's equation of
motion. However, the given desired trajectory is usually described in the robot
task space, which is not appropriate for such calculation directly. This can be
�xed by transforming the desired end e�ector trajectory to the equivalent desired
robot joint motion, known as the inverse kinematics calculation.

The dynamic equations of the robot are the set of nonlinear di�erential equa-
tions governing the relationship between the applied force and torque and the
resulting motion of the robot. This dynamics may be derived from the kinemat-
ics of the robot and its inertial parameters. When the desired trajectory has
been transformed into the joint space already, dynamic equations of the robot in
joint space may be used to calculate the necessary joint torque and force, called
the computed torque control. These joint torques may further be used as the
reference signals of the controller through the actuators.

1.3 Course Overview

�2103-530: Industrial Robots 1� is considered an introductory course in robotics
where the study is con�ned to the mechanical aspects of the serial type manipu-
lators. It starts with chapter 2 where various methods in describing the position
and orientation in three dimensional space are provided. Related operations such
as the rigid body translation and rotation are considered as well. This chapter
serves as the important basis for the mechanics study of the robot.
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1.3 Course Overview 10

Chapter 3 and 4 are closely related. The process of calculating the corre-
sponding robot posture (position and orientation) from the speci�ed robot's joint
variables, called the forward kinematics, is explained in Chapter 3 based on the
modi�ed Denavit-Hartenberg convention. Chapter 4 is the reverse problem. It
is related to calculating the corresponding robot's joint variables from the given
robot posture, commonly by specifying its end e�ector posture.

Chapter 5 extends the kinematical analysis of the robot to the velocity level.
Basically, the relationship between the end e�ector velocity and the joint velocity
is linear, which is controlled by the Jacobian matrix. By the duality, Jacobian
matrix also regulates the static relationship between the force acting at the end
e�ector and the torque applied at the joint. Rank de�cient of this matrix signals
the robot is in singular condition.

Once the study of robot kinematics is completed, generation of the desired end
e�ector trajectory may be possible. Chapter 6 treats such topic on the account
of the kinematical aspect solely. The path may be planned either in the joint
space, or more naturally in the Cartesian space.

The next two chapters 7 and 8 provides a glimpse on the design of the robot
and the introductory to the hybrid force/position control. The material may
instantly found to be useful in the applications. Finally, the appendix provides a
concise explanation of the Robotics Toolbox based on MatLAB® [6]; an excellent
tool in analysis and design of the robot system.
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2.1 Descriptions: Positions, Orientations, and Frames 12

In this chapter, methods of describing the position and the orientation of the
objects in three dimensional space will be discussed. This can be achieved through
the notion of the frame, which leads naturally to the rotation matrix and, more
generally, the homogeneous transformation matrix introduced in subsection 2.2.3.
The description can be viewed from di�erent angles, which leads to the other
two interpretations of this result: the mapping and the operator, explained in
section 2.2 and 2.3.

Several transformations may be combined to produce a new, usually more
complicated, compound transformation described in section 2.4. It is proven to
be a useful tool in the analysis of the robot kinematics. In the last section, some
other di�erent ways of describing the orientation will be investigated.

2.1 Descriptions: Positions, Orientations, and

Frames

2.1.1 Description of a position

The fundamentals of kinematical analysis is the means to describe or express the
position and orientation. It may be rather intuitive in planar motion for which
the position is described by the position vector and the orientation by the angle.
Working with the general robot inevitably needs to analyze the motion in the
three dimensional space. Therefore, here the kinematical problems are treated in
a formal way for the three dimensional case.

First of all, although vector quantities are inherently independent of the co-
ordinates, to describe or express them, coordinate systems have to be de�ned.
The coordinate system consists of the frame, the origin of the frame, and the
coordinates. The most commonly used one is the Cartesian coordinate system
consisting of the rectangular frame, the origin, and the coordinates x − y − z
depicting the distances of the point with respect to the origin along the coordi-
nate axes of the frame. Figure 2.1 shows a point P represented in two di�erent
coordinate frames {1} and {2}.

In Cartesian coordinate system, the position vector p̄ may be expressed by a
column vector of the dimension 3× 1;

Ap̄ =
[
px py pz

]T
,

where the letter A on the left superscript denotes the frame in which this vector
is described. If the frame has not been named, its coordinates {x y z} may be
used explicitly. Often, a point is commonly presented in several di�erent frames.
It is obvious from Fig. 2.1 that

Ap̄ 6= B p̄.
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2.1 Descriptions: Positions, Orientations, and Frames 13

Figure 2.1: A position vector and two Cartesian coordinate systems. ([1], pp.
19)

Figure 2.2: Example 2.1. ([1], pp. 20)
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2.1 Descriptions: Positions, Orientations, and Frames 14

Example 2.1 Refer to Fig. 2.2. Write the column vector for the following posi-
tion vector: Ap̄, B p̄, B ōA,

AōB. ([1], Prob. 2.1)
Solution By the direct measurement of the distance of point P with re-

spect to the origin of {A} and {B} along their coordinate axes, position vector
of P may be expressed as

Ap̄ =
[

4 5
]T
,

B p̄ =
[

4.2 4.4
]T
.

B ōA and AōB are the position vector of the origin of {A} described in {B} and the
position vector of the origin of {B} described in {A}, which can be determined
in a similar manner.

B ōA =
[

4.4 10.8
]T
,

AōB =
[

10 6
]T
.

From the example, it can be said that in general, B ōA 6= AōB unless the coordinate
axes of the frames are parallel and opposite to each other.

2.1.2 Description of an orientation

There are many ways to describe an orientation in three dimensional space. In
this section, the clearest and widely used method of such will be explained. In
order to describe the three dimensional orientation of an object, a frame called
the body-�xed frame is attached to the object �rst. The orientation of the frame
is then the same as the orientation of the body. Orientation of the body-�xed
frame may be described with respect to another frame called the reference frame,
which needs not be �xed. The origins of both frames may be placed at the same
location for the sake of clari�cation. Figure 2.3 illustrates the body-�xed frame
{x′ y′ z′} and the reference frame {x y z}.

Orientation of the Cartesian body-�xed frame may be represented by the
3 × 3 matrix. Consider Fig. 2.4 showing two frames. {A} = {x y z} is the
reference frame and {B} = {x′ y′ z′} is the body-�xed frame. A unit vector
along the coordinate axes of {B} may be written in {A} by projecting the vector
onto the coordinate axes of {A}. The projections are its components along the
coordinate axes of {A}, for which they add up to provide the original unit vector.
Mathematically,

î′ = cos θx′xî+ cos θx′y ĵ + cos θx′zk̂

ĵ′ = cos θy′xî+ cos θy′y ĵ + cos θy′zk̂ (2.1)

k̂′ = cos θz′xî+ cos θz′y ĵ + cos θz′zk̂,

where θx′x is the angle between the axes x′ and x, etc. Also cos θx′x is the
directional cosine of the vector î′ along the direction of the x-axis. By this

Chulalongkorn University Phongsaen PITAKWATCHARA



2.1 Descriptions: Positions, Orientations, and Frames 15

Figure 2.3: A body-�xed frame {x′ y′ z′} a�xed to the object. ([1], pp. 22)

Figure 2.4: Projection of a unit vector along the body-�xed coordinate axis onto
the reference frame. ([1], pp. 19)
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2.1 Descriptions: Positions, Orientations, and Frames 16

means, Eq. 2.1 describes the orientation of the moving frame {B} and therefore
the orientation of the object.

It is convenient to express the above equations in a single compact unit with
the help of the matrix. Commonly adopted notation in robotics for this matrix
is to write the directional cosine vectors of the coordinate axes of the moving
frame, represented in the �xed frame, in a column-wise manner. This matrix is
called a rotation matrix. According to Eq. 2.1, the rotation matrix of {B} with
respect to {A} is

A
BR =

[
AîB

AĵB
Ak̂B

]
=

 cθx′x cθy′x cθz′x
cθx′y cθy′y cθz′y
cθx′z cθy′z cθz′z

 . (2.2)

The name of the frame to describe the orientation is subscripted and the name
of the frame which this orientation is measured with respect to is superscripted.
In addition, the equation also shows the shorthand notation of cos θ as cθ, which
is very useful for typically long expressions in robotics. Other relevant notations
are sθ and tθ for sin θ and tan θ, respectively.

Using the fact that the directional cosine of arbitrary two vectors may be
obtained by computing the scalar product of their unit vectors, elements of the
rotation matrix may be expressed in a di�erent way. Namely, with the expression
of

cos θMN =
M̄∥∥M̄∥∥ · N̄∥∥N̄∥∥ , (2.3)

the rotation matrix in Eq. 2.2 becomes

A
BR =

 î′ · î ĵ′ · î k̂′ · î
î′ · ĵ ĵ′ · ĵ k̂′ · ĵ
î′ · k̂ ĵ′ · k̂ k̂′ · k̂

 . (2.4)

If the rotation matrix is read row-wise instead, each row is seen as the direc-
tional cosine vectors of the coordinate axes of the �xed frame described in the
moving frame. Hence, it may be written as

A
BR =


(
B îA

)T(
B ĵA

)T(
Bk̂A

)T
 .

With the symmetry of {A} and {B}, the rotation matrix of {A} with respect to
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2.1 Descriptions: Positions, Orientations, and Frames 17

{B} may be expressed as

B
AR =

[
B îA

B ĵA
Bk̂A

]
=


(
B îA

)T(
B ĵA

)T(
Bk̂A

)T

T

,

which is obviously the transpose of ABR. Particularly,

B
AR =

(
A
BR
)T
. (2.5)

Furthermore, since

(
A
BR
)T A

BR =


(
AîB

)T(
AĵB

)T(
Ak̂B

)T
 [ AîB

AĵB
Ak̂B

]
= I3,

where I3 is the 3× 3 identity matrix, it may be concluded that

R−1 = RT . (2.6)

In summary, calculation of the inverse of the rotation matrix is simply its trans-
pose. This nice property holds because the rotation matrix is an orthonormal
matrix. Moreover, it can be shown that if the physical frame is the right-handed
coordinate frame, determinant of the rotation matrix is equal to +1.

Example 2.2 Fig. 2.5 shows {B} which is rotated relative to {A} about the
common y-axis by −150◦. The y-axis is pointing out of the page. Determine the
rotation matrix A

BR and B
AR.

Solution Equation 2.4 reveals the structure of the rotation matrix as the
collection of the dot product of the unit vectors along the coordinate axes. From
Fig. 2.5, these dot products may be formed visually. Then, applying Eq. 2.4 for
this problem,

A
BR =

 −
√
3
2

0 −1
2

0 1 0
1
2

0 −
√
3
2


and

B
AR =

 −
√
3
2

0 1
2

0 1 0

−1
2

0 −
√
3
2

 .
Cross-checking with the property in Eq. 2.5, the result is veri�ed.
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2.2 Mappings: Changing the Description 18

Figure 2.5: Example 2.2.

2.1.3 Description of a frame

Position and orientation are needed to completely specify the posture. For an
object, its posture may be described by attaching a body-�xed frame onto it.
Then the object's posture may be determined by specifying the position of the
frame's origin and the orientation of the frame itself, which is the description of
a frame. From section 2.1.1 and 2.1.2, a position may be described by the 3× 1
position vector and an orientation may be described by three 3 × 1 directional
vectors, or the 3× 3 rotation matrix.

In Fig. 2.6, frame {B} may be described with respect to {A} by A
BR and AōB,

where the latter denotes the position vector of the origin of {B} written in {A}
coordinates. Conceptually,

{B} =
{

A
BR,

AōB
}
.

In the next section, the homogeneous transform is introduced where a frame can
be described by the 4× 4 homogeneous transformation matrix.

2.2 Mappings: Changing the Description

Often, there is a need in expressing the same quantity in terms of several reference
coordinate systems. As depicted in Fig 2.1, a position vector p̄ may be expressed
in either {A} or {B}. In this section, a formal method in mapping or changing
the description from one frame to another frame is explained. Note that the
mapping does not change the quantity per se; only the representation is changed.
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2.2 Mappings: Changing the Description 19

Figure 2.6: Two frames positioned and oriented di�erently by AōB and A
BR.

2.2.1 Mapping involving translated frame

Consider Fig. 2.7 which illustrates a point P and two parallel frames {A} and
{B}. A position of the point P may be described in either frame, for which their
relationships are governed by the following equation;

Ap̄ =B p̄+ AōB. (2.7)

This equation may be viewed as the (translational) mapping of the vector from
{B} to {A}, where AōB de�nes the mapping.

2.2.2 Mapping involving rotated frame

Now consider Fig. 2.8 which illustrates a free vector p̄ and two rotated frames
{A} and {B}. The vector may be expressed in {A} as

Ap̄ =
[
px py pz

]T
,

or in {B} as
B p̄ =

[
px′ py′ pz′

]T
.

To determine the mapping between the two rotated frames, note that the
components of any vector are just the projections of that vector onto the unit
vector along the coordinate axes. As a consequence, the components of Ap̄ may
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Figure 2.7: Position of a point P described in two parallel frames {A} and {B}.
AōB de�nes the mapping. ([4], pp. 24)

Figure 2.8: A free vector p̄ may be expressed in two rotated frames {A} or {B}.
A
BR de�nes the mapping. ([4], pp. 25)
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be calculated as

px = B îA · B p̄
py = B ĵA · B p̄
pz = Bk̂A · B p̄.

The equations may then be arranged in the matrix-vector form as

Ap̄ = A
BR

B p̄. (2.8)

Hence this equation may be viewed as the (rotational) mapping of the vector
from {B} to {A}, where A

BR de�nes the mapping.

2.2.3 Mapping involving general frames

Lastly, let consider Fig. 2.9 which involves a vector p̄ and two frames {A} and {B}
arranged in an arbitrary manner. Relative posture of these frames are speci�ed
by A

BR and AōB. The description of the vector p̄ may be changed from {B} to
{A} by the following steps. First introduce an intermediate frame {I} which has
the same orientation as {A} but its origin is coincident with the origin of {B}.
From section 2.2.2 of the rotational mapping, the vectors p̄ represented in {B}
and {I} obey the following relationship;

I p̄ = A
BR

B p̄.

Next, the change of description may proceeds to {A} readily by the transla-
tional mapping in section 2.2.1;

Ap̄ = I p̄+ AōB.

Collectively the general mapping of the vector from {B} to {A} may be formu-
lated as

Ap̄ = A
BR

B p̄+ AōB. (2.9)

Rotation and translation may be treated as an integral unit of general mapping
A
BT , which packs the above equation as the homogeneous mapping

AP̄ = A
BT

BP̄ , (2.10)

where the quantities are expressed in the homogeneous four dimensional space.
In particular, [

Ap̄
1

]
=

[
A
BR

AōB
0 1

] [
B p̄
1

]
.
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Figure 2.9: A vector p̄ may be expressed in arbitrary two frames {A} and {B},
of which its relative posture is described by A

BT .

Note that the vector in the homogeneous space is the vector in the usual three
dimensional space appended with the fourth element of 1. The matrix

A
BT =

[
A
BR

AōB
0 1

]
(2.11)

is called the homogeneous transformation matrix, which collects the information
of both the relative position and orientation in the same place. Referring back
to section 2.1.3, the homogeneous transformation matrix can then be used as an
description of the frame.

Example 2.3 The origin of {B} is located relative to the origin of {A} by 3
units along yA-axis and 1 unit along zA-axis. The orientation of {B} is generated
from the rotation of {A} by 90◦ about the x-axis. If the position vector of the

point P , described in {A} is
[

0 2 2
]T
, determine the position vector for the

same point in {B}.
Solution Figure 2.10 shows the point P , the frames {A} and {B}, and

the position vector Ap̄ and B p̄ as the problem stated. To determine the unknown
B p̄, the homogeneous mapping Eq. 2.10 may be applied as

BP̄ = B
AT

AP̄ ,

of which

AP̄ =


0
2
2
1

 B
AT =


1 0 0 0
0 0 1 −1
0 −1 0 3
0 0 0 1


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Figure 2.10: Example 2.3.

for this problem. By simple matrix multiplication,

BP̄ =


0
1
1
1

 ,
as can be veri�ed directly from the �gure.

2.3 Operators

Robot motion in general may be imagined as the simultaneous translation and
rotation of the connecting rigid links altogether. For the purpose of describing
these actions mathematically, basic tools acting as the operators to move the
object, which is just a collection of in�nitely many points, are needed. In fact,
the description of frame, on the other view, serves for this objective.

2.3.1 Translational Operators

Consider Fig. 2.11 which shows a frame and two points P and Q. Point Q is
constructed from translating the original point P along the direction and distance
dictated by the vector ō. In other words, a point P is operated by the translational
operator, of which its result is the newly translated point Q. This operator in
action may be written vectorially as

q̄ = Trans (ō) p̄ = p̄+ ō. (2.12)
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Figure 2.11: A point P is operated by the translational operator, Trans (ō), of
which its result is the newly translated point Q.

Comparing Eq. 2.12 to Eq. 2.7, the intimate roles of the mapping and the
operator may be understood. For the mapping, the resulting vector represents
the same point in the new frame {A} that is translated by −ō. For the operator,
the resulting vector corresponds to the new point which occurs by the translating
action of ō. It may be said that the relative position may be obtained by the
motion of the point, or by the opposite motion of the representing frame.

2.3.2 Rotational Operators

Now consider Fig. 2.12 which illustrates two frames {A} = {x y z} and {B} =
{x′ y′ z′}, and two points P and Q. Point Q is in this case constructed from
rotating the original point P around the origin. Frame {B} is the body-�xed
frame rotated from {A} along with the point Q.

According to this setup, components of the vector of the rotated point Q
described in the rotating frame {B} must be the same as those of the original
point P represented in the initial frame {A}. That is

B q̄ = Ap̄.

From the mapping point of view, the vector q̄ may be represented in Aq̄ as well
by

Aq̄ = A
BR

B q̄.
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Figure 2.12: A point P is operated by the rotational operator, Rot (R), of which
its result is the newly rotated point Q around the origin. ([1], pp. 29)

Combining both relations, the relationship between the rotated vectors may be
written as

q̄ = Rot (R) p̄ = Rp̄, (2.13)

where R is the rotation matrix that rotates point P to point Q in the same
direction as the initial frame {A} is rotated to the current frame {B}. Since
every quantity is described in the same frame, notations used for the frame in
the operator equation may be dropped.

Similar to the translational case, comparing Eq. 2.13 to Eq. 2.8, the intimate
roles of the mapping and the operator may again be understood. For the mapping,
the resulting vector represents the same point in the new frame {A} that is
rotated by R−1. For the operator, the resulting vector corresponds to the new
point which occurs by the rotating action of R. Recapitulating, it may be said
that the relative position may be obtained by the motion of the point, or by the
opposite motion of the representing frame.

2.3.3 Transformation Operators

Lastly, let consider Fig. 2.13 which involves a frame and two points P and Q.
Point Q is constructed from rotating the original point P about the origin by the
rotational operator Rot (R), then translating the intermediate point along the di-
rection and distance dictated by the translational operator Trans (ō). Therefore,
the two vectors describing these points are related by

q̄ = Rp̄+ ō. (2.14)
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Figure 2.13: A point P is operated by the general transformation operator, T , of
which its result is the newly rotated and translated point Q. Note that B q̄ = Ap̄.

E�ectively, these successive operations may be combined using the homoge-
neous transformation matrix T as

Q̄ = T P̄ , (2.15)

where the vectors are expressed in the homogeneous four dimensional space.
Speci�cally, [

q̄
1

]
=

[
R ō
0 1

] [
p̄
1

]
.

Here, the transformation matrix T is viewed as the general operator which rotates
and translates point P to point Q in the same manner as the initial frame {A}
is transformed to the current frame {B}. Note again that all quantities are
described in the same frame.

Equation 2.10 and Eq. 2.15 are in fact the same equations interpreted di�er-
ently. Namely for the mapping in Eq. 2.10, the resulting vector represents the
same point in the new frame {A} that is transformed by T−1. For the operator,
the resulting vector corresponds to the new point which is generated from the
general motion operator T . In other words, the relative posture may be obtained
by the motion of the point, or by the opposite motion of the representing frame.

Example 2.4 A point P is located by the position vector p̄ =
[

3 7 0
]T
.

The point is rotated about the origin by 30◦ and then translated along the x-
and y-axis by 10 and 5 units, in turn. Locate the position of the resulting point.
Interpret this operation as the equivalent vector mapping between two frames.

Solution According to the problem statement, Fig. 2.14 shows the point
P and the resulting point Q. Position of this point may be determined by the
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Figure 2.14: Example 2.4 (viewed as transformation operator).

direct measurement for this simple example or it may be carried out formally
through the following homogeneous transformation matrix,

T =


c30◦ −s30◦ 0 10
s30◦ c30◦ 0 5

0 0 1 0
0 0 0 1

 ,
which combines the explained rotational and translational operator. Hence, po-
sition of the transformed point Q may be calculated as

Q̄ = T P̄ =


c30◦ −s30◦ 0 10
s30◦ c30◦ 0 5

0 0 1 0
0 0 0 1




3
7
0
1

 =


9.098
12.562

0
1

 .
Figure 2.15 presents the above equation from the mapping point of view, i.e.

AP̄ =A
B T

BP̄ =


c30◦ −s30◦ 0 10
s30◦ c30◦ 0 5

0 0 1 0
0 0 0 1




3
7
0
1

 =


9.098
12.562

0
1

 .
Position vector of the point P expressed in the moving frame {B} is mapped
to the one represented in the �xed frame {A} by the homogeneous mapping
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Figure 2.15: Example 2.4 (viewed as general mapping).

A
BT . This matrix, which is the same as the homogeneous transformation operator
matrix moving point P to Q, is the inverse of the matrix used to transform {B}
to {A}.

2.4 Transformation Arithmetics and Equations

For the analysis of a manipulator, as will be seen in chapter 3, many frames are
involved. As a consequence, there is a need to determine the result of mapping
or transforming through several frames. Accordingly, there are two operations
for the set of homogeneous transformation matrices: the multiplication and the
inversion. In this section, it is shown how these operations are related to the
physical mapping or transformation of frames.

2.4.1 Compound Transformation: Multiplication Operator

Mapping between two frames {A} and {B} can be generalized to the mapping
through several frames naturally. Consider Fig. 2.16 where there are three frames:
{A}, {B}, and {C}. Succesive transformations A

BT and B
CT are known. It is

desired to map the vector p̄ represented in {C} to the one described in {A}.
From section 2.2.3, C p̄ may be mapped to the intermediate frame as B p̄ by

BP̄ = B
CT

CP̄ .
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Figure 2.16: Several transformation matrix may be combined to yield the com-
pound transformation. ([4], pp. 35)

Similarly, the mapped B p̄ may be furthered mapped to the �xed frame as Ap̄ by

AP̄ = A
BT

BP̄ .

Combining the above mappings, the compound mapping may be formulated;

AP̄ = A
BT

B
CT

CP̄ ,

from which the following compound mapping,

A
CT = A

BT
B
CT, (2.16)

is obvious. Cancellation of the subscript and the superscript of the intermediate
frame {B} acts as a good mnemonic of straightforwardly writing the compound
mapping equation. Explicit multiplication of the detailed transformation matri-
ces leads to the formula of ACT ;

A
CT =

[
A
BR

B
CR

A
BR

B ōC + AōB
0 1

]
. (2.17)

Compound transformation or operator may be formulated readily by acknowl-
edging it as just another interpretation of the mapping, as explained earlier.

2.4.2 Inversion Operator

As shown in Eq. 2.6, the inverse of the rotation matrix can be calculated simply by
taking the transpose. This does not extend to the homogeneous transformation
matrix. Nevertheless, one need not perform the general inverse matrix calculation
due to the special structure of the matrix.
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Physical meaning of the inverse operation of the transformation matrix is to
exchange the role of two frames. In other words,(

A
BT
)−1

= B
AT.

From the de�nition of the homogeneous transformation matrix, BAT may be writ-
ten as

B
AT =

[
B
AR

B ōA
0 1

]
.

Since B ōA is the negative of AōB but expressed with respect to the di�erent frames,
to establish this relationship, the mapping must be applied. Mathematically,

B ōA = −BARAōB = −ABRTAōB.

Substituting this relation into the transformation matrix, the inverse of ABT may
be computed as (

A
BT
)−1

=

[
A
BR

T −ABRTAōB
0 1

]
. (2.18)

2.4.3 Transform Equations

A typical situation in the manipulator analysis is to determine the motion, or,
more primitive, the transformation of the end e�ector with respect to some ref-
erence frame. This is achieved through the compound transformation along the
intermediate frames conventionally attached to the robot linkages. More details
are given in the next chapter. Other scenario might entail the transformation
between the end e�ector and the manipulated object via the camera frame, the
robot base frame, and the working table base frame. See Fig. 2.17.

Generally, one may formulate the transform equation from the successive
frame transformation matrices by walking through the loop path of the frames.
As an example, Fig. 2.18 displays the set of frames of which the transformation
relative to their consecutive frames are assumed available �rst. The arrow joining
the origin of two frames indicates their relative representation.

It should be noted that there are several variations to derive the transform
equations. In Fig. 2.18, for example, one may choose {U} and {D} as the refer-
ence and the target frames respectively �rst. Then, the compound transformation
between these two frames may be calculated either by

U
DT = U

AT
D
AT
−1,

or by
U
DT = U

BT
B
CT

D
CT
−1.

Consequently, they may be equate to obtain the transform equation as

U
AT

D
AT
−1 = U

BT
B
CT

D
CT
−1. (2.19)
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Figure 2.17: Transformation between the end e�ector and the manipulated ob-
ject. ([4], pp. 39)

If the actual requirement is to determine the transformation D
CT , corresponding

to the relative posture of the object relative to the end e�ector frame, matrix
manipulation may be performed on the above equation to yield

D
CT = D

AT
U
AT
−1U

BT
B
CT.

Example 2.5 Figure 2.19 depicts the robot grasping an object. Relative position
and orientation of the base frame {B}, the working table frame {S}, the object
frame {O}, the end e�ector frame {E}, and the camera frame {C} are as shown
in the �gure. Determine the homogeneous transformation matrix B

ET ,
S
OT ,

C
OT ,

C
ST , and

C
ET . From these results, calculate B

OT ,
E
ST , and

E
OT . Compare the results

with the direct observation.
Solution From Fig. 2.19, BET may be determined by �rst observing that

{B} is oriented relative to {S} with the rotation of −30◦ about {S}z-axis. That
is

S
BR = Rz,−30◦ =

 c (−30◦) −s (−30◦) 0
s (−30◦) c (−30◦) 0

0 0 1

 .
Similarly, {E} is oriented relative to {S} with �rst the rotation of −20◦ about
{S}z-axis, and then the rotation of 40◦ about the moving y-axis. The resulting
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Figure 2.18: Frame diagram to formulate the frame transform equation. ([4], pp.
38)

Figure 2.19: Example 2.5. ([1], pp. 64)
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transformation would be

S
ER = Rz,−20◦Ry,40◦ =

 c (−20◦) −s (−20◦) 0
s (−20◦) c (−20◦) 0

0 0 1

 c (40◦) 0 s (40◦)
0 1 0

−s (40◦) 0 c (40◦)

 .
Consequently, the orientation of {E} relative to {B} may be obtained by the
following compound transformation:

B
ER = S

BR
−1S

ER = Rz,30◦Rz,−20◦Ry,40◦ =

 0.7544 −0.1736 0.6330
0.1330 0.9848 0.1116
−0.6428 0 0.7660

 .
Moreover, the relative position of the origin of {E} to {B} is seen from Fig. 2.19
to be

S ōE/B =
[

3 −0.7 1.45
]T
,

which must further be represented in {B} by

B ōE = S
BR
−1S ōE/B =

[
2.9481 0.8938 1.45

]T
.

Putting the orientation and position information together, the transformation
matrix

B
ET =


0.7544 −0.1736 0.6330 2.9481
0.1330 0.9848 0.1116 0.8938
−0.6428 0 0.7660 1.45

0 0 0 1


is determined.

Next, posture of the object will now be determined relative to the table corner.
Relative position of the origins is readily observed to be

S ōO =
[

0.5 0.5 0.25
]T
.

Rotation about {S}z-axis by −150◦ brings the orientation of {O}. As a result,

S
OT =

[
Rz,−150◦

S ōO
0 1

]
=


−0.8660 0.5 0 0.5
−0.5 −0.8660 0 0.5

0 0 1 0.25
0 0 0 1

 .
To determine C

OT , �rst note that

C ōO =
[

0.2 0.2 1
]T
.
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Relative orientation may be determined by representing the unit vectors of the
x-y-z-axes of {O} in {C}. As a result,

C
OR =

 0.5 0.8660 0
0.8660 −0.5 0

0 0 −1

 .
Therefore,

C
OT =


0.5 0.8660 0 0.2

0.8660 −0.5 0 0.2
0 0 −1 1
0 0 0 1

 .
Similarly, CST may be observed directly from Fig. 2.19 as

C
ST =


0 −1 0 0.7
−1 0 0 0.7
0 0 −1 1.25
0 0 0 1

 .
Position of the origin of {E} with respect to {C} is obvious from Fig. 2.19;

C ōE =
[
−0.3 1.5 0.8

]T
.

However, the relative orientation should be calculated indirectly via

C
ER = C

SR
S
ER

=

 0 −1 0
−1 0 0
0 0 −1

 c (−20◦) −s (−20◦) 0
s (−20◦) c (−20◦) 0

0 0 1

 c (40◦) 0 s (40◦)
0 1 0

−s (40◦) 0 c (40◦)


=

 0.2620 −0.9397 0.2198
−0.7198 −0.3420 −0.6040
0.6428 0 −0.7660

 .
Hence,

C
ET =


0.2620 −0.9397 0.2198 −0.3
−0.7198 −0.3420 −0.6040 1.5
0.6428 0 −0.7660 0.8

0 0 0 1

 .
The remaining transformation matrices may be obtained by formulating the

transform equations and substituting the above results.

B
OT = B

ET
E
CT

C
OT = B

ET
C
ET
−1C

OT

=


−0.5 0.8660 0 4.3239
−0.8660 −0.5 0 1.1108

0 0 1 1.25
0 0 0 1

 .
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Figure 2.20: Orientation description by the ZY X Euler angles. ([1], pp. 34)

E
ST = E

CT
C
OT

O
ST = C

ET
−1C

OT
S
OT
−1

=


0.7198 −0.2620 −0.6428 1.1271
0.3420 0.9397 0 −0.6661
0.6040 −0.2198 0.7660 0.3583

0 0 0 1

 .
E
OT = E

CT
C
OT = C

ET
−1C

OT

=


−0.4924 0.5868 −0.6428 1.1954
−0.7660 −0.6428 0 −0.0252
−0.4132 0.4924 0.7660 0.7419

0 0 0 1

 .

2.5 Other Representation of the Orientation

Section 2.1.2 presented a rotation matrix to describe the three dimensional ori-
entation. Due to the constraints of three mutually perpendicular unit vectors
along the rectangular coordinate axes, there are totally six inherent constraints
among nine elements of the rotation matrix. Consequently, only three parame-
ters can describe arbitrary three dimensional orientation completely. There are
several choices, in fact! Here, additional three di�erent ways of describing the
orientation shall be studied.

2.5.1 Euler Angles Representation

This method chooses three independent parameters for describing the orientation
to be three consecutive angles of the basic rotations around the axes of the current,
or moving, frames. Successive rotations must not occur about the same axis,
however. Therefore, this representation must also be speci�ed with the sequence
of three axes about which the rotations occur: totally of 3×2×2 = 12 possibilities.
These three angles of the basic rotations about the axes of the moving frames are
called Euler angles. Commonly used axes are the ZY X, the ZY Z, and ZXZ.

Let (α, β, γ) be the Euler angles around the ZY X axes as shown in Fig. 2.20.
For this case, the orientation is constructed from three successive rotations as
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follow. Initially, the rotated frame coincides with {x0 y0 z0}. First rotation occurs
from the rotation about z0-axis with the angle α, making the original frame
rotated to {x1 y1 z1}. Second rotation occurs from the rotation about y1-axis of
the current frame with the angle β that makes the frame rotated to {x2 y2 z2}.
The third, and the last, rotation is constructed from the rotation about x2-axis
of the current frame with the angle γ. This turns the frame to be coincident with
{x3 y3 z3}, eventually. See Fig. 2.20.

The equivalent rotation matrix of the ZY X Euler angles (α, β, γ) may be
calculated by recognizing each sub-rotation as the description of the resulting
frame relative to the previous one. Hence the equivalent rotation matrix is the
description of {x3 y3 z3} relative to {x0 y0 z0} of which its detailed mappings are

{x0 y0 z0}
{x3 y3 z3}R =

{x0 y0 z0}
{x1 y1 z1}R

{x1 y1 z1}
{x2 y2 z2}R

{x2 y2 z2}
{x3 y3 z3}R

= Rz,αRy,βRx,γ

=

 cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 . (2.20)

Equation 2.20 determines the corresponding rotation matrix of the ZY X Eu-
ler angles (α, β, γ). The opposite problem is to determine the Euler angles out of
the given rotation matrix. In particular, if a rotation matrix

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,
describing an arbitrary rotation is provided, in the following the equivalent ZY X
Euler angles (α, β, γ) will be calculated. First, assume that r11 and r21 are not zero
at the same time. By comparing the given matrix elements with the expressions
in Eq. 2.20, one can conclude that the common factor cβ 6= 0 and the member
r32 and r33 must not be zero simultaneously too. Moreover, since any row or
column of the rotation matrix is a directional unit vector, −sβ = r31 6= ±1 and
cβ = ±

√
1− r231 6= 0. Hence, the angle β has two possible values depending on

whether cβ > 0 or cβ < 0. The remaining angles will also be di�erent for each
case.

If cβ > 0, the Euler angles are determined as

α = atan2 (r21, r11)

β = atan2

(
−r31,

√
1− r231

)
(2.21)

γ = atan2 (r32, r33) .

Chulalongkorn University Phongsaen PITAKWATCHARA



2.5 Other Representation of the Orientation 37

While if cβ < 0, the Euler angles will be di�erent:

α = atan2 (−r21,−r11)

β = atan2

(
−r31,−

√
1− r231

)
(2.22)

γ = atan2 (−r32,−r33) .

Therefore, there are two ways in achieving the speci�ed orientation around the
particular sequence of rotation axes.

For the case when the values of both r11 and r21 be zero simultaneously, r32
and r33 will be zero as well. Imposing the constraint of unit vector for each row
or column, it can be said that r31 = −sβ = ±1. In this case, Eq. 2.21 and 2.22
cannot be used to calculate the Euler angles because the function atan2 (·) is not
de�ned when both arguments are zero.

If r31 = 1, it implies sβ = −1 and cβ = 0. Therefore, Eq. 2.20 reduces to

R =

 0 −sα+γ −cα+γ
0 cα+γ −sα+γ
1 0 0

 .
Consequently, the values of the Euler angles will become

β = −π
2

α + γ = atan2 (−r12,−r13) = atan2 (−r12, r22) . (2.23)

However, if r31 = −1, it implies sβ = 1 and cβ = 0. In this case, Eq. 2.20 reduces
to

R =

 0 −sα−γ cα−γ
0 cα−γ sα−γ
1 0 0

 .
Consequently, the values of the Euler angles will become

β =
π

2
α− γ = atan2 (−r12, r13) = atan2 (−r12, r22) . (2.24)

For these latter cases, the values of α and γ cannot be deduced. In other
words, there are in�nitely many values of Euler angles that lead to this same
orientation. This is called the representational singularity of Euler angles. It
happens when the �rst and the third sub-rotation occur about the same physical
axis of rotation. For the ZY X Euler angles, the representational singularity will
happen when β = ±π

2
, for which the axis z0 and x2 will line up.
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Example 2.6 An orientation is constructed from the following sub-rotations.
Firstly, rotate about the z-axis by 90◦. Then follow by the rotation about the
y-axis of the current frame by −180◦. Finally, rotate about the current x-axis by
−90◦. Describe this orientation with the ZY X Euler angles.

Solution The speci�ed orientation occurs from the sub-rotations about
the body-�xed frame. Hence the resultant rotation matrix may be calculated by
post-multiplying them in order;

R = Rz,90◦Ry,−180◦Rx,−90◦

=

 c (90◦) −s (90◦) 0
s (90◦) c (90◦) 0

0 0 1

 c (−180◦) 0 s (−180◦)
0 1 0

−s (−180◦) 0 c (−180◦)


×

 1 0 0
0 c (−90◦) −s (−90◦)
0 s (−90◦) c (−90◦)


=

 0 0 −1
−1 0 0
0 1 0

 .
This rotation matrix can also be represented by the ZY X Euler angles where

the values are determined by Eq. 2.21 and Eq. 2.22 as

α = atan2 (−1, 0) = −90◦

β = atan2 (0, 1) = 0◦

γ = atan2 (1, 0) = 90◦,

or

α = atan2 (1, 0) = 90◦

β = atan2 (0,−1) = 180◦

γ = atan2 (−1, 0) = −90◦.

This means that the speci�ed orientation may also be constructed from the sub-
rotations in the same order, but with di�erent angles of −90◦, 0◦, and 90◦.

2.5.2 Fixed Angles Representation

Three independent parameters for describing the orientation may be the three
consecutive angles of the basic rotations about the axes of the �xed, or reference,
frames. Again, successive rotations must not occur about the same axis, however.
Similarly, this representation must also be speci�ed with the sequence of three
axes about which the rotations occur. Hence it has totally 12 possibilities. These
three angles of the basic rotations about the axes of the �xed frame are called
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Figure 2.21: Orientation description by the XY Z �xed angles. ([1], pp. 38)

�xed angles. Commonly used axes are the XY Z and ZY X. As a historical note,
�xed angles description of the orientation has its root from the roll-pitch-yaw
angles used to represent the orientation of the vehicle in nautical and aeronautical
science.

Let (ψ, θ, φ) be the �xed angles around the XY Z axes as shown in Fig. 2.21.
For this case, the orientation is constructed from three successive rotations as
follow. Initially, the rotated frame coincides with {x0 y0 z0}. First rotation occurs
from the rotation about x0-axis with the angle ψ, making the original frame
rotated to {x1 y1 z1}. Second rotation occurs from the rotation about y0-axis of
the �xed frame by the angle θ that makes the frame rotated to {x2 y2 z2}. The
third, and the last, rotation is constructed from the rotation about z0-axis of
the �xed frame with the angle φ. This turns the frame to be coincident with
{x3 y3 z3}, eventually. See Fig. 2.21.

The equivalent rotation matrix of the XY Z �xed angles (ψ, θ, φ) may be
calculated by realizing each sub-rotation as the operator which further rotates the
resulting frame from the previous rotation. Hence the equivalent rotation matrix
will be the operator that rotates {x0 y0 z0} to {x3 y3 z3} of which its detailed
sub-rotations are

R = Rz,φRy,θRx,ψ

=

 cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ
−sθ cθsψ cθcψ

 . (2.25)

Equation 2.25 determines the corresponding rotation matrix of theXY Z �xed
angles (ψ, θ, φ). The opposite problem is to determine the �xed angles out of the
given rotation matrix. This can be done in a similar manner to the previous
Euler angles description. Hence only the results shall be mentioned. The XY Z
�xed angles description for the speci�ed rotation matrix may be calculated as
follow. For the case when the values of r11 and r21, or r32 and r33, are not zero
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simultaneously, there are two possible sets of the angles, i.e.

ψ = atan2 (r32, r33)

θ = atan2

(
−r31,

√
1− r231

)
(2.26)

φ = atan2 (r21, r11) ,

when cθ > 0, and

ψ = atan2 (−r32,−r33)

θ = atan2

(
−r31,−

√
1− r231

)
(2.27)

φ = atan2 (−r21,−r11) ,

when cθ < 0.
The following cases cause the representational singularity of �xed angles,

which happen when the resulting rotation can be constructed by merely two,
or one, sub-rotations. For the XY Z �xed angles, the singularity will happen
when θ = ±π

2
. The x-axis of the resultant frame will always direct along the

z-axis of the reference frame. This indicates that the resulting rotation can be
constructed from just two consecutive rotations, i.e. the �rst rotation about
y0-axis by ±π

2
and follow by the appropriate rotation about z0-axis.

When θ = ±π
2
, cθ = 0 and sθ = ±1. For the case r31 = 1, there are in�nitely

many �xed angles which can describe this same orientation. Their values are as
follow;

θ = −π
2

φ+ ψ = atan2 (−r12,−r13) = atan2 (−r12, r22) . (2.28)

If r31 = −1 instead, the angles are changed to

θ =
π

2
φ− ψ = atan2 (−r12, r13) = atan2 (−r12, r22) . (2.29)

Example 2.7 Describe the rotation in Ex. 2.6 with the XY Z �xed angles.
Solution Referring to the rotation matrix

R =

 0 0 −1
−1 0 0
0 1 0

 .
This rotation matrix may be represented by the XY Z �xed angles where the
values are determined by Eq. 2.26 and Eq. 2.27 as

ψ = atan2 (1, 0) = 90◦

θ = atan2 (0, 1) = 0◦

φ = atan2 (−1, 0) = −90◦,
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Figure 2.22: Orientation description by the angle-axis representation
(
θ, k̂
)
. ([1],

pp. 41)

or

ψ = atan2 (−1, 0) = −90◦

θ = atan2 (0,−1) = 180◦

φ = atan2 (1, 0) = 90◦.

2.5.3 Angle-Axis Representation

Arbitrary orientation may be described in the most natural way by specifying
the angle and the axis of rotation. This realization is supported by the Euler's
theorm of rotation; a subordinate of the Chasles' theorem. The description is
called the angle-axis representation.

Let k̂ = [kx ky kz]
T be a unit vector along the axis of rotation written in the

reference frame {x y z}. Positive direction of k̂ corresponds to the direction of
positive rotation which obeys the right-hand rule. Let θ be the angle of the
rotation about k̂. Hence the representation is commonly written as the pair of

the angle and the directional unit vector of the rotation:
(
θ, k̂
)
or θk̂.

Of course, the rotation by θ about k̂ can be represented by the rotation matrix.
Consider Fig. 2.22. Such rotation may be realized indirectly by �rst redirecting
the rotation axis k̂ to align with the z-axis. Then the rotation of θ about k̂,
which is now coincident with the z-axis, is executed. However, actually this must
happen around the untouched k̂. Therefore, after the rotation, the current k̂
must be redirected back to the original direction. Combination of these three
sub-rotations is equivalent to the rotation of θ about k̂ directly. Mathematically,
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Rk̂,θ =
{xyz}
{x′y′k̂} R ·Rz,θ ·

{x′y′k̂}
{xyz} R, (2.30)

where the sub-rotations are referred to the reference frame and so the post-
multiplication implies. Further,

{xyz}
{x′y′k̂}R may be computed from the post-

multiplication of the sub-rotations about the y- and z-axis of the reference frame
with the angle β and α;

{xyz}
{x′y′k̂}R = Rz,α ·Ry,β. (2.31)

From Fig. 2.22, the trigonometric function of α and β may be written explicitly
as

sinα =
ky√
k2x + k2y

cosα =
kx√
k2x + k2y

sin β =
√
k2x + k2y

cos β = kz.

These expressions are substituted into Eq. 2.30 and 2.31 to obtain

Rk̂,θ =

 k2xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ
kxkyvθ + kzsθ k2yvθ + cθ kykzvθ − kxsθ
kxkzvθ − kysθ kykzvθ + kxsθ k2zvθ + cθ

 . (2.32)

The function vθ = versθ = 1 − cθ is used to make the matrix more compact.
Similar to other rotation descriptions, the inverse problem shall be analyzed. If
the rotation matrix,

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,
is speci�ed, it is desirable to determine the angle and axis for which such rotation
will yield the same orientation. By observing the matrix elements in Eq. 2.32,
summing the diagonal elements will give the following equality;

vθ + 3cθ = r11 + r22 + r33,

where k̂ is recognized as a unit vector. The angle of rotation θ hence may be
calculated as

θ = cos−1
(
r11 + r22 + r33 − 1

2

)
. (2.33)
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There are two possible answers which are the negative of each other. The axis of
rotation k̂ can be retrieved by subtracting the appropriate o�-diagonal elements.
As a result,

k̂ =
1

2sθ

 r32 − r23
r13 − r31
r21 − r12

 . (2.34)

It can be veri�ed that the axis of rotation associated to each angle is the negative
of each other. Therefore the angle-axis representation for a particular rotation is

not unique. Indeed, in general, there are two solutions:
(
θ, k̂
)
and

(
−θ,−k̂

)
.

There are two possible rotations for this method of orientation description
to fail. If θ = 0 or 2π, where the rotation matrix becomes the identity matrix,
determination of the axis of rotation from Eq. 2.34 will fail. This corresponds to
the physics that the axis of rotation can be chosen to point in any direction since
there is really no rotation!

Example 2.8 A rotation is generated by a rotation of 90◦ about z-axis, followed
by a rotation of 30◦ about the current y-axis, and by the �nal rotation of −60◦

about the current x-axis. How such rotation be created by a single rotation.
Solution From the given orientation description, the rotation matrix may

be calculated as

R = Rz,90◦Ry,30◦Rx,−60◦

=

 0 −1
2
−
√
3
2√

3
2
−
√
3
4

1
4

−1
2
−3

4

√
3
4

 .
There are two possible direct rotations which yield the desired orientation. Using
Eq. 2.33, the angle of rotation is

θ = cos−1
(
−1

2

)
= ±2π

3
.

These angles have the corresponding axes of

k̂ =
1

2 sin
(
±2π

3

)
 −1

1−
√
3

2
1+
√
3

2

 = ± 1√
3

 −1
1−
√
3

2
1+
√
3

2

 .
Therefore there are two possible rotations. Either the rotation about the

axis 1√
3

[
−1 1−

√
3

2
1+
√
3

2

]T
by the angle of 120◦, or the rotation about the axis

− 1√
3

[
−1 1−

√
3

2
1+
√
3

2

]T
by the angle of −120◦ would work.

Chulalongkorn University Phongsaen PITAKWATCHARA



2.5 Other Representation of the Orientation 44

Problems

1. Vector [3 4 − 2]T is rotated about the x-axis of the reference frame, followed
by the rotation about the z-axis of the current frame, and then the rotation
about the y-axis of the reference frame. The angles of these successive
rotations are 30◦, −50◦, and 100◦ respectively. Determine the resulting
�nal vector.

2. Ap̄ = [3 4]T and B p̄ = [0.2730 − 4.9925]T are the description of the free
vector p̄ in {A} and {B}. Determine the relationship between these two
frames.

3. Determine the equivalent ZY Z-�xed angles (ψ, θ, φ) of the rotation matrix

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 .
Discuss the representational singularity problem in this case.

4. Transform the orientational representation of the ZY X-Euler angles
(30◦,−50◦,−80◦) into the equivalent XYX-�xed angles representation.

5. A rotation is constructed from the following sub-rotations; initially the
rotation occurs about the x-axis of the reference frame, then follows by the
rotation about the z-axis of the current frame, the rotation about the x-
axis of the reference frame, and ends with the rotation about y-axis of the
reference frame. The corresponding angles executed are 20◦, −50◦, 200◦,
and −80◦ respectively. Find the equivalent single rotation about the proper
axis.

6. A letter `A' is shown in Fig. 2.23 along with the coordinates of its edges. If
the letter is rotated about the axis k̂ = [−2 3 − 7]T by the angle of 190◦,
write the letter at the new location. Does the letter has the same size and
shape?
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Figure 2.23: A letter `A'.

7. Consider Fig. 2.24 showing a robot set up 1 m from the table. The table
dimension is 1 m square of its top and 1 m in height. It is a�xed with
{x1 y1 z1}. A small cube, with which is assigned the frame {x2 y2 z2}, is
placed at the center of the table. A camera, located by {x3 y3 z3}, is in-
stalled above the table corner opposite to {x1 y1 z1} by 2 m. Determine the
transformations relating each of these frames to the base frame {x0 y0 z0}.
Determine the position of the box seen from the camera, by the transfor-
mation calculation and by direct observation.

Figure 2.24: A robot grasping an object.
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Chapter 3

Manipulator Kinematics
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Figure 3.1: Conceptual schematic diagram of the open chain structured serial
manipulator. ([1], pp. 8)

Method of describing the position and the orientation by the homogeneous
transformation matrix in chapter 2 will be applied to analyze the kinematics of
the serial manipulator. Speci�cally, the frames are attached to the linkages of the
robot according to the Denavit-Hartenberg convention introduced in section 3.2.
Successive transformation of them can then be performed so that the posture of
the end-e�ector frame may be determined in terms of the robot joint parameters
through the evaluation of the robot transformation equation in section 3.3. The
last section explains a practical problem of mapping between the joint and the
actuator variables, leading to the relationship between the actuator parameters
and the robot posture.

3.1 Link Description

Serial robot or manipulator may be think of as the mechanism constructed from
the links connecting together with the joints sequentially from the base to the end
e�ector. As depicted in Fig. 3.1, serial robot employs the open chain(s) structure.
Normally, the joints used in the robot are the simple joints such as the revolute
or the prismatic joint. Also, the robot can be moved by the actuators which are
often installed at the robot joints. Hence the robot posture is determined by the
joint parameters. Consequently, in the following, the relationship of the robot
posture, especially its end e�ector, in terms of the joint variables shall be studied:
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Figure 3.2: Open chain structure of the serial manipulator. ([1], pp. 68)

a basis to the robot motion. This is known as the forward kinematics analysis.
From the bird's eye view, if {E} and {B} are a�xed to the end e�ector and

the base of the robot, the forward kinematics problem is to determine the homoge-
neous transformation matrix B

ET as a function of the joint variables (q1, q2, . . . , qn).
The analysis may be carried out straightforwardly by observing the geometry of
the robot at hand. A set of equations then shall be set up and some manipulation
should be performed to deduce the elements of BET in terms of the joint variables.

Unfortunately, the geometric approach works well to the robots with simple
structure only. Denavit and Hartenberg [7] recognized this problem in 1950's and
proposed the formal method of the forward kinematics analysis by introducing
the frames attached to the robot linkages. The procedure in setting up these
frames follows what is known as the Denavit-Hartenberg (DH) convention. In
this lecture note, a variation of the DH convention as used in [4] will be adopted.
As a preparation to the forward kinematics analysis, notations for describing the
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robot linkages and joints will be explained �rst.
Figure 3.2 depicts a schematic diagram of the open chain structured serial

robot which mechanically consists of

� Linkages of n+ 1 links counting from the robot base, as link #0, sequen-
tially to the link #n where there exists the end e�ector.

� Joints of n joints connecting the linkages in the serial topology. The �rst
joint, called joint #1, connects link #1 to the base. Counting outward to
the end e�ector, totally there are n joints.

According to the above enumeration scheme, joint #i will join link # (i− 1) to
link #i. Also, by the serial structure of the robot, actuation of joint #i causes the
motion of link #i, # (i+ 1), . . ., #n. With these notations, it is ready to start
analyzing the kinematics of the serial robot. By the repeating structure of each
joint connecting two linkages, kinematic analysis of the robot can be performed
recursively from the base to the end e�ector. This analysis is hence called the
forward kinematics analysis, re�ecting the progressive direction of the analysis
procedure from the base to the end e�ector.

The analysis starts by attaching the frame {xi yi zi} onto the link #i. Note
that no matter how the robot moves, any point on the linkage will always be
described by the �xed coordinates in its moving frame. In addition to the frame
{x0 y0 z0} �xated to the base, there might be a speci�c base frame or the �xed
reference frame, usually denoted by {B}. Similarly, in addition to the frame
{xn yn zn} attached to the last link #n where the end e�ector is installed, it is
assigned with the the end e�ector frame {E} = {xe ye ze} next to {xn yn zn} to
indicate its posture. Figure 3.3 depicts the robot in Fig. 3.2 equipped with these
auxiliary frames.

According to the serial robot structure with the simple joints and these
enumeration schemes, at any instant, the posture of {xi yi zi} relative to
{xi−1 yi−1 zi−1} depends solely on the joint variable qi. If the joint is of revo-
lute type, the joint variable will be the rotated angle of the linkage θi. In case
of the prismatic joint, it will be the displacement di. This is captured by the
transformation i−1

i T (qi).
As in subsection 2.4.3, the matrix B

ET which describes the posture of the end
e�ector relative to the base may be determined by forming the compound trans-
formation from the multiplication of the sub-transformations of the intermediate
frames between {B} and {E};

B
ET = B

0 T
0
1T (q1)

1
2T (q2) · · · n−1n T (qn) nET. (3.1)

The equation presumes no relative motion between {n} and {E}, i.e. both frames
are a�xed to the last link #n.
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Figure 3.3: Serial manipulator and the associated frames for kinematical analysis.
([1], pp. 69)

Chulalongkorn University Phongsaen PITAKWATCHARA



3.2 Denavit-Hartenberg Convention 51

Figure 3.4: Frames and their parameters according to the DH convention. ([1],
pp. 70)

3.2 Denavit-Hartenberg Convention

In general, link frames may be a�xed to the robot linkages arbitrarily. Never-
theless, it is quite common to adopt the Denavit-Hartenberg (DH) convention to
construct and attach the frames in a systematic manner. In this course, notations
for the DH convention used in [4] are adopted.

The DH convention has two constraints in formulating the frames. They are

� The x-axis of a frame must be intersecting with the z-axis of the next frame.

� The x-axis of a frame must be perpendicular to the z-axis of the next frame.

As a result, the number of indepedent variables used to describe the transforma-
tion between two successive frames is reduced from six to four only.

In the following, the steps of attaching the frames to the serial robot with
the simple joints only according to the DH convention will be explained. In
case the robot possesses the compound joint, it will be decomposed as the serial
connection of the simple joint �rst.

1. Enumerate the (n+ 1)-linkages starting from the link #0 for the base, suc-
cessively counting to the link #n where the end e�ector is situated.

2. Enumerate the n-joints starting from the joint #1 which joins the link #1
to the base, successively counting toward the end e�ector joint. Joint #i
will connect link #i to link # (i− 1).
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3. De�ne the base frame {B} at the base for the reference frame at any conve-
nient location. However, {B} should be the one that makes B0 T as simplest
as possible.

4. De�ne the end e�ector frame {E} at any convenient location on the end
e�ector. However, {E} should be the one that makes n

ET as simplest as
possible.

5. De�ne the frame {i} which moves along with link #i. The frame is con-
structed in a way that zi-axis coincides the joint axis #i. The axis is
oriented in the direction where the rotation or the translation is de�ned
positive.

6. The xi-axis is chosen to coincide with the common normal line between
the zi and zi+1-axes. The xi-axis is oriented in the direction from the zi to
zi+1-axis.

7. In case when the zi and zi+1-axis intersect, the xi-axis will be perpendicular
to the plane formed by these two axes. Positive direction is selected such
that it points toward the end e�ector joint.

8. In case when zi and zi+1-axis are parallel, the xi-axis should be chosen such
that it intersects with the xi−1-axis. This would simplify i−1

i T .

9. Direction of the xn-axis can be chosen arbitrarily. However, if possible, it
should be such that n−1n T and n

ET be less complicated. For example, {n} is
parallel to {E}.

10. The origin of {i} is the intersecting point of the xi and zi-axes.

11. Lastly, install {0} a�xed to the base. It should be chosen so that it coincides
with {1} at the robot home position

After �nishing the frame installation to the robot, the DH parameters shall
then be determined. They are used to describe the relative posture between the
successive frames. To transform {i− 1} to {i}, the DH parameters involved are

� Link length ai−1 is the mathematical length of the link # (i− 1). It is the
distance from zi−1 to zi along xi−1-axis.

� Link twist αi−1 is the mathematical twist angle between the joint axes of
the link # (i− 1). It is the angle measured from zi−1 to zi around xi−1-axis.

� Joint displacement di is the distance measured from xi−1 to xi along zi-axis.

� Joint angle θi is the angle measured from xi−1 to xi around zi-axis.
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Figure 3.4 displays the frames attached to the linkages and their relevant DH
parameters. With the notations adopted in this course, i−1i T will be a function
of ai−1, αi−1, di, and θi. Accordingly, {i} may be generated from {i− 1} in the
following manner.

1. Translate {i− 1} along the xi−1-axis by ai−1. This corresponds to the
operator

Trxi−1,ai−1
=


1 0 0 ai−1
0 1 0 0
0 0 1 0
0 0 0 1

 .
2. Rotate the resulting frame around the (unchanged) xi−1-axis by αi−1. This

corresponds to the operator

Rotxi−1,αi−1
=


1 0 0 0
0 cαi−1 −sαi−1 0
0 sαi−1 cαi−1 0
0 0 0 1

 .
3. Translate the resulting frame along the (resulting) zi-axis by di. This cor-

responds to the operator

Trzi,di =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 .
4. Rotate the resulting frame around the (unchanged) zi-axis by θi. This

corresponds to the operator

Rotzi,θi =


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

 .
Because all the rotations and translations happen with respect to the current

frame, the equivalent operator, which is the homogeneous transformation matrix
describing the posture of {i} relative to {i− 1}, may be calculated by

i−1
i T = Trxi−1,ai−1

Rotxi−1,αi−1
Trzi,diRotzi,θi

=


cθi −sθi 0 ai−1

cαi−1sθi cαi−1cθi −sαi−1 −disαi−1
sαi−1sθi sαi−1cθi cαi−1 dicαi−1

0 0 0 1

 . (3.2)
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Table 3.1: Format of the table of DH parameters.
i ai−1 αi−1 di θi

0 ab αb db θb
1 a0 α0 d1 θ∗1
...

...
...

...
...

i ai−1 αi−1 d∗i θi
...

...
...

...
...

n an−1 αn−1 dn θ∗n
E ae αe de θe

This transformation matrix can then be used to determine B
ET in Eq. 3.1.

For general robot analysis, it is advisable to create the table of DH param-
eters to assist the systematic calculation of the transformation matrices. As
depicted in Table 3.1, the table has 5 columns indicating the order of the sub-
transformation #i and the DH parameters ai−1, αi−1, di, θi. Row of the order #i
contains the parameters used to transform {i− 1} to {i}. The �rst row will be
the transformational parameters from {B} to {0}, while the last row will be the
ones from {n} to {E}. Joint variables will be donoted by the star-mark, i.e. θ∗i
for the revolute and d∗i for the prismatic joint. Totally, the table would have
(n+ 2) rows.

3.3 Manipulator Kinematics

In this section, the forward kinematics analysis of two robots are performed. The
�rst example is simple while the second one is from the well known PUMA 560
industrial robot.

Example 3.1 Articulated Arm: Perform the forward kinematics analysis of the
articulated robot depicted in Fig. 3.5.

Solution Following the guideline explained in section 3.2, the associated
frames according to DH convention are attached to the robot as shown in Fig. 3.5.
For the cases where there are options to de�ne the frame, it will be chosen such
that the frames' origin be coincident and the joint o�set distance be zero. Specif-
ically, table 3.2 is the table of DH parameters for the robot.

Note that most of the parameter's values are zero. Therefore the homogeneous
transformation matrices will be simpli�ed. Applying Eq. 3.2 to determine each
sub-transformation, the results are as follow.

B
0 T =


1 0 0 0
0 1 0 0
0 0 1 h
0 0 0 1

 0
1T =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1


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Figure 3.5: Example 3.1.

Table 3.2: Table of DH parameters for the articulated robot in example 3.1.
i ai−1 αi−1 di θi

0 0 0 h 0
1 0 0 0 θ∗1
2 0 π/2 0 θ∗2
3 l1 0 0 θ∗3
E l2 0 0 0
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Table 3.3: Table of DH parameters for the PUMA 560 robot in example 3.2.
i ai−1 αi−1 di θi

0 0 0 H 0
1 0 0 0 θ∗1
2 0 −π/2 0 θ∗2
3 a2 0 d3 θ∗3
4 a3 −π/2 d4 θ∗4
5 0 π/2 0 θ∗5
6 0 −π/2 0 θ∗6
E 0 0 e 0

1
2T =


c2 −s2 0 0
0 0 −1 0
s2 c2 0 0
0 0 0 1

 2
3T =


c3 −s3 0 l1
s3 c3 0 0
0 0 1 0
0 0 0 1


3
ET =


1 0 0 l2
0 1 0 0
0 0 1 0
0 0 0 1

 .
Consequently, the homogeneous transformation matrix of {E} with respect

to {B}, representing the forward kinematics of the robot, may be determined by
Eq. 3.1;

B
ET = B

0 T
0
1 T

1
2 T

2
3 T

3
ET

=


c1c23 −c1s23 s1 c1 (l1c2 + l2c23)
s1c23 −s1s23 −c1 s1 (l1c2 + l2c23)
s23 c23 0 h+ l1s2 + l2s23
0 0 0 1

 .
Example 3.2 PUMA 560 Robot : Perform the forward kinematics analysis of
the six degrees of freedom PUMA 560 robot depicted in Fig. 3.6. ([4], pp. 77)

Solution Schematic diagram of the robot geometry is illustrated in Fig. 3.7
where the frames of the upper arm portion are attached according to the proce-
dure outlined in section 3.2. In this �gure, the robot is in the posture that makes
all joint angles equal to zero. The frames of the forearm portion are depicted in
Fig. 3.8. The base and the end e�ector frames are introduced for generalizing the
result. According to the selected frames, table 3.3 contains the DH parameters
of the robot.

Now, it is straightforward to apply Eq. 3.2 to determine each of the link
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Figure 3.6: PUMA 560 by Unimation Incorporate. ([4], pp. 78)
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Figure 3.7: Frame assignments for the upper arm of the PUMA 560.

Figure 3.8: Frame assignments for the forearm of the PUMA 560.
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transformation:

B
0 T =


1 0 0 0
0 1 0 0
0 0 1 H
0 0 0 1

 0
1T =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1



1
2T =


c2 −s2 0 0
0 0 1 0
−s2 −c2 0 0

0 0 0 1

 2
3T =


c3 −s3 0 a2
s3 c3 0 0
0 0 1 d3
0 0 0 1


3
4T =


c4 −s4 0 a3
0 0 1 d4
−s4 −c4 0 0

0 0 0 1

 4
5T =


c5 −s5 0 0
0 0 −1 0
s5 c5 0 0
0 0 0 1


5
6T =


c6 −s6 0 0
0 0 1 0
−s6 −c6 0 0

0 0 0 1

 6
ET =


1 0 0 0
0 1 0 0
0 0 1 e
0 0 0 1

 .
Consequently, the homogeneous transformation matrix of {E} with respect

to {B}, representing the forward kinematics of the robot, may be determined by
Eq. 3.1;

B
ET = B

0 T
0
1 T

1
2 T

2
3 T

3
4 T

4
5 T

5
6 T

6
ET

= B
3 T

3
4 T

4
ET

=


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 ,
where

B
3 T =


c1c23 −c1s23 −s1 a2c1c2 − d3s1
s1c23 −s1s23 c1 a2s1c2 + d3c1
−s23 −c23 0 H − a2s2

0 0 0 1


3
4T =


c4 −s4 0 a3
0 0 1 d4
−s4 −c4 0 0

0 0 0 1

 4
ET =


c5c6 −c5s6 −s5 −es5
s6 c6 0 0
s5c6 −s5s6 c5 ec5

0 0 0 1

 ,
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Figure 3.9: Mapping between three spaces. ([1], pp. 94)

and

r11 = c1 [c23 (c4c5c6 − s4s6)− s23s5c6] + s1 (s4c5c6 + c4s6)

r21 = s1 [c23 (c4c5c6 − s4s6)− s23s5c6]− c1 (s4c5c6 + c4s6)

r31 = −s23 (c4c5c6 − s4s6)− c23s5c6
r12 = c1 [−c23 (c4c5s6 + s4c6) + s23s5s6] + s1 (c4c6 − s4c5s6)
r22 = s1 [−c23 (c4c5s6 + s4c6) + s23s5s6]− c1 (c4c6 − s4c5s6)
r32 = s23 (c4c5s6 + s4c6) + c23s5s6

r13 = −c1 (c23c4s5 + s23c5)− s1s4s5
r23 = −s1 (c23c4s5 + s23c5) + c1s4s5

r33 = s23c4s5 − c23c5
px = c1 (a2c2 + a3c23 − d4s23)− d3s1 − e [c1 (c23c4s5 + s23c5) + s1s4s5]

py = s1 (a2c2 + a3c23 − d4s23) + d3c1 − e [s1 (c23c4s5 + s23c5)− c1s4s5]
pz = H − a2s2 − a3s23 − d4c23 − e (−s23c4s5 + c23c5) .

3.4 Actuator Space, Joint Space, and Cartesian

Space

Results from the forward kinematics analysis shows that the robot posture will
be completely determined through the joint variables. For convenience, they are
grouped as the joint vector :

q̄ = [θ1 · · · θi dj · · · θn]T . (3.3)

The space of all possible joint vectors is called the joint space.
In practice, the joint varaibles are not regulated by the actuator variables,

except for the direct drive robot. Usually, there must have intermediate mech-
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anisms which drive the robot joints from the actuator motion. Likewise, the
actuator variables may be written as the actuator vector

p̄ = [p1 · · · pi · · · pm]T , (3.4)

and the space of all possible actuator vectors is called the actuator space.
Generally, tasks for the robot will determine the robot end e�ector motion:

position and orientation. Position can be described readily via, e.g., the Carte-
sian coordinate system and the position vector. Rotation in three dimensional
space, nevertheless, is more complicated since it is not the vector quantity. Meth-
ods in chapter 2 may be used to describe the end e�ector posture, such as the
homogeneous transformation matrix

T =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 ,
or the 6-tuples of the Cartesian position vector and the Euler angles or the �xed
angles for its orientation

X̄e = [px py pz ψ θ φ]T .

The space of all possible three dimensional positions and orientations is called
the operational space, task space, or sometimes Cartesian space.

In the previous and this chapter, several methods of describing the posture of
the robot end e�ector, which depends on the joint variables, are studied. Mathe-
matically, they are viewed as the mapping from the joint space to the operational
space;

T = T (q̄) (3.5)

or
X̄e = X̄e (q̄) . (3.6)

This mapping falls into the nonlinear conformal mapping and normally is so
complex that it may not be written as a usual function explicitly.

Additional mapping of the actuator space to the joint space

q̄ = q̄ (p̄) (3.7)

is necessary to calculate the joint motion from the actuators where the encoders
are assembled to and the low level feedback control happens. Conceptual pic-
ture of the mapping between these three spaces, both forward and backward, is
depicted in Fig. 3.9.
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Problems

1. Analyze the forward kinematics of the planar robot arm illustrated in
Fig. 3.10. The �rst and second joint type are of revolute and prismatic,
respectively. Do the problem using the geometric approach and the formal
frame setup approach under the Denavit-Hartenberg notation. Analyze for
its workspace as well.

Figure 3.10: Schematic diagram of a planar revolute-prismatic (RP) joint robot
arm.

2. Consider a 3R non-planar arm in Fig. 3.11. Set up the necessary frames
and derive its forward kinematics and workspace.

Figure 3.11: Schematic diagram of a 3R non-planar arm.

3. Figure 3.12 depicts the kinematic diagram of a 3-DOF non-orthogonal wrist.
Assign the necessary frames to the mechanism and determine its forward
kinematics and workspace.
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Figure 3.12: Schematic diagram of a 3-DOF non-orthogonal wrist.

4. Determine the forward kinematics of the SCARA robot as shown in
Fig. 3.13. Analyze its workspace as well.

Figure 3.13: Schematic diagram of a SCARA robot arm.
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Manipulator inverse kinematics problem is the converse problem of the for-
ward kinematics in the previous chapter. Particularly, the inverse kinematics
analyzes for the function of joint variables in terms of the given robot posture.
For the serial manipulator, the inverse problem is more di�cult, unfortunately
due to the nonlinearity of the trigonometric functions which are not bijective.
Hence, there is no book-keeping procedure for the inverse kinematics analysis in
general.

In section 4.1, the issue of problem solvability will be addressed �rst. Then,
two methods of the algebraic and the geometric approaches in solving the prob-
lem will be discussed in section 4.2. Inverse kinematics of the manipulators in
chapter 3 will �nally be considered.

4.1 Solvability

The essence of the inverse kinematics problem is to solve for the joint angles

q̄ = [θ1 · · · θi dj · · · θn]T

provided the robot posture is given. If this is speci�ed by the homogeneous
transformation matrix B

ET , the inverse kinematics analysis may be viewed as the
problem of solving a set of the following nonlinear equations:

r11 = r11 (q̄) r12 = r12 (q̄) r13 = r13 (q̄) px = px (q̄)

r21 = r21 (q̄) r22 = r22 (q̄) r23 = r23 (q̄) py = py (q̄) (4.1)

r31 = r31 (q̄) r32 = r32 (q̄) r33 = r33 (q̄) pz = pz (q̄) .

Physically, twelve equations can be formulated. However, it is known that those
nine elements for the rotation matrix are dependent. Indeed only three indepen-
dent equations may be formulated for a particular orientation. Combined with
the position vector, there will be totally merely six equations that may be used to
solve for the joint angles. These equations heavily involve with the trigonometric
functions which are nonlinear and not bijective, unfortunately. Therefore solving
the inverse kinematics is a much more di�cult problem and it typically does not
have a book-keeping procedure to follow.

4.1.1 Existence of Solution

The �rst question before starting to look for the corresponding joint angles is
that does such solution really exist. This is called the existence of the solution.
The necessary and su�cient condition of the existence of the solution is the
speci�ed posture must physically be a posture in the robot workspace. For the
solution q̄ to always exist, the number of kinematically independent robot joints
must not be less than the number of degrees of freedom (DOF) for specifying an
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Figure 4.1: The desired end e�ector position P̄ can be reached in a multiple ways.
([1], pp. 113)

arbitrary position and orientation in the robot workspace. If task is con�ned to
be in a particular plane, the robot should possess at any instant at least three
independent joints. For the robot to perform general task in three dimensional
space, it should be designed in a manner that there are minimally six independent
joints available in the workspace.

Moreover, the existence of solution depends on the joint limits and the obsta-
cles as well. Solution of the joint angles from the inverse problem of T (q̄) may
not be realizable since it is out of the joint range or it causes the collision of the
robot arm and the obstacle. In pracetice, it is thus necessary to check the inverse
kinematics solution against these issues before the execution.

4.1.2 Multiple Solutions

If there exists joint angles q̄ for a particular robot posture, a chance that there
are multiple solutions is possible because the trigonometric functions are not the
injective function. As an example, Fig. 4.1 depicts a two DOF planar robot.
Its workspace is de�ned to be the set of all reachable end-e�ector positions. The
�gure illustrates two robot postures which correspond to the speci�ed end e�ector
position. This is in agreement with two solutions from the algebraic approach
that will be explained in the next section.

Consider another example of a planar three DOF robot in Fig. 4.2. The
workspace is de�ned as the set of all end e�ector positions and orientations. If
the robot end e�ector position and orientation are speci�ed, there will be two
robot postures which satis�es the requirement. See the left �gure of Fig. 4.2.
However, if the end e�ector orientation causes no e�ect to the robot operation
as if the workspace is the set of merely the end e�ector positions, then for a
given robot end e�ector position, there will be in�nitely many robot postures
according to a bunch of possible orientation of the end e�ector by the third joint
angle rotation.

The number of solutions for a speci�c posture depends on the number of
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Figure 4.2: Inverse kinematics solution of a three DOF planar robot when the
position and orientation (left) or only the position (right) of the end e�ector are
speci�ed. ([1], pp. 114)

independent robot joints. If the latter is greater than the number of required DOF
for the task space, there will be in�nitely many inverse kinematics solutions. On
the other hand, if it is less than the number of required DOF, there might have
no solution for a certain postures. Moreover, the number of solutions depends on
the kinematical structure of the robot as well. Generally, the more the number
of nonzero link length ai or joint displacement di, the more the �nite number of
solutions will be. Similarly, the more the number of the joint twist αi or the joint
angle θi which are not 0◦ or 90◦, the more the �nite number of solutions will be.
For a six DOF revolute joint robot, there are as many as 16 solutions of q̄. This
will be shown in analyzing the inverse kinematics of the PUMA 560.

4.2 Algebraic vs. Geometric Approaches

There is no general way to solve the arbitrary nonlinear algebraic equations except
the numerical method. This method, nevertheless, has a drawback of providing
a single solution which might not be the required one. Moreover, the method
basically relies on recursive evaluation. Hence the time spent cannot be predicted.
Worse yet, there is no guarantee whether the algorithm will converge to a solution.
Consequently, the numerical method for solving the inverse kinematics is rarely
used in real time control problem. However, it is often used in the simulation
of the complex robot systems that are not possible to determine the closed form
inverse kinematics solution.

Practically, the robot is often designed with a simple structure that possesses
the closed form inverse kinematics solution. Solution of the joint vector q̄ will
be called the closed form solution if it can be written as the explicit function
of the given parameters describing the robot posture. Unfortunately in many
cases, the expression of q̄ must be written using the implicit functions or with
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the composite functions to reduce the complexity of the expression. There are
two main approaches in solving the inverse kinematics: the algebraic and the
geometric approaches.

4.2.1 Algebraic Approach

This approach compares the speci�ed position and orientation with the robot
forward kinematics expressions and solves for q̄. If the homogeneous transforma-
tion representation is employed, twelve equations may be formulated. However,
as mentioned in section 4.1, there are only six independent equations which im-
plies no more than six unknowns (possibly may not be the joint variables) are
constrained. Nevertheless, after the appropriate set of equations are formed, the
next step is to solve this system of nonlinear equations.

Any technique or methodology, especially the trigonometric identities, may be
employed to solve the equations for the joint variables. Commonly, the equations
are manipulated to eliminate several scalar variables so that only single variable
is left in the equation. It may further be managed to write such variable as the
explicit function of the speci�ed posture. Issues pertaining to the existence of
and mutiple solutions need to be addressed. They will bring about the conditions
on the parameters.

Example 4.1 Three DOF Planar Robot : Perform the inverse kinematics analy-
sis of a three DOF planar robot as shown in Fig. 4.3. Use the algebraic approach.
([1], Prob. 4.1)

Solution As a prerequisite, the forward kinematics must be analyzed �rst.
Following the DH convention studied in chapter 3, the frames are set up and the
homogeneous transformation matrix between the end e�ector and the base frame,
{E} and {0}, may be determined as

0
ET =


c123 −s123 0 l1c1 + l2c12 + l3c123
s123 c123 0 l1s1 + l2s12 + l3s123
0 0 1 0
0 0 0 1

 .
Also, arbitrary posture of the robot end e�ector may be expressed by the general
homogeneous transformation matrix:

H =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 .
Corresponding joint angles θ1, θ2, and θ3 may be determined from the fact that

they equate 0
ET to the speci�ed H. Twelve algebraic equations can be formed.

Chulalongkorn University Phongsaen PITAKWATCHARA



4.2 Algebraic vs. Geometric Approaches 69

Figure 4.3: Example 4.1. ([1], pp. 75)

Among them, the explicit conditions are

r13 = 0 r23 = 0 r31 = 0 r32 = 0 r33 = 1 pz = 0.

Therefore, if the given H does not obey to these requirements, the speci�ed
posture is out of the robot workspace and hence there is simply no solution.

The remaining equations are related to the joint variables. They are

r11 = c123

r12 = −s123
r21 = s123

r22 = c123

px = l1c1 + l2c12 + l3c123

py = l1s1 + l2s12 + l3s123.

It may then be further concluded that the element (1, 1) and (2, 2) of H must be
equal. Also the element (2, 1) must be the negative of the element (1, 2).

Replace c123 and s123 by r11 and r21, in turn, in the expression of px and py,
they may be rewritten as

px − l3r11 = l1c1 + l2c12

py − l3r21 = l1s1 + l2s12.
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Squaring each equation and summing them together lead to

(px − l3r11)2 + (py − l3r21)2 = l21 + l22 + 2l1l2c2.

This equation has only one unknown of θ2 which is inside the cosine function.
Let us introduce

x = px − l3r11
y = py − l3r21,

for conciseness of the development. Immediately, the cosine of θ2 is simply

c2 =
x2 + y2 − l21 − l22

2l1l2
.

Since range of the cosine function is the closed interval [−1, 1], the condition for
the existence of the solution is

(l1 − l2)2 ≤ x2 + y2 ≤ (l1 + l2)
2 .

The equation implies the speci�ed posture of the end e�ector must induce the
distance from the �rst to the third joint that is no less than the di�erence of the
length of the �rst two links. Furthermore, such distance must not be greater than
the sum of the length of the �rst two links as well. If the speci�ed distance is out
of the range, it simply cannot be reached.

If this condition is satis�ed, the sine of θ2 will be

s2 = ±
√

1− c22.

Hence there are two possible solutions of θ2 and they are

θ2 = atan2 (s2, c2) .

θ1 may thus be determined by substituting the already known θ2 back into
the equations of px and py. That is, for each value of θ2,

x = (l1 + l2c2) c1 − l2s2s1
y = l2s2c1 + (l1 + l2c2) s1.

After some manipulation, θ1 may be solved;

θ1 = atan2 (y, x)− atan2 (l2s2, l1 + l2c2) .

Lastly, for each set of θ1 and θ2, the corresponding θ3 may be determined simply
from

θ3 = atan2 (r21, r11)− θ1 − θ2.
In conclusion, there are two sets of the joint angles of the three DOF planar robot
corresponding to a speci�ed reachable posture.
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Figure 4.4: Example 4.2. ([1], pp. 119)

4.2.2 Geometric Approach

The geometric approach, on the contrary, will develop the kinematical equations
from the structural geometric relationship of the robot. Usually, the relationship
is derived by noticing the sum of the vectors alongside of a polygon must yield
a null vector. The polygon may not be con�ned to lie on a plane, however. One
may also set up the equations by projecting the polygon onto a plane which is
orthogonal to the joint axis that de�nes the unknown joint variable. Particularly,
if the joint variable θi is to be solved for, it might be useful to project the robot
links onto the xi-yi plane �rst. Geometrical analysis of the projected polygon in
the plane will then be performed.

Example 4.2 Three DOF Planar Robot : Perform the inverse kinematics anal-
ysis of a three DOF planar robot as shown in Fig. 4.4. Now use the geometric
approach instead. ([1], Prob. 4.2)

Solution Figure 4.4 displays the geometry of the robot pertinent to the
following analysis. From the �gure, if a straight line connecting the �rst and the
third joint is drawn, a geometric relationship can be determined from the triangle
OAB. Note that only the joint variable θ2 is involved and thus the equation may
be used to determine its value directly.−−→

OB which represents a side of the triangle OAB may be determined by sub-
tracting the vector associated with the third link from the position vector of the
end e�ector. That is −−→

OB =
−−→
OE −

−−→
BE.

From the geometry in Fig. 4.4, the vector equation may be represented in {XY }
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as
−−→
OB =

[
px
py

]
−
[
l3c123
l3s123

]
.

Since the rotation matrix of the end e�ector frame must represent the rotation
in the XY plane in accordance with the robot geometry, the elements of the
speci�ed homogeneous transformation matrix must conform to the conditions:

r13 = 0 r23 = 0 r31 = 0 r32 = 0 r33 = 1 pz = 0.

Moreover, elements (1, 1), (2, 1), (1, 2), and (2, 2) must be equal to the cosine,
sine, minus sine, and cosine of the rotated angle of the end e�ector. Because the

rotated angle is obviously θ1+θ2+θ3,
−−→
OB may be expressed in terms of the given

position and orientation as

−−→
OB =

[
x
y

]
=

[
px − l3r11
py − l3r21

]
,

where, physically, x and y represent the coordinates of the third joint in the base
frame.

Law of cosine may be applied to the triangle OAB for setting up the relation
in determining θ2 as

x2 + y2 = l21 + l22 − 2l1l2 cos (π − θ2) = l21 + l22 + 2l1l2c2.

Hence

c2 =
x2 + y2 − l21 − l22

2l1l2
,

which corresponds to the result using the algebraic approach. In the same man-
ner, numerical value of the right hand side term must lie in the closed interval
[−1, 1], leading to the condition for the existence of the solution;

(l1 − l2)2 ≤ x2 + y2 ≤ (l1 + l2)
2 .

Physical interpretation of this inequality may be understood from the underlying
geometry in Fig. 4.4. θ2 is solvable if and only if the distance from the �rst to
the third joint determined from the speci�ed end e�ector posture must not be
longer than (l1 + l2), which would be equal when the robot fully stretches out its
arm so the �rst and the second links line up. Additionally, the distance must not
be shorter than |l1 − l2|, which would be equal when the robot fully folds its arm
back.

If the above condition is satis�ed, θ2 may be determined from the inverse of
the cosine function

θ2 = acos

(
x2 + y2 − l21 − l22

2l1l2

)
,
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for which the value of θ2 is limited to the interval [0, π] corresponding to the
geometry of the triangle. Another solution of θ2 is for the case when the �rst
and the second link are in the posture shown by the dotted lines in Fig. 4.4.
Therefore the second solution may be readily determined since the triangle OAB
and OA′B′ are the mirror images of each other about the line OB:

θ2′ = −θ2.

Referring to Fig. 4.4, if the �rst link is thought of as a human upper arm, the
second link the lower arm, and the second joint as the elbow joint, two solutions
of the second joint angles will make the arm be in the elbow down pose for θ2 and
the elbow up pose for θ2′ .

θ1 will be the di�erence of the angles α and β associated with θ2 for the
triangle OAB. However it will be the sum of α and β associated with θ2′ for the
mirrored triangle OA′B′. From Fig. 4.4, angle α is readily determined as

α = atan2 (y, x) .

Angle β is an angle of the triangle OAB and hence may be determined from the
cosine law. That is,

β = acos

(
x2 + y2 + l21 − l22

2l1
√
x2 + y2

)
for which the value is limited to [0, π] by the physical geometry of the triangle.
Hence,

θ1 =

{
α− β, θ2 ≥ 0
α + β, θ2 < 0

Lastly, from Fig. 4.4, since the angle the end e�ector oriented in plane φ
is equal to θ1 + θ2 + θ3, and from the constraint of the workspace onto the
valid homogeneous transformation matrix as explained above, θ3 may thus be
determined as

θ3 = φ− θ1 − θ2 = atan2 (r21, r11)− θ1 − θ2.

Note that although the expression of θ1 obtained from the geometric and the
algebraic approach are di�erent, they yield the same angle as can be viewed from
di�erent triangles.

4.3 Examples

This section provides more examples of analyzing the inverse kinematics of two
robots in the previous chapter. This is the continuation of their forward kine-
matics analysis.
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Figure 4.5: Projection of the articulated arm onto x1-y1 plane and the related
parameters. ([1], pp. 122)

Example 4.3 Articulated Arm: Perform the inverse kinematics analysis of the
articulated robot illustrated in Fig. 3.5. ([1], Prob. 4.3)

Solution If the �rst joint does not exist, the robot arm is degenerated to
merely a two DOF planar robot. Thus one may apply the analysis result of the
three DOF planar robot by setting the length of the third link to zero. Since the
robot has just three DOF, it cannot achieve arbitrary speci�ed posture in three
dimensions. Therefore, one may specify only the desired end e�ector position

P̄ = [px py pz]
T

represented in the base frame. If the robot is projected onto the x1-y1 plane
which is parallel to xb-yb, the second and the third link images will be a single line

connecting the origin
[

0 0
]T

to the projected end e�ector point
[
px py

]T
as depicted in Fig. 4.5. Hence, it can be concluded that

θ1 = atan2 (py, px) .

Moreover, when the arm faces its back to P ,

θ1 = atan2 (py, px) + π,

as the arm can then �ip back to reach P as well.
To apply the inverse kinematics analysis of the planar arm in this problem,

�rstly the end e�ector position must be expressed in {x1y1z1}. Since the upper
and lower arm lie in x1-z1 plane as illustrated in Fig. 4.6 for the case when
θ1 = atan2 (py, px) is chosen,

{x1z1}P̄ =
[ √

p2x + p2y pz − h
]T
.
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Figure 4.6: Projection of the articulated arm onto x1-z1 plane, which degenerates
the three dimensional robot to a planar robot. ([1], pp. 123)

Geometrically, this must be equal to[
l1c2 + l2c23 l1s2 + l2s23

]T
,

as observed in Fig. 4.6.
Consequently, inverse kinematics result of the previous example may now be

applied as follow.

c3 =
p2x + p2y + p2z + h2 − 2hpz − l21 − l22

2l1l2

s3 = ±
√

1− c23
θ3 = atan2 (s3, c3)

θ2 = atan2
(
pz − h,

√
p2x + p2y

)
− atan2 (l2s3, l1 + l2c3)

There are two solutions for θ2 and θ3 according to the elbow up or elbow down
con�guration.

If θ1 = atan2 (py, px)+π is chosen instead, the end e�ector position expressed
in {x1z1} will be

{x1z1}P̄ =
[
−
√
p2x + p2y pz − h

]T
.

Hence the corresponding θ2 and θ3 will be

c3 =
p2x + p2y + p2z + h2 − 2hpz − l21 − l22

2l1l2

s3 = ±
√

1− c23
θ3 = atan2 (s3, c3)

θ2 = atan2
(
pz − h,−

√
p2x + p2y

)
− atan2 (l2s3, l1 + l2c3)
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In summary, for a speci�ed end e�ector position, mathematically the articu-
lated arm yields four solutions. The arm posture will be in a manner that, for the
�rst two solutions, the robot will face towards the position and the arm be either
in the elbow up or elbow down. For the other two solutions, the robot will turn
its back to the position and the second joint angle will be rotated greater than
90◦ so the arm still can reach the position which is located at its back. Looking
at the �nal posture, however, the arm postures are not changed.

Example 4.4 PUMA 560 Robot : Perform the inverse kinematics analysis of the
six DOF PUMA 560 robot illustrated in Fig. 3.6.

Solution Since the robot has full six DOF, both the desired position and
orientation of the end e�ector may be speci�ed arbitrarily. If

B
ET =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1


is given, the inverse kinematics problem is to determine the solution of the robot
six joint angles, θ1 to θ6. From example 3.2,

B
ET =B

0 T 0
6 T

6
ET.

Thus,

0
6T =

(
B
0 T
)−1 (B

ET
) (

6
ET
)−1

=


1 0 0 0
0 1 0 0
0 0 1 −H
0 0 0 1



r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 −e
0 0 0 1



=


r11 r12 r13 px − er13
r21 r22 r23 py − er23
r31 r32 r33 pz −H − er33
0 0 0 1

 .
One may need to look for simple relations that contain few unknowns at at

time so it may be capable of solving for the analytical solutions. θ1 may be solved
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�rst by rewriting the above statement as (
0
1T
)−1 (0

6T
)

= 1
6T,

c1 s1 0 0
−s1 c1 0 0

0 0 1 0
0 0 0 1



r11 r12 r13 px − er13
r21 r22 r23 py − er23
r31 r32 r33 pz −H − er33
0 0 0 1



=


∗ ∗ ∗ a3c23 − d4s23 + a2c2
∗ ∗ ∗ d3
∗ ∗ ∗ −d4c23 − a3s23 − a2s2
0 0 0 1

 .
Multiplying the subtransformation matrices in example 3.2, the (2, 4) element on
the right hand side is the least complex one, which fortunately is independent of
other unknowns;

(py − er23) c1 − (px − er13) s1 = d3.

There are two possible solutions of θ1, which may be expressed as

θ1 = atan2 (− (px − er13) , py − er23)

±atan2
(√

p2x + p2y − d23 + e2 (r213 + r223)− 2e (pxr13 + pyr23), d3

)
.

Further, the equality of (1, 4) and (3, 4) elements on both sides require that

a3c23 − d4s23 + a2c2 = (px − er13) c1 + (py − er23) s1
−d4c23 − a3s23 − a2s2 = pz −H − er33,

where now θ1 is treated as the known variable. Square the above two equations
and the �rst one as well. Sum those three together and rearrange the equation
into the following form

a3c3 − d4s3

=
(px − er13)2 + (py − er23)2 + (pz −H − er33)2 − a22 − a23 − d23 − d24

2a2
= K.

Hence two solutions of θ3 may be solved in a similar manner as of θ1, i.e.

θ3 = atan2 (−d4, d3)± atan2

(√
a23 + d24 −K2, K

)
.

The next unknown that should be looked for is θ2. Consider the governing
equation of 06T again. The equation may be rewritten so the left hand side appears
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as a function of θ2. In particular, (
0
3T
)−1 (0

6T
)

= 3
6T,

c1c23 s1c23 −s23 −a2c3
−c1s23 −s1s23 −c23 a2s3
−s1 c1 0 −d3

0 0 0 1



r11 r12 r13 px − er13
r21 r22 r23 py − er23
r31 r32 r33 pz −H − er33
0 0 0 1



=


c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5 a3

s5c6 −s5s6 c5 d4
−s4c5c6 − c4s6 s4c5s6 − c4c6 s4s5 0

0 0 0 1

 .
Setting up the equations from the (1, 4) and (2, 4) elements since they contain
only θ2 as unknown;

(px − er13) c1c23 + (py − er23) s1c23 − (pz −H − er33) s23 − a2c3 = a3

− (px − er13) c1s23 − (py − er23) s1s23 − (pz −H − er33) c23 + a2s3 = d4.

The equations may be solved simultaneously for s23 and c23 as

s23 =
− (a2c3 + a3) (pz −H − er33) + (a2s3 − d4) [(px − er13) c1 + (py − er23) s1]

[(px − er13) c1 + (py − er23) s1]2 + (pz −H − er33)2

c23 =
(a2c3 + a3) [(px − er13) c1 + (py − er23) s1] + (a2s3 − d4) (pz −H − er33)

[(px − er13) c1 + (py − er23) s1]2 + (pz −H − er33)2
.

Thus,

θ23 = atan2 (− (a2c3 + a3) (pz −H − er33) + (a2s3 − d4) [(px − er13) c1 + (py − er23) s1] ,
(a2c3 + a3) [(px − er13) c1 + (py − er23) s1] + (a2s3 − d4) (pz −H − er33)) .

It is seen that the value of θ23 depends on θ1 and θ3, each of which has two
solutions. Hence there are four possible combinations and so four corresponding
solutions of

θ2 = θ23 − θ3.
The remaining unknowns of θ4, θ5, and θ6 may now be solved straightfor-

wardly if one recognize that the rotation matrix in 3
6T is of the same form as

the corresponding rotation matrices of the Euler angles or the �xed angles de-
scriptions. Inverse kinematics problem of this kind has already been addressed
in subsection 2.5.1 and 2.5.2. The same technique may be applied here as follow.

Assume the value of the (2, 3) element of 3
6T is neither one or minus one. That

is c5 6= ±1 or θ5 6= 0, π. One then can set up the following relations;

c5 = − (r13c1s23 + r23s1s23 + r33c23)

s5 = ±
√

1− (r13c1s23 + r23s1s23 + r33c23)
2.
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According to the selected values of θ1, θ2, and θ3, there are two possible solutions
of θ5:

θ5 = atan2

(
±
√

1− (r13c1s23 + r23s1s23 + r33c23)
2,− (r13c1s23 + r23s1s23 + r33c23)

)
.

The remaining variables of θ4 and θ6 depends on the selected value of θ5. Specif-

ically, if s5 = +
√

1− (r13c1s23 + r23s1s23 + r33c23)
2 is chosen, then

θ4 = atan2 (−r13s1 + r23c1,− (r13c1c23 + r23s1c23 − r33s23))
θ6 = atan2 (r12c1s23 + r22s1s23 + r32c23,− (r11c1s23 + r21s1s23 + r31c23)) .

Instead, if s5 = −
√

1− (r13c1s23 + r23s1s23 + r33c23)
2 is chosen,

θ4 = atan2 (r13s1 − r23c1, r13c1c23 + r23s1c23 − r33s23)
θ6 = atan2 (− (r12c1s23 + r22s1s23 + r32c23) , r11c1s23 + r21s1s23 + r31c23) .

When − (r13c1s23 + r23s1s23 + r33c23) = 1, θ5 = 0. However, it will not be
possible to solve for θ4 and θ6. This is the `physical' singular con�guration (c.f.
the representational con�guration in subsection 2.5.1 and 2.5.2) of the roll-pitch-
roll wrist, which will happen when the wrist outstretches so the joint axes of θ4
and θ6 line up. In this con�guration, one would never know what are exactly the
contributing angles from the fourth and the sixth joints to the resultant rolling
angle of the end e�ector. Only their sum would know. Mathematically,

θ5 = 0

θ4 + θ6 = atan2 (r11s1 − r21c1, r12s1 − r22c1) .

Similarly, when − (r13c1s23 + r23s1s23 + r33c23) = −1, θ5 = π. This is another
physical singular con�guration of the wrist corresponding to the time when the
wrist fully folds back. For this con�guration, the di�erence of the fourth and the
sixth joint angles yields the end e�ector rolling angle. In other words,

θ5 = 0

θ4 − θ6 = atan2 (−r11s1 + r21c1, r12s1 − r22c1) .

In summary, if the robot is not in one of its singular con�guration, there
will be eight solutions of the joint angles which can achieve the speci�ed end
e�ector posture. The �rst three joints have four choices corresponding to the
left/right arm and elbow up/down solutions as illustrated in Fig. 4.7. There are
two solutions for the latter three joints for the wrist to �ip up/down. However,
some of them may not be possible because they will make the arm jammed with
the environment. The solution to choose for will, in general, be the one of which
the joint angles are closest to the present values. In other words, the solution
will stay in the same branch. This choice results in smooth motion of the robot
since it will not run into the singular con�guration unnecessarily.
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Figure 4.7: Four solutions for the �rst three joints of PUMA 560. ([4], pp. 105)
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Figure 4.8: Schematic diagram of a 2-DOF revolute joint planar arm.

Problems

1. Perform the inverse kinematics analysis of a simple 2-DOF planar robot in
Fig. 4.8 by both the algebraic and geometric approach.

2. Determine the inverse kinematics of the robot arm in Prob. 2 of Chapter 3.

3. Determine the inverse kinematics of the 3-DOF non-orthogonal wrist in
Prob. 3 of Chapter 3 from its forward kinematics result.

4. Determine the inverse kinematics of the SCARA arm depicted in Prob. 4
of Chapter 3 by your convenient method.

Chulalongkorn University Phongsaen PITAKWATCHARA



Chapter 5

Jacobians
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This chapter analyzes the robot kinematics at the velocity level to understand
how the robot will be moved by the motion of its joints. The velocity propagation
approach will be studied to derive the velocity kinematics in section 5.1. The
result is a linear mapping from the joint velocity space to the end e�ector spatial
velocity space. It may be compactly expressed by the geometric Jacobian matrix,
as discussed in section 5.2, for which it can be constructed on-the-�y.

Since Jacobian matrix is an important matrix in robot analysis, for this intro-
ductory course, two usages of it for the singularity analysis and the static force
analysis will be studied in section 5.3 and 5.4.

5.1 Velocity Propagation

Velocity kinematics analysis of the robot is the determination of the linear and
angular velocity at various points of the end e�ector or the linkages. Several
methods are available to develop these quantities. In this course, the method
of velocity propagation taught in the introductory to dynamics course will be
adopted.

5.1.1 Relative Linear Velocity of Any Two Points

Consider any two points A and B moving independently in three dimensional
space, depicted in Fig. 5.1. Motion of A may be observed from the observer who
travels with B. From the �gure, {xyz}, which has its origin at B and is rotating
with the angular velocity ω̄, is used to describe the position vector of A relative
to B:

p̄A/B = xî+ yĵ + zk̂. (5.1)

Since p̄A/B describes the motion of A relative to B, its time di�erentiation is
the relative velocity of A with respect to B.

v̄A − v̄B =
d

dt
p̄A/B =

(
x
d

dt
î+ y

d

dt
ĵ + z

d

dt
k̂

)
+
(
ẋî+ ẏĵ + żk̂

)
.

Because î, ĵ, and k̂ are unit vectors, the time rate of change of these vectors are
due solely to their changes in direction. Indeed,

d

dt
î = ω̄ × î d

dt
ĵ = ω̄ × ĵ d

dt
k̂ = ω̄ × k̂.

Substitute these relations into the above relative velocity equation. After some
manipulation, the velocity of A may be written as

v̄A = v̄B + ω̄ × p̄A/B + v̄rel, (5.2)
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Figure 5.1: Relevant frames and position vectors for the relative motion analysis
of arbitrary two points A and B. ([1], pp. 171)

where v̄rel = ẋî+ ẏĵ+ żk̂ is the velocity of A seen by the observer. This equation
says that the velocity of A may be determined from the velocity of B once their
relative velocity is known.

5.1.2 Relative Angular Velocity of the Objects

Angular velocity of an object describes the time rate of change of its rotation.
Let ω̄C and ω̄D be the angular velocity of two objects C and D. Since the angular
velocity is a free vector, the di�erence of the angular velocity of C and D, called
the relative angular velocity of C with respect to D, may be calculated simply
by

ω̄C/D = ω̄C − ω̄D.
Thus, it may be said that the angular velocity of C may be determined from the
angular velocity of D once their relative velocity is known:

ω̄C = ω̄D + ω̄C/D. (5.3)

5.1.3 Velocity of the Robot

In this subsection, the relative velocity formula developed earlier will be applied
to determine the velocity of the robot. Consider link#(i− 1) and link#i for
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Figure 5.2: Link frames and the relevant position vectors. ([1], pp. 172)

i ∈ [1, 2, . . . , n] of a serial link manipulator. Frames {i− 1} and {i} established
after DH convention and the pertaining position vectors are depicted in Fig. 5.2.
Recalling Eq. 5.2, the linear velocity of {i} may be determined from the linear
and angular velocity of {i− 1};

v̄i = v̄i−1 + ω̄i−1 × p̄i/i−1 + v̄rel. (5.4)

In dual, the angular velocity of {i} may be determined from the angular velocity
of {i− 1} as

ω̄i = ω̄i−1 + ω̄i/i−1. (5.5)

If joint#i is the prismatic joint, there will be no relative rotation of {i} and
{i− 1}. Hence, ω̄i/i−1 = 0̄. Substituting this value into Eq. 5.5,

ω̄i = ω̄i−1. (5.6)

Instead, the prismatic actuation causes the motion of the origin of {i} with respect
to the origin of {i− 1} by the relative linear velocity v̄rel = ḋik̂i. Applying this
value to Eq. 5.4,

v̄i = v̄i−1 + ω̄i−1 × p̄i/i−1 + ḋik̂i. (5.7)

If joint#i is the revolute joint, it will cause the rotation of {i} with respect
to {i− 1} by the relative angular velocity ω̄i/i−1 = θ̇ik̂i. Substituting such value
into Eq. 5.5,

ω̄i = ω̄i−1 + θ̇ik̂i. (5.8)

However, the rotating actuation causes no motion of the origin of {i} relative to
the origin of {i− 1}. As a result, v̄rel = 0̄. Consequently, from Eq. 5.4,

v̄i = v̄i−1 + ω̄i−1 × p̄i/i−1. (5.9)
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Figure 5.3: In�uence of the prismatic joint actutation onto the end e�ector linear
velocity. ([1], pp. 174)

5.2 Jacobian Matrix

From the previous section, it is seen that the velocity of the end e�ector when the
serial robot possesses only the simple joints may be computed from the developed
relative velocity equations 5.6, 5.7, 5.8, and 5.9 successively. In addition, the
following relative velocity equations are used to determine the velocity of {E}
from the velocity of {n}:

ω̄E = ω̄n

v̄E = v̄n + ω̄n × p̄E/n. (5.10)

Let nr and nt be the set of the revolute and prismatic joint enumerations,
respectively. Thus the end e�ector angular velocity may be expressed compactly
as

ω̄E =
∑
r∈nr

θ̇rk̂r. (5.11)

The equation is developed from Eq. 5.10 using the recursive substitution of
Eqs. 5.6 and 5.8. Note the base is assumed to be immobile.

Linear velocity of the end e�ector may be determined in the same vein. With
the recursive substitution of Eqs. 5.7, 5.9, 5.6, and 5.8 into Eq. 5.10, linear velocity
of the end e�ector may be computed by

v̄E =
∑
t∈nt

ḋtk̂t +
∑
r∈nr

θ̇rk̂r × p̄E/r, (5.12)

on the condition v̄0 = 0̄ and ω̄0 = 0̄.
From Eq. 5.11, the angular velocity of the end e�ector is the sum of the

angular velocity of all revolute joints. In other words, motion from the prismatic
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Figure 5.4: In�uence of the revolute joint actutation onto the end e�ector linear
velocity. ([1], pp. 175)

joints do not contribute to the end e�ector angular velocity. On the other hand,
as shown in Eq. 5.12, motion from both types of the joints have an a�ect on
the linear velocity of the end e�ector. Speci�cally, motion of the prismatic joints
contribute to the end e�ector linear velocity directly as the sum of the linear
velocity of all prismatic joints. However, the end e�ector motion caused by the
revolute joints depends on the position vector p̄E/r from the joint to the end
e�ector as well. Their contributions to the linear velocity are expressed by the
term

∑
r∈nr

θ̇rk̂r × p̄E/r in Eq. 5.12.
Furthermore, it can be observed from Eqs. 5.11 and 5.12 that each joint

velocity in�uences the end e�ector velocity indepedently. This can be imagined
that at a time there is only one joint being actuated while the others are freezed.
Figure 5.3 illustrates the linear motion of the end e�ector caused by the prismatic
joint actuation while Fig. 5.4 shows the linear motion caused by the revolute joint,
corresponding to the terms in Eq. 5.12.

The terms k̂i and p̄E/i in Eqs. 5.11 and 5.12 are the functions of the joint

variables q̄ solely corresponding to the explicit separation of ˙̄q, consisting of ḋt and
θ̇r, in the expressions. Hence both equations may be written as the multiplication
of the matrix and the column vector of the joint velocity as[

v̄E
ω̄E

]
= J (q̄) ˙̄q =

[
Jv (q̄)
Jω (q̄)

]
˙̄q. (5.13)

This equation indicates the linear mapping by the matrix J (q̄) from the space

of the joint velocity ˙̄q to the space of the end e�ector velocity
[
v̄TE ω̄TE

]T
when

the current robot pose corresponds to the joint variables q̄. The matrix J (q̄)
is the (geometric) Jacobian matrix describing the contribution of the each joint
motion to the robot end e�ector motion. The matrix is related to the partial
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derivatives of the multivariable functions, which is originated from the idea of a
great German mathematician named Carl Gustav Jacob Jacobi on the topic of
Jacobian determinant.

From Eqs. 5.11 and 5.12, the Jacobian matrix may be decomposed into two
submatrices as shown in Eq. 5.13. The submatrix Jv (q̄) dictates the relationship
between the joint velocity vector and the end e�ector linear velocity. Similarly,
the submatrix Jω (q̄) governs the relationship between the joint velocity vector
and the end e�ector angular velocity. Jv (q̄) may be determined from Eq. 5.12 and
Jω (q̄) from Eq. 5.11. The ith-column of J (q̄), denoted Ji, when i ∈ [1, 2, . . . , n]
may be expressed as

Ji =

[
Jvi
Jωi

]
=


[
k̂i
0̄

]
, ith − prismatic joint[

k̂i × p̄E/i
k̂i

]
, ith − revolute joint

. (5.14)

The term k̂i is the unit vector along the ith-joint axis. If it is described in
the reference frame, its value is determined by the third column of the rotation
matrix B

i R. The other term p̄E/i denotes the displacement vector pointing the
origin of {E} with respect to the origin of {i}. It is determined by subtracting
the embedded position vectors in B

ET and B
i T when p̄E/i is thus expressed in the

base frame. A suggestion on the way is therefore to complete the manipulator
kinematics analysis before deriving the robot Jacobian matrix. Also, the analysis
may be applied to determine the linear velocity of arbitrary point on the robot
and the angular velocity of any link.

Example 5.1 Articulated Arm: Determine the Jacobian matrix of the articu-
lated robot in Fig. 3.5.

Solution The Jacobian matrix linking the end e�ector velocity to the joint
velocity may be determined straightforwardly by Eq. 5.14. Since all three joints
of the robot are the revolute type,

J (q̄) =

[
k̂1 × (p̄E − p̄1) k̂2 × (p̄E − p̄2) k̂3 × (p̄E − p̄3)

k̂1 k̂2 k̂3

]
.

All relevant parameters may be computed from the manipulator kinematics
analysis in Ex. 3.1. If the Jacobian matrix is chosen to be expressed in the base
frame, the unit vectors k̂1, k̂2, and k̂3 is the third column vector of 0

1R,
0
2R, and

0
3R respectively. In particular,

k̂1 =

 0
0
1

 k̂2 =

 s1
−c1

0

 k̂3 =

 s1
−c1

0

 .
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Note that k̂2 = k̂3 re�ecting the second and the third joint axis pointing in the
same direction.

Position vector in 0
1T ,

0
2T ,

0
3T , and

0
ET is p̄1, p̄2, p̄3, and p̄E expressed in {0}.

Their values are

p̄1 =

 0
0
0

 p̄2 =

 0
0
0

 p̄3 =

 l1c1c2
l1s1c2
l1s2

 p̄E =

 c1 (l1c2 + l2c23)
s1 (l1c2 + l2c23)
l1s2 + l2s23

 .
Substitute these values into the Jacobian matrix and perform the evaluation, one
gets

J (θ1, θ2, θ3) =


−s1 (l1c2 + l2c23) −c1 (l1s2 + l2s23) −l2c1s23
c1 (l1c2 + l2c23) −s1 (l1s2 + l2s23) −l2s1s23

0 l1c2 + l2c23 l2c23
0 s1 s1
0 −c1 −c1
1 0 0

 .

Example 5.2 PUMA 560 Robot : Determine the Jacobian matrix of the PUMA
560 robot in Fig. 3.6.

Solution For this six DOF robot where the last three joints constitute the
spherical wrist, it is more convenient to formulate the Jacobian matrix of the
wrist center rather than the Jacobian matrix of the end e�ector. In addition, this
choice will simplify the singularity analysis as done in Ex. 5.4.

The Jacobian matrix which calculates the velocity
[
v̄TO6

ω̄TO6

]T
of the wrist

center on the last link will be expressed in {3} to reduce the complexity. For
this purpose, the forward kinematics performed in Ex. 3.2 must be represented
in {3}. Using the compound transformation, the homogeneous transformation of
every frame described with respect to {3} may be computed.

3
1T =3

0 T
0
1 T =


c23 0 −s23 −a2c3
−s23 0 −c23 a2s3

0 1 0 −d3
0 0 0 1



3
2T =3

1 T
1
2 T =


c3 s3 0 −a2c3
−s3 c3 0 a2s3

0 0 1 −d3
0 0 0 1


3
3T = I4×4

3
4T =


c4 −s4 0 a3
0 0 1 d4
−s4 −c4 0 0

0 0 0 1


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3
5T =3

4 T
4
5 T =


c4c5 −c4s5 s4 a3
s5 c5 0 d4
−s4c5 s4s5 c4 0

0 0 0 1


3
6T =3

5 T
5
6 T =


−s4s6 + c4c5c6 −s4c6 − c4c5s6 −c4s5 a3

s5c6 −s5s6 c5 d4
−c4s6 − s4c5c6 −c4c6 + s4c5s6 s4s5 0

0 0 0 1

 .
According to Eq. 5.14 and since all joints are the revolute type, the Jacobian

matrix of the PUMA 560 will have the form of

J (q̄) =

[
k̂1 × (p̄O6 − p̄1) k̂2 × (p̄O6 − p̄2) k̂3 × (p̄O6 − p̄3)

k̂1 k̂2 k̂3

k̂4 × (p̄O6 − p̄4) k̂5 × (p̄O6 − p̄5) k̂6 × (p̄O6 − p̄6)
k̂4 k̂5 k̂6

]
.

Since the Jacobian matrix is chosen to be expressed in {3}, the unit vectors k̂1,
k̂2, . . . , k̂6 is the third column of 3

1R,
3
2R, . . . ,

3
6R in order. Speci�cally from the

above homogeneous transformation matrices,

k̂1 =

 −s23−c23
0

 k̂2 = k̂3 =

 0
0
1



k̂4 =

 0
1
0

 k̂5 =

 s4
0
c4

 k̂6 =

 −c4s5c5
s4s5

 .
Similarly, position vectors p̄1, p̄2, . . . , p̄6 is the position vector in 3

1T ,
3
2T , . . . ,

3
6T

in order. Lastly, p̄O6 = p̄6 since the wrist center always coincides with the origin
of {6}. In particular,

p̄1 = p̄2 =

 −a2c3a2s3
−d3

 p̄3 = 0̄3 p̄4 = p̄5 = p̄6 = p̄O6 =

 a3
d4
0

 .
Substituting these parameters into the form of the Jacobian matrix above,

one obtain

J (q̄) =


−d3c23 a2s3 − d4 −d4 0 0 0
d3s23 a2c3 + a3 a3 0 0 0

a2c2 + a3c23 − d4s23 0 0 0 0 0
−s23 0 0 0 s4 −c4s5
−c23 0 0 1 0 c5

0 1 1 0 c4 s4s5

 .
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Figure 5.5: Workspace-interior singularity of the articulated arm when the wrist
center lies on the �rst joint axis. This is a case where the singularity locations
are known a-priori. ([1], pp. 194)

5.3 Singularities

As explained in the previous section, the Jacobian matrix J (q̄) is the linear
mapping from the space of the joint velocity to the space of the end e�ector
velocity as depicted in Eq. 5.13. The equation may be rewritten as the linear
combination of the columns Ji of the Jacobian matrix;[

v̄E
ω̄E

]
= J1q̇1 + J2q̇2 + · · ·+ Jnq̇n. (5.15)

Because the end e�ector velocity is the six dimensional real vector space, or[
v̄TE ω̄TE

]T ∈ R6, for the end e�ector to be able to move arbitrarily, the number
of linearly indepedent columns of Jacobian matrix must be equal to six. From
the linear algebra, the rank of a matrix will be equal to the number of maximally
linearly independent rows or columns of that matrix. Therefore, it may be stated
that for the end e�ctor to be capable of executing arbitrary motion, the rank of
its Jacobian matrix must be equal to six. For J ∈ R6×n, rank J ≤ min (6, n).

Since the Jacobian matrix is the function of the joint variables q̄, its value and
hence its rank will be changed accordingly. The robot is said to be at the singular
con�guration when rank J is less than its maximally possible value. Awareness
of the singularity of the robot is important for the following reasons.

1. At the singularity, the robot cannot achieve arbitrary motion. In other
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Figure 5.6: Workspace-interior singularity of the articulated arm when the fourth
and sixth joint axes of the wrist aligns. It may happen at any location in the
workspace. ([1], pp. 195)
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words, there are some directions in which the end e�ector cannot translate
or rotate.

2. There may be in�nitely many solutions of the robot inverse kinematics at
the singularity.

3. At the singularity, the bounded operational space velocity of the end e�ector
may require the unbounded joint space velocity. Also, in the neighborhood
of the singularity, even the robot end e�ector moves with low speed, its
joint velocity might be very large.

4. At the singularity, the bounded joint torque vector may be associated with
the unbounded force acting at the end e�ector. Additionally, in the neigh-
borhood of the singularity, even the robot is supplied with small joint
torque, the applied end e�ector force might be very large.

Such behaviors cause the problem in controlling the robot at or near the sin-
gularities. Thus it is necessary to analyze the robot singularity throughout the
workspace �rst. Otherwise, the computed control signals will be impractically
large, making the response not perform as expected. The system becomes unsta-
ble eventually. Besides, singularities may be classi�ed according to its location
into two types as

1. Workspace-boundary Singularity is the singularity which happens
when the robot fully outstretches or fully folds back their linkages. With
these con�gurations, the robot is unable to move further in such direction.
Typically, this type of singularity is not a problem since their locations are
predetermined. In practice, the robot trajectory will be planned to stay far
enough from the workspace boundary and this singularity can be avoided.

2. Workspace-interior Singularity is the singularity which happens
when the end e�ector is not at the workspace boundary. This type of
singularity is often caused by the parallelism of two or more robot joint
axes. Since the end e�ector is still be inside the workspace, it may cause a
problem of non-smooth trajectory when the robot passes through the sin-
gular point.
Corresponding posture of some interior singularity con�gurations brings the
information of where they happen. For example, it is known that the robot
will run into the singularity when the wrist center of the articulated arm lies
on the �rst joint axis. See Fig. 5.5. Thus, the singularity may be prevented
by designing the end e�ector trajectory not to get close to the �rst joint
axis.
However, it might not be possible to identify where the interior singularity
con�guration will happen. Figure 5.6 displays the articulated robot sin-
gularity when the fourth and sixth joint axes of the spherical wrist aligns.
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Precise location of the end e�ector when this singularity occurs is not known
until the inverse kinematics analysis is performed.

Determination of the robot singularity for the special case where the dimension
of the Jacobian matrix is n× n, happening when the number of the operational
DOF and the number of the joints are equal, may be performed simply by checking
its determinant. Speci�cally, the robot will be at the singular con�guration if and
only if

det J (q̄) = 0. (5.16)

Example 5.3 Articulated Arm: Analyze the singularity of the articulated robot
in Fig. 3.5.

Solution In Ex. 5.1, the Jacobian matrix of the robot is derived;

J (θ1, θ2, θ3) =


−s1 (l1c2 + l2c23) −c1 (l1s2 + l2s23) −l2c1s23
c1 (l1c2 + l2c23) −s1 (l1s2 + l2s23) −l2s1s23

0 l1c2 + l2c23 l2c23
0 s1 s1
0 −c1 −c1
1 0 0

 .

Dimension of the Jacobian matrix is 6×3, in which the determinant is not de�ned.
However, if the speci�ed task involves with the translational motion of the end
e�ector only, the Jacobian matrix may be degenerated into the sub-Jacobian
matrix of the linear velocity portion. That is

Jv (θ1, θ2, θ3) =

 −s1 (l1c2 + l2c23) −c1 (l1s2 + l2s23) −l2c1s23
c1 (l1c2 + l2c23) −s1 (l1s2 + l2s23) −l2s1s23

0 l1c2 + l2c23 l2c23

 .
Consequently, the robot singularity may be determined from the following con-
dition of

det Jv (q̄) = −l1l2s3 (l1c2 + l2c23) = 0.

This equation will be satis�ed when s3 = 0 and/or l1c2 + l2c23 = 0.
s3 = 0 will be true when θ3 = 0 or π. This makes the links l1 and l2 lie in the

same straight line. The arm will be fully outstretch or fully fold back accordingly.
These con�gurations are the boundary singularity type, as shown in Fig. 5.7

The other case of l1c2 + l2c23 = 0 will occur when the end e�ector lies on the
�rst joint axis for which this singularity is of the interior singularity type. See
Fig. 5.8. The end e�ector will not be able to move in the direction perpendicular
to the plane formed by the links l1 and l2. Moreover, there are in�nitely many
solutions of the robot inverse kinematics at this con�guration. Value of the �rst
joint can be chosen arbitrarily as it does not cause any translation of the end
e�ector.
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Figure 5.7: Singularity of the articulated arm when the arm fully outstretches or
folds back.

Figure 5.8: Singularity of the articulated arm when the end e�ector lies on the
�rst joint axis.
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Example 5.4 PUMA 560 Robot : Determine the singularity of the PUMA 560
robot in Fig. 3.6.

Solution The Jacobian matrix of PUMA 560 is derived in Ex. 5.2. It is
shown again here

J (q̄) =


−d3c23 a2s3 − d4 −d4 0 0 0
d3s23 a2c3 + a3 a3 0 0 0

a2c2 + a3c23 − d4s23 0 0 0 0 0
−s23 0 0 0 s4 −c4s5
−c23 0 0 1 0 c5

0 1 1 0 c4 s4s5

 =

[
J11 0̄3×3
J21 J22

]

for convenience. The matrix is a lower-block triangular matrix. Hence, the singu-
larity analysis may be decomposed into two subproblems of the arm and the wrist
singularity, coincident with the situation when they are controlled separately.

Condition when the singularity of the arm, driven by the �rst three joints,
will happen is that

det J11 = a2 (a3s3 + d4c3) (a2c2 + a3c23 − d4s23) = 0.

This will occur when a3s3 + d4c3 = 0 or a2c2 + a3c23 − d4s23 = 0. Considering
the robot kinematical structure in Figs. 3.7 and 3.8, the �rst case will hold if the
robot arm stretches out or folds back the link a2 and d4 in a way that one can
draw a line which passes joint axis#2, joint axis#3, and the wrist center point.
If this happens, the point will not be able to move along that line. The second
case will hold if the wrist center lies on the �rst joint axis, making it unable to
move perpendicular to the plane formed by the link a2 and d4. The robot posture
is similar to the one illustrated in Fig. 5.5.

On the other hand, condition when the singularity of the wrist, driven by the
last three joints, will happen is that

det J22 = −s5 = 0.

When θ5 = 0 or π, this condition will holds. Physically, it makes joint axis#4 and
joint axis#6 aligned. Thus the roll-pitch-roll wrist will be unable to rotate in the
yaw direction, which is perpendicular to the plane formed by joint axis#5 and
joint axis#6. Arrangement of the linkages resemble the one shown in Fig. 5.6.

In summary, the conditions which brings the PUMA 560 to one of its singular
point are

� The link a2 and d4 stretch out or fold back in a way that there is a line
passing through joint axis#2, joint axis#3, and the wrist center.

� The wrist center lies on the �rst joint axis.

� The wrist fully stretches out or folds back.
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Figure 5.9: Relationship of the force acting onto the environment at the end
e�ector and the actuator torques applied at the robot joints. ([1], pp. 230)

Locations of the wrist center for the �rst two cases are known priori and thus
can be prevented. However, the last case of singularity can happen everywhere
inside the workspace. Therefore, it must be checked whether s5 ≈ 0 at every
sampling before proceeding. Moreover, the last two cases of singularities bring
about in�nitely many inverse kinematic solutions.

5.4 Static Force

In section 5.2, it is shown that the geometric Jacobian matrix governs the rela-
tionship between the joint velocity and the end e�ector velocity as summarized in
Eq. 5.13. Nevertheless, recall the statement of the principle of the virtual work :

The virtual work acting by the external active forces to the ideal
mechanism under the equilibrium condition will be equal to zero.

From the principle, it can be shown that when the robot is in equilibrium, the
Jacobian matrix also dictates the relationship between the force acting at the end
e�ector and the supplied torque at the joints.

Consider Fig. 5.9 showing the ideal serial manipulator of which the friction
may be omitted. In addition, if it is legitimate to neglect the gravity force or it
has been compensated separately, the remaining external active forces acting on
the robot will be merely the actuator torques at the joints and the force at the
end e�ector.
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Actuator torques may be grouped and written as the joint torque vector in
Rn;

τ̄ =
[
τ1 τ2 · · · τn

]T
. (5.17)

For the force acting onto the environment at the end e�ector, generally it is
composed of the force f̄ and the couple µ̄ which may be written as a vector in
R6 as

F̄ =
[
fx fy fz µx µy µz

]T
=
[
f̄T µ̄T

]T
. (5.18)

When the external active forces τ̄ and F̄ acting on the robot that is in equi-
librium, assume the joints are displaced by an arbitrary deformation δq̄ from

the equilibria. Correspondingly, the displacement δX̄ =
[
δx̄T (ω̄dt)T

]T
at

the end e�ector admissible to the kinematic constraints is related to the joint
displacement by

δX̄ = J (q̄) δq̄. (5.19)

δq̄ and δX̄ are the virtual displacements because these displacement are guaran-
teed to satisfy only the kinematic constraints.

Virtual work is the work done by the force on the system according to the
virtual displacement. If it is decided that the work done by the environment on
the system is positive and the work done by the system on the environment is
negative, the application of the principle of the virtual work when the robot is in
equilibrium yields

τ̄T δq̄ − F̄ T δX̄ = 0.

With the robot kinematic constraints of Eq. 5.19, the above equation may be
written as (

τ̄T − F̄ TJ
)
δq̄ = 0.

Since the principle of the virtual work must hold for arbitrary virtual displace-
ment, one may conclude that

τ̄ = JT F̄ . (5.20)

It can be stated that the mapping from the end e�ector reaction force to the
robot joint torque is determined by the transpose of the Jacobian matrix.

Of course, the relationship between the end e�ector force and the joint torque
at the equilibrium may be derived by �rst drawing the free-body-diagram of all
participating linkages and elements. Then the general equilibrium equations of∑

f̄ = 0̄∑
µ̄ = 0̄

may be applied to develop the relationship between the forces acting on various
parts of the robot. After eliminating the internal forces and grouping the equa-
tions altogether, the relationship between the external forces acting at the end
e�ector and the joints may be attained.
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Problems

1. Derive the Jacobian of the manipulator in Prob. 1 of Chapter 3 expressed
in the base frame. Identify, if any, the singularity of this robot.

2. Derive the Jacobian of the robot arm in Prob. 2 of Chapter 3 expressed
in the base and in the end e�ector frame. Determine a set of joint angles
which bring the robot at its workspace boundary and workspace interior
singularities.

3. Determine the Jacobian of the robot wrist in Prob. 3 of Chapter 3 expressed
in the base frame and in the end e�ector frame. Which description is
simpler? Analyze for the singularities.

4. Determine the Jacobian of the robot wrist in Prob. 4 of Chapter 3 expressed
in the base frame and in the end e�ector frame. Which description is
simpler? Analyze for the singularities.

5. A schematic diagram of the 2-DOF long-reach robot arm is shown in
Fig. 5.10. The �rst link weighs 50 kg and the second link 10 kg. Their
total lengths are 1.5 m and 4 m, respectively. At the depicted posture,
where the �rst link is rotated by 110◦ and the second link is traveled by
3.5 m forward, determine the required torque and force of both actuators
to maintain the con�guration. For simplicity, let the C.G. of the links be
at their mid-point.

Figure 5.10: Schematic diagram of a 2-DOF long-reach arm.
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In order to command the robot to move, one must have the desired motion
in mind. In this chapter, several methods to generate the trajectory for the end
e�ector to follow will be studied. The trajectory or path will have to satisfy a
set of requirements. Typically they must pass or go through certain points with
some particular velocity.

Section 6.1 explains some concepts and related terms. There are two main
approaches in generating the trajectory. They are the joint space scheme and the
Cartesian space scheme, named after in which space the trajectory are planned.
Consequently, the next two sections describe each method in details.

6.1 Path Description

The term trajectory generally refers to a time history of position, velocity, and
acceleration of the object motion. For the robot control point of view, it could
be the trajectory of the joint or the end e�ector motion. Nevertheless, common
users will provide a set of points or postures through which the end e�ector should
pass. Then, from this speci�cation it must be the computer program that create
the trajectory. Usually, points along the trajectory will be computed at a certain
rate depending on the control loop update rate.

The simplest speci�cation would be to give the initial and �nal posture the
end e�ector must be. Homogeneous transformation description might be used.
Hence Ti and Tf are speci�ed. During the way, how the end e�ector move depends
on the generated trajectory.

Often, it requires more than merely where the end e�ector should be �nally. It
may be necessary that the end e�ector be in a certain posture with some velocity
and/or at a speci�ed time during the motion to accomplish some tasks, e.g. the
assembly task. Therefore the user might need to specify a sequence of desired
postures, called via points, between the initial and �nal ones. Collection of these
points may be called path points to include both the initial and �nal points as
well.

6.2 Joint Space Schemes

With the given path points, the joint space schemes generate the robot trajectory
at the joint level. Hence, �rstly the joint angles which cause the end e�ector to be
at the speci�ed set of postures must be computed. This can be achieved by the
inverse kinematics calculation. Accordingly, for each joint, a smooth function is
determined that passes through the stream of discrete points of the joint angles.
Beware the time spent during the same segment of each joint must be the same
for the end e�ector to actually meet the speci�ed via points.

By this implementation, the joint space schemes yield the desired end e�ctor
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pose at the via points. Shape of the motion during the via points at joint level is
described by the functions used to �t the via points. However the shape of the
corresponding motion of the end e�ector is not put in the design requirement and
hence might turn out to be arbitrarily complex. The drawback may be resolved
naturally by simply introducing more constrained via points during the desired
path. This will shorten the length of each segment of the joint trajectory. As a
result, segments of the end e�ector trajectory will be shorten as well so that each
of them joining the adjacent via points may be described by a linear interpolating
function.

The joint space schemes have some advantages. First and foremost, it is
easier to generate the trajectory in joint space. Computational cost is much less
compared to the Cartesian space schemes mainly because the inverse kinematics
will be performed at the via points only. Another important issue is there will
be no singularity problem if the trajectory is constructed in the joint space.
Singularity is the problem in which the inverse kinematics function fails at certain
points in the workspace. Of course, the user must not give the via point coincident
with the singularity point.

In the following, typical methods used to generate the trajectory given the
via points under some constraints are considered. The simplest case of two path
points will be considered �rst.

6.2.1 Trajectory Generation for Two Path Points

The problem here is to move the end e�ector from its initial to �nal pose by
the speci�ed time interval. Usually, inverse kinematics calculation yielding the
corresponding joint angles will be performed �rst. Then, a smooth function θ (t)
for each joint which passes through its initial and �nal joint angles, θi and θf , at
the time instant ti and tf , will be determined.

6.2.1.1 Cubic Polynomial Function

However, there are many such functions and so the trajectories which satisfy the
given conditions as depicted in Fig. 6.1. Typically, at the two end points, both
position and velocity are speci�ed;

θ (ti) = θi θ (tf ) = θf

θ̇ (ti) = ωi θ̇ (tf ) = ωf . (6.1)

From these requirements, one may use the cubic polynomial function

θ (t) = a0 + a1t+ a2t
2 + a3t

3 (6.2)

as the trajectory. Substituting the position constraints into the equation,

θi = a0 + a1ti + a2t
2
i + a3t

3
i

θf = a0 + a1tf + a2t
2
f + a3t

3
f
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Figure 6.1: Several possible trajectories for a single joint which satisfy the ending
joint values. ([4], pp. 204)

must hold. Analogously, the velocity conditions call for

ωi = a1 + 2a2ti + 3a3t
2
i

ωf = a1 + 2a2tf + 3a3t
2
f ,

where the velocity equation is obtained by taking the time derivative of Eq. 6.2:

ω (t) = a1 + 2a2t+ 3a3t
2. (6.3)

The above four equations may then be used to solve for the coe�cients of the
cubic polynomial function. For the special case of zero initial and �nal velocity
and setting ti = 0, simpli�ed analytical expressions may be determined as

a0 = θi

a1 = 0

a2 =
3

t2f
(θf − θi)

a3 = − 2

t3f
(θf − θi) . (6.4)

It should be mentioned that since the trajectory function is cubic, the veloc-
ity function according to the coe�cients in Eq. 6.4 will be a parabola maxi-
mally/minimally at the midpoint and the acceleration will be a linearly decreas-
ing/increasing function having zero value at the midpoint.
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Figure 6.2: Linear trajectory connecting the intial and �nal joint angles. ([4], pp.
210)

6.2.1.2 Quintic Polynomial Function

If additional constraints on acceleration of

θ̈ (ti) = αi θ̈ (tf ) = αf (6.5)

are speci�ed, a �fth-order or quintic polynomial function

θ (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (6.6)

is necessary. Coe�cients of the equations may be solved in the same manner with
the velocity and acceleration pro�le of

ω (t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (6.7)

α (t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3. (6.8)

However the analytical expressions will be more complicated.

6.2.1.3 Linear Function with Parabolic Blends

Yet another way to generate a function for the trajectory that passes through
the given end points is to use the linear segment function as shown in Fig. 6.2.
However, it will make the velocity to be discontinuous at the end points, which
leads to an impulsive acceleration that can deteriorate the tracking result. To
�x this problem, a parabolic function is introduced at the ends to smoothen the
path with continuous position and velocity. In other words, the linear segment
trajectory is blended with the parabolic function.

A typical linear function with parabolic blends trajectory and its velocity and
acceleration pro�le are illustrated in Fig. 6.3. During the blending period, the
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Figure 6.3: Linear function with parabolic blends trajectory and its velocity and
acceleration pro�le. ([3], pp. 195)

associated velocity will be changed linearly with a constant acceleration. In the
linear segment portion, the motion will be executed with a constant velocity.

To construct such trajectory, typically one �rst needs to specify the initial
and �nal joint angles, θi and θf , the according velocities, θ̇i and θ̇f , and the time
duration, tf − ti, of the motion. Without loss of generalization, a special case of
zero initial and �nal velocity and setting ti = 0 will be considered.

Let tb be the symmetric blending time. Hence, during the �rst blend, the
motion is described by the parabolic function of

θ (t) = θi +
1

2
αt2, 0 ≤ t ≤ tb (6.9)

where α is the constant acceleration. At time t = tb, equality of the velocity
at the end of the �rst blend and at the beginning of the constant velocity, V ,
segment requires the relationship of the following parameters;

αtb = V. (6.10)

During the linear segment portion, the motion is thus described by the linear
function of

θ (t) = θ (tb) + V (t− tb) , tb < t ≤ tf − tb.

To determine θ (tb), the following equation

θ

(
tf
2

)
= θ (tb) + V

(
tf
2
− tb

)
=
θi + θf

2

holds due to the symmetry of the trajectory. Thus,

θ (tb) =
θi + θf − V tf

2
+ V tb, (6.11)

resulting in the linear segement trajectory of

θ (t) =
θi + θf − V tf

2
+ V t, tb < t ≤ tf − tb. (6.12)
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Moreover, the trajectory of Eq. 6.9 and 6.12 must blend at tb. Thus the blending
time may be written as a function of the speci�ed end conditions and the constant
velocity:

tb =
θi − θf + V tf

V
. (6.13)

Furthermore, since 0 < tb ≤ tf
2
, the desired constant velocity value must be in

between
θf − θi
tf

< V ≤ 2
θf − θi
tf

(6.14)

or the motion is not possible.
The blending time may also be expressed as a function of the acceleration.

Rewrite Eq. 6.13 by making use of Eq. 6.10, the relationship between the blending
time and the acceleration is governed by the quadratic

αt2b − αtf tb + θf − θi = 0.

Consequently, the blend time may be determined by

tb =
tf
2
−

√
α2t2f − 4α (θf − θi)

2α
. (6.15)

Analogously, it can be shown that since 0 < tb ≤ tf
2
, the following condition

0 ≤

√
α2t2f − 4α (θf − θi)

α
< tf

must hold. This implies the desired constant acceleration value

α ≥ 4 (θf − θi)
t2f

(6.16)

must be satis�ed.
Finally, during the last blend, the motion is again described by the parabolic

function of

θ (t) = (θf − θ (tb)) + V (t− tf + tb)−
1

2
α (t− tf + tb)

2 , tf − tb < t ≤ tf .

Substituting the expression of α and θ (tb) from Eq. 6.10 and 6.11 into the above
equation and performing some reduction, θ (t) may be expressed as

θ (t) = θf −
1

2
αt2f + αtf t−

1

2
αt2 − θi + θf − V (tf − tb)

2
.

Applying the boundary angle condition θf at time tf ,

θi + θf − V (tf − tb)
2

= 0
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may be concluded. Thus, the trajectory in the last segment may be described by

θ (t) = θf −
1

2
αt2f + αtf t−

1

2
αt2, tf − tb < t ≤ tf . (6.17)

Example 6.1 A single-link robot with a rotary joint is motionless at θ = 15◦.
It is desired to move the joint in a smooth manner to θ = 75◦ in 3 seconds.
Determine the linear function with parabolic blends trajectory if the velocity of
the linear segment is chosen to be 30◦/sec. What will be the new trajectory if
the acceleration of the parbolic blends is speci�ed to be 40◦/sec2 instead.

Solution The blending time according to the given velocity may be calcu-
lated from Eq. 6.13 as

tb =
15− 75 + 30× 3

30
= 1 sec.

Acceleration during the parabolic blends must obey Eq. 6.10. Thus,

α =
30

1
= 30◦/sec2.

Therefore, the linear function with parabolic blends for the �rst case may be
determined from Eqs. 6.9, 6.12, and 6.17;

θ (t) =


15 + 15t2, 0 ≤ t ≤ 1
30t, 1 < t ≤ 2
−60 + 90t− 15t2, 2 < t ≤ 3.

For the case where the acceleration is speci�ed, the blending time may now
be computed from Eq 6.15 as

tb =
3

2
−
√

402 × 32 − 4× 40× (75− 15)

2× 40
= 0.6340 sec.

Velocity during the linear segment must obey Eq. 6.10. Thus,

V = 40× 0.6340 = 25.3590◦/sec.

As in the �rst case, the linear function with parabolic blends for the second case
may be determined;

θ (t) =


15 + 20t2, 0 ≤ t ≤ 0.6340
6.9615 + 25.3590t, 0.6340 < t ≤ 2.3660
−105 + 120t− 20t2, 2.3660 < t ≤ 3.

Plots of the angle, velocity, and acceleration for both cases are displayed in
Fig. 6.4 and 6.5 respectively.
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Figure 6.4: Linear function with parabolic blends trajectory and its velocity and
acceleration pro�le for the �rst case.

Figure 6.5: Linear function with parabolic blends trajectory and its velocity and
acceleration pro�le for the second case.
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6.2.2 Trajectory Generation for a Path with Via Points

As explained in section 6.1, the user may need to specify a sequence of path
points rather than merely two end points. Therefore the generated trajectory
is expected to pass through these via points as well. If the end e�ector is to
come to rest during each visited via point, the solutions in subsection 6.2.1 may
be applied immediately. In general, it is required that the end e�ector passes
through the via points without stopping. Therefore, extensions of the previous
derivations are necessary.

6.2.2.1 Cubic Polynomial Function

If the desired velocities of the joints at the via points are speci�ed, it is simple to
construct segments of cubic polynomial trajectory which connect two neighboring
via points. At a particular segment, the following constraints

θ (ti) = θi θ (tf ) = θf

θ̇ (ti) = ωi θ̇ (tf ) = ωf (6.18)

must be satis�ed. Using the cubic polynomial function of Eq. 6.2, the above
constraints may be substituted to obtain

θi = a0

θf = a0 + a1tf + a2t
2
f + a3t

3
f ,

where for each via point, the initial time is reset to zero, i.e. ti = 0. This implies
the �nal time tf is the time duration spent in that segment. Similarly, applying
the velocity constraints to the velocity equation of the trajectory in Eq. 6.3, the
following equations

ωi = a1

ωf = a1 + 2a2tf + 3a3t
2
f

may be formed. Solving the above four equations for the coe�cients, one then
have

a0 = θi

a1 = ωi

a2 =
3

t2f
(θf − θi)−

2

tf
ωi −

1

tf
ωf

a3 = − 2

t3f
(θf − θi) +

1

t2f
(ωf + ωi) . (6.19)

In practice, specifying the velocity at each via point may not be intuitive to
the user. Therefore, the path generator system should have the capability to
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Figure 6.6: Heuristic decision of assigning the velocity at the via points for the
cubic polynomial function trajectory. ([4], pp. 208)

compute the appropriate via point velocity autonomously. The following simple
heuristic algorithm may be used in selecting the velocity. Consider the path
points of a robot joint in Fig. 6.6. Imagine the via points connected with straight
line segments. If the slope of the line changes sign at the via point, the zero
velocity is chosen. If the sign does not change, the velocity at the via point is
selected to be the average of the two slopes. These velocities are then to be used
as the velocity constraints at the via point as before.

Another approach for this issue is not to pay attention to the speci�c velocity
values at the via points. Rather, the new constraints that both the velocity and
acceleration be continuous are employed. As a result, the trajectory for a segment
will depend on the adjacent ones as well. Fortunately, the equations arising from
applying these via point constraints may be represented in the matrix-vector
equation. Tri-diagonal form of the matrix expedites the computation of the
coe�cients of the cubic polynomial trajectories.

6.2.2.2 Higher-Order Polynomial Function

If additional constraints on acceleration at the via points are speci�ed, a higher-
order polynomial function is needed since it has more room to satisfy all of them.
In a similar vein to the cubic polynomial function, work of using the quintic
polynomial in subsection 6.2.1.2 for generating a path joining two end points
may be extended for the general case of given path points.

A drastically di�erent approach in trajectory generation for the path points
is to solve for a single high-order polynomial function which passes through all
points with possibly additional velocity and acceleration constraints. Order of
the polynomial depends on the total number of the constraints to be satis�ed.

For example, motion of a joint is required to pass through θ0, θ1, and θ2 at
time t0, t1, and t2. In addtion, the initial and �nal velocity and acceleration of ω0,
ω2, α0, and α2 are speci�ed. Hence the constrained equations to be formulated
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Figure 6.7: Multisegment linear function with parabolic blends trajectory for the
speci�ed path points and time durations. ([4], pp. 214)

are

θ0θ (t0) θ1 = θ (t1) θ2 = θ (t2)

ω0 = θ̇ (t0) ω2 = θ̇ (t2)

α0 = θ̈ (t0) α2 = θ̈ (t2) .

The determinate polynomial function which satis�es these constraints is a sixth
order polynomial

θ (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6,

of which its coe�cients may be solved uniquely.
An advantage of this approach is that the trajectory, and its velocity and

acceleration, is intrinsically continuous at the via points. A big disadvantage will
be seen when many via points and/or constraints are speci�ed. This introduces
a large system of linear equations to be solved.

6.2.2.3 Linear Function with Parabolic Blends

Linear function with parabolic blends for two end points may be modi�ed to serve
for the case when the path points are speci�ed. Figure 6.7 depicts the smooth
trajectory which �ts the via points. Qualitatively, straight lines are constructed
to join the via points �rst. Then parabolic blends are employed at each via point
to round the path. E�ectively, the resulting blended path will not pass through
the via points. It only comes close to the point. Resolution to this issue will be
discussed later.

According to Fig. 6.7, consider three neighboring via points θj, θk, and θl.
Time duration of the segment connecting points j and k, tdjk, is speci�ed. How-
ever, time duration during the blend region at point k, tk, and time duration of
the linear segment between points j and k, tjk, are not speci�ed. Corresponding
constant acceleration and velocity are denoted as θ̈k and θ̇jk.
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If the magnitude of the acceleration to use at each via point
∣∣∣θ̈k∣∣∣ is speci�ed,

the following computation may be used to determine the blend times, the linear
times, and the linear velocities at each segment of the connecting trajectory.
These parameters will be used to generate the trajectory and its derivatives.
Their streams of discrete values will be computed at the path update rate and
fed as a reference input to the robot controller.

Refer to Fig. 6.7. For the �rst segment, the blend time t1 may be solved by
recognizing the velocity at the end of the blending portion must be equal to that
during the linear segment;

θ̈1 = sgn (θ2 − θ1)
∣∣∣θ̈1∣∣∣ (6.20)

θ̈1t1 =
θ2 − θ1
td12 − 1

2
t1

t1 = td12 −

√
t2d12 −

2 (θ2 − θ1)
θ̈1

. (6.21)

Hence, the linear velocity of the �rst segment follows immediately;

θ̇12 =
θ2 − θ1
td12 − 1

2
t1
. (6.22)

For the interior via points, the computation of trajectory parameters is per-
formed with the following equations;

θ̇jk =
θk − θj
tdjk

(6.23)

θ̇kl =
θl − θk
tdkl

θ̈k = sgn
(
θ̇kl − θ̇jk

) ∣∣∣θ̈k∣∣∣ (6.24)

tk =
θ̇kl − θ̇jk

θ̈k
(6.25)

tjk = tdjk −
1

2
tj −

1

2
tk. (6.26)

Note from Fig. 6.7 that only half of the blend region of each via point enter the
segment. Two end points of the entire path are exceptional where the full blend
region must be counted. Another point is that the linear time of the �rst segment,
t12, can be computed after the blend time of the second point t2 is known. That
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is

θ̇23 =
θ3 − θ2
td23

θ̈2 = sgn
(
θ̇23 − θ̇12

) ∣∣∣θ̈2∣∣∣
t2 =

θ̇23 − θ̇12
θ̈2

t12 = td12 − t1 −
1

2
t2. (6.27)

Intermediate segments are thus successively calculated using Eqs. 6.23 to 6.26.
Finally, the last segment connecting θn−1 and θn is reached. Its related parameters
may be computed from matching the velocity of the linear segment with the
starting velocity of the blending portion, assuming the zero ending velocity;

θ̈n = sgn (θn−1 − θn)
∣∣∣θ̈n∣∣∣ (6.28)

θn − θn−1
td(n−1)n − 1

2
tn

= 0− θ̈ntn

tn = td(n−1)n −

√
t2d{n−1}n +

2 (θn − θn−1)
θ̈n

(6.29)

θ̇(n−1)n =
θn − θn−1

td(n−1)n − 1
2
tn

(6.30)

t(n−1)n = td(n−1)n −
1

2
tn−1 − tn, (6.31)

where tn−1 is determined from Eqs. 6.25 and 6.24.

Example 6.2 The trajectory of a particular joint is speci�ed as follow. Path
points in degrees are 10, 60, 90, 75. Time spent during the segments are 2, 1,
3 seconds. For simplicity, the default acceleration of 50◦/sec2 is to be used for
all blendings. Calculate all segment velocities, blend times, and linear times.
Generate the trajectory and its velocity and acceleration at a rate of 1 kHz.

Solution The computation may be performed straightforwardly following
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a series of the above formulas. Particularly,

θ̈1 = sgn (60− 10)× 50 = 50◦/sec2

t1 = 2−
√

22 − 2 (60− 10)

50
= 0.5858 sec

θ̇12 =
60− 10

2− 0.5× 0.5858
= 29.2893◦/sec

θ̇23 =
90− 60

1
= 30◦/sec

θ̈2 = sgn (30− 29.2893)× 50 = 50◦/sec2

t2 =
30− 29.2893

50
= 0.0142 sec

t12 = 2− 0.5858− 0.5× 0.0142 = 1.4071 sec

θ̈4 = sgn (90− 75)× 50 = 50◦/sec2

t4 = 3−
√

32 +
2 (75− 90)

50
= 0.1017 sec

θ̇34 =
75− 90

3− 0.5× 0.1017
= −5.0862◦/sec

θ̈3 = sgn (−5.0862− 30)× 50 = −50◦/sec2

t3 =
−5.0862− 30

−50
= 0.7017 sec

t23 = 1− 0.5× 0.0142− 0.5× 0.7017 = 0.6420 sec

t34 = 3− 0.5× 0.7017− 0.1017 = 2.5474 sec.

From these parameters, the trajectory generated by segments of the linear
function with parabolic blends may be written explicitly as follow;

θ (t) =



10 + 25t2 0 ≤ t ≤ 0.585
18.5556 + 29.2893 (t− 0.585) 0.585 < t ≤ 1.993

59.7950 + 29.2893 (t− 1.993) + 25 (t− 1.993)2 1.993 < t ≤ 2.007
60.2099 + 30 (t− 2.007) 2.007 < t ≤ 2.649

79.4699 + 30 (t− 2.649)− 25 (t− 2.649)2 2.649 < t ≤ 3.351
88.2098− 5.0862 (t− 3.351) 3.351 < t ≤ 5.898

75.2553− 5.0862 (t− 5.898) + 25 (t− 5.898)2 5.898 < t ≤ 6.

Plots of the trajectory, velocity, and acceleration generated with the time step
of 0.001 sec are shown in Fig. 6.8.

As mentioned earlier, the blending process causes the trajectory not passing
through the via points unless the robot come to a stop. If a pause is acceptable,
one merely insert the repeated via point in the path points speci�cation. Never-
theless, the path can come pretty close to the points if high blending acceleration
is employed.
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Figure 6.8: Trajectory generated by segments of the linear function with parabolic
blend and its velocity and acceleration pro�le for the speci�ed path points, time
duration, and the blending acceleration. The `o' marks indicate the segment
transition point.

Figure 6.9: Use of pseudo via points to create a trajectory which passes through
the original via with speci�ed velocity. ([4], pp. 217)
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Sometimes it is required that the motion passes through the via point without
stopping. This can be achieved by replacing that via point with two pseudo via
points, one on each side of the original. See Fig. 6.9. Placement of the pseudo via
points are such that the original via point lies in the linear segment of the path
connecting them. By this method, the designer may also impose the velocity
used to pass through that point. The term through point might be named for a
path point through which the manipulator is forced to pass exactly.

6.3 Cartesian Space Schemes

Cartesian space schemes generate the trajectory of the robot end e�ector directly
in the Cartesian space or the task space. From the path planner viewpoint, it is
natural and makes more sense to generate the trajectory by this scheme since the
path points are visually speci�ed in the task space. As a result, any desired path,
such as the straight line, circular, or sinusoidal motion during the via points may
be established.

Opposite to the joint space schemes, the Cartesian space one has a drawback
of heavy inverse kinematics computation and its relates at every update time to
bring the generated Cartesian coordinates and their derivatives to the joint space
angles and their associates. Furthermore, the generated trajectory in task space
may pass through some robot singular points incidentally, resulting in the failure
of the mappings to the joint space.

Several Cartesian space schemes for the trajectory generation have been pro-
posed. In the following, a scheme to generate a straight line end e�ector transla-
tional motion connecting two points in the workspace and simultaneously provide
the smooth rotational transition between the speci�ed orientations will be stud-
ied.

The �rst step of this scheme is to describe the speci�ed task space path points
using the 6-tuples consisting of the position vector, p̄, for the position and the

angle/axis representation,
(
θ, k̂
)
, for the orientation. Namely for each path point,

BX̄E =
[
px py pz θkx θky θkz

]T
(6.32)

dictates the position and the orientation of the speci�ed {E} with respect to {B}.
Concerning of the translational motion, to construct a straight line trajectory

connecting two consecutive via points, it is readily seen that each coordinate
must change linearly between two end values. Consequently, linear functions
with parabolic blends may be applied to each coordinate of the position vector
of the path points to generate segments of the end e�ector trajectory.

However, this notion does not work for the rotational motion since[
θkx θky θkz

]T
-tuple is not a vector. Nonethelesss, for simplicity in the calcu-

lation, one might want to apply the same interpolation scheme to all coordinates

Chulalongkorn University Phongsaen PITAKWATCHARA



6.3 Cartesian Space Schemes 117

of the tuple. As a result, the rotational motion is not obtained by the rotation
about the unique axis. This might cause the motion be unnatural. Note an issue
of non-unique angle/axis representation, i.e.(

θ, k̂
)

=
(
θ + 2πn, k̂

)
,

may be troublesome to the trajectory generation between two orientations S
1R

and S
2R. Typically, the angle/axis representation should be chosen such that∥∥∥∥∥∥

 θ2 (kx)2 − θ1 (kx)1
θ2 (ky)2 − θ1 (ky)1
θ2 (kz)2 − θ1 (kz)1

∥∥∥∥∥∥
is minimized. With this selection, the amount of rotational motion will be mini-
mized.

Similar to the path generation in the joint space, the blending and the linear
time spent during the same segment of each coordinate must be the same to
ensure that the robot motion will follow a straight line in space (during the
linear segments). Consequently, to meet this requirement, the calculation steps
of the linear function with parabolic blends trajectory should be modi�ed. Rather
than specifying the blending acceleration, the blending time should be assigned
and the acceleration be computed from the relationship. Mathematically, at the
interior via points with the assigned tk, a set of the following equations

θ̇jk =
θk − θj
tdjk

(6.33)

θ̇kl =
θl − θk
tdkl

θ̈k =
θ̇kl − θ̇jk

tk
(6.34)

tjk = tdjk −
1

2
tj −

1

2
tk (6.35)

should be evaluated instead. The required acceleration should be checked that it
does not exceed the maximum value or the blending period might be prolonged.

Example 6.3 As a part of the particular task execution of PUMA 560 manipu-
lator, the end e�ector is required to pass through the sequence of path points (in
mm) with respect to the origin of {B}:

p̄1 =

 500
500
500

 , p̄2 =

 500
500
600

 , p̄3 =

 400
500
600


p̄4 =

 400
500
500

 , p̄5 =

 400
600
400

 , p̄6 =

 500
500
500

 .
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Corresponding orientations are speci�ed by the rotation matrix of {E} described
in {B}:

R1 =

 0 0 1
0 −1 0
1 0 0

 , R2 =

 1/
√

2 0 1/
√

2
0 −1 0

1/
√

2 0 −1/
√

2

 ,
R3 =

 1 0 0
0 −1 0
0 0 −1

 , R4 =

 1 0 0

0 −1/
√

2 1/
√

2

0 −1/
√

2 −1/
√

2

 ,
R5 =

 1 0 0
0 0 1
0 −1 0

 , R6 =

 0 0 1
−1 0 0
0 −1 0

 .
Planned trajectory should bring the end e�ector from the �rst to the second

via point by 5 seconds. Then it is required to stop at the second via for 3 seconds.
Time spent during each next three segments should be 4 seconds. However, the
robot must pass through the fourth point precisely with the speed of 30 mm/s.
Finally, the motion to the goal point during the last segment should be completed
in 5 seconds. The time used for each blending is 1 second.

Dimensions of the PUMA arm are such that a2 = 431.8, a3 = 20.3, d3 = 150.1,
d4 = 433.1, H = 700, e = 100 mm. Generate the trajectory using the simple
Cartesian straight line motion scheme at a rate of 1 kHz. Investigate the velocity
and acceleration as well.

Solution The given path points must be modi�ed to ful�ll the require-
ments. Since the robot must stay immobile for 3 seconds at the second via point,
a repeated via point of the second one, point 2′, is introduced. Another modi�-
cation is at the fourth point where the robot is required to pass through exactly.
A strategy is to replace this via point with two pseudo via points, points 4′ and
4′′, of which their values are determined from the constraint on through speed.
Figure 6.10 display the plot of the conceptual path points and the generated
trajectory versus time of this problem.

Speci�cally, the time used for each segment may be chosen as

t1 = 1, t12 = 3.5, t2 = 1, t22′ = 2, t2′ = 1

t2′3 = 3, t3 = 1, t34′ = 1, t4′ = 1, t4′4′′ = 3,

t4′′ = 1, t4′′5 = 1, t5 = 1, t56 = 3.5, t6 = 1,

for which the new points 4′ and 4′′ are assigned at the half time between point 3-4
and 4-5, respectively. Accordingly, the modi�ed path points might be designed
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Figure 6.10: Conceptual path points and the trajectory vs. time of Ex. 6.3.

as follow;

p̄1 =

 500
500
500

 , p̄2 =

 500
500
600

 , p̄2′ =

 500
500
600

 , p̄3 =

 400
500
600


p̄4′ =

 400
459.7
520

 , p̄4′′ =

 400
540.3
480

 , p̄5 =

 400
600
400

 , p̄6 =

 500
500
500


for the position. Other choices of points 4′ and 4′′ may be used. For the orienta-
tion, the equivalent angle/axis representation is used to generate the trajectory.
They are selected to yield the minimum amount of rotational motion.

(
θk̂
)
1

= π

 1/
√

2
0

1/
√

2

 , (
θk̂
)
2

= π

 0.9239
0

0.3827

 , (
θk̂
)
2′

= π

 0.9239
0

0.3827


(
θk̂
)
3

= π

 1
0
0

 , (
θk̂
)
4′

= −5π
4

 −1
0
0

 , (
θk̂
)
4′′

= −5π
4

 −1
0
0


(
θk̂
)
5

= −3π
2

 −1
0
0

 , (
θk̂
)
6

= −4π
3

 −1/
√

3

1/
√

3

−1/
√

3

 .
With these speci�cations, computation of the parameters of the linear segment

parabolic blends trajectory may be performed with the same formulas developed
in section 6.2.2.3. In particular, for the �rst segment 1-2, θ̈1 = θ2−θ1

t1(td12− 1
2
t1)

. Ap-

plying this to the 6-tuple representation, one get the blending acceleration of the
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�rst via point

¨̄p1 =

 0
0

600−500
1(5−0.5×1)

 =

 0
0

22.222

 mm/s2,

and

d2
(
θk̂
)

dt2

∣∣∣∣∣∣
1

=


(0.9239−1/

√
2)π

1(5−0.5×1)
0

(0.3827−1/
√
2)π

1(5−0.5×1)

 =

 0.1513
0

−0.2265

 rad/s2.

Linear velocity of the segment 1-2 is then calculated from θ̇12 = θ2−θ1
td12− 1

2
t1
;

˙̄p12 =

 0
0

600−500
5−0.5×1

 =

 0
0

22.222

 mm/s,

and

d
(
θk̂
)

dt

∣∣∣∣∣∣
12

=


(0.9239−1/

√
2)π

5−0.5×1
0

(0.3827−1/
√
2)π

5−0.5×1

 =

 0.1513
0

−0.2265

 rad/s.

To calculate the acceleration at point 2, the linear velocity of the segment 2-2′,
θ̇22′ =

θ2′−θ2
td22′

, is needed. Hence,

˙̄p22′ =

 0
0
0

 mm/s,
d
(
θk̂
)

dt

∣∣∣∣∣∣
22′

=

 0
0
0

 rad/s

as would be expected since the original point 2 is repeated and this pauses the

robot. Consequently, θ̈2 =
θ̇22′−θ̇12

t2
may be evaluated;

¨̄p2 =

 0
0

0−22.222
1

 =

 0
0

−22.222

 mm/s2,

and
d2
(
θk̂
)

dt2

∣∣∣∣∣∣
2

=

 0−0.1513
1

0
0−(−0.2265)

1

 =

 −0.1513
0

0.2265

 rad/s2.

Similarly, to calculate the acceleration at point 2′, the linear velocity of the
segment 2′-3, θ̇2′3 =

θ3−θ2′
td2′3

, is needed. Hence,

˙̄p2′3 =

 400−500
4

0
0

 =

 −25
0
0

 mm/s,
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and
d
(
θk̂
)

dt

∣∣∣∣∣∣
2′3

=

 (1−0.9239)π
4

0
−0.3827π

4

 =

 0.0598
0

−0.3006

 rad/s.

Consequently, θ̈2′ =
θ̇2′3−θ̇22′

t2′
may be evaluated;

¨̄p2′ =

 −25
1

0
0

 =

 −25
0
0

 mm/s2,

and
d2
(
θk̂
)

dt2

∣∣∣∣∣∣
2′

=

 0.0598
1

0
−0.3006

1

 =

 0.0598
0

−0.3006

 rad/s2.

Similarly, to calculate the acceleration at point 3, the linear velocity of the
segment 3-4′, θ̇34′ =

θ4′−θ3
td34′

, is needed. Hence,

˙̄p34′ =

 0
459.7−500

2
520−600

2

 =

 0
−20.15
−40

 mm/s,

and
d
(
θk̂
)

dt

∣∣∣∣∣∣
34′

=

 (5/4−1)π
2

0
0

 =

 0.3927
0
0

 rad/s.

Consequently, θ̈3 =
θ̇34′−θ̇2′3

t3
may be evaluated;

¨̄p3 =

 0−(−25)
1

−20.15
1
−40
1

 =

 25
−20.15
−40

 mm/s2,

and
d2
(
θk̂
)

dt2

∣∣∣∣∣∣
3

=

 0.3927−0.0598
1

0
−(−0.3006)

1

 =

 0.3329
0

0.3006

 rad/s2.

Similarly, to calculate the acceleration at point 4′, the linear velocity of the
segment 4′-4′′, θ̇4′4′′ =

θ4′′−θ4′
td4′4′′

, is needed. Hence,

˙̄p4′4′′ =

 0
540.3−459.7

4
480−520

4

 =

 0
20.15
−10

 mm/s,

Chulalongkorn University Phongsaen PITAKWATCHARA



6.3 Cartesian Space Schemes 122

and
d
(
θk̂
)

dt

∣∣∣∣∣∣
4′4′′

=

 0
0
0

 =

 0
0
0

 rad/s.

Consequently, θ̈4′ =
θ̇4′4′′−θ̇34′

t4′
may be evaluated;

¨̄p4′ =

 0
20.15−(−20.15)

1
−10−(−40)

1

 =

 0
40.3
30

 mm/s2,

and
d2
(
θk̂
)

dt2

∣∣∣∣∣∣
4′

=

 0−0.3927
1

0
0

 =

 −0.3927
0
0

 rad/s2.

Similarly, to calculate the acceleration at point 4′′, the linear velocity of the
segment 4′′-5, θ̇4′′5 =

θ5−θ4′′
td4′′5

, is needed. Hence,

˙̄p4′′5 =

 0
600−540.3

2
400−480

2

 =

 0
29.85
−40

 mm/s,

and
d
(
θk̂
)

dt

∣∣∣∣∣∣
4′′5

=

 (3/2−5/4)π
2

0
0

 =

 0.3927
0
0

 rad/s.

Consequently, θ̈4′′ =
θ̇4′′5−θ̇4′4′′

t4′′
may be evaluated;

¨̄p4′′ =

 0
29.85−20.15

1
−40−(−10)

1

 =

 0
9.7
−30

 mm/s2,

and
d2
(
θk̂
)

dt2

∣∣∣∣∣∣
4′′

=

 0.3927
1

0
0

 =

 0.3927
0
0

 rad/s2.

Similarly, to calculate the acceleration at point 5, the linear velocity of the
segment 5-6, θ̇56 = θ6−θ5

td56− 1
2
t6
, is needed. Hence,

˙̄p56 =

 500−400
5−0.5×1
500−600
5−0.5×1
500−400
5−0.5×1

 =

 22.222
−22.222
22.222

 mm/s,
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and

d
(
θk̂
)

dt

∣∣∣∣∣∣
56

=


(4/3

√
3−3/2)π

5−0.5×1
−4π/3

√
3

5−0.5×1
4π/3

√
3

5−0.5×1

 =

 −0.5098
−0.5374
0.5374

 rad/s.

Consequently, θ̈5 =
θ̇56−θ̇4′′5

t5
may be evaluated;

¨̄p5 =

 22.222
1

−22.222−29.85
1

22.222−(−40)
1

 =

 22.222
−52.072
62.222

 mm/s2,

and
d2
(
θk̂
)

dt2

∣∣∣∣∣∣
5

=

 −0.5098−0.3927
1

−0.5374
1

0.5374
1

 =

 −0.9025
−0.5374
0.5374

 rad/s2.

Finally, the acceleration at point 6 is determined from matching the velocity
of the linear segment and the initial velocity entering the last blend. That is,
with θ̈6 = − θ6−θ5

t6(td56− 1
2
t6)

,

¨̄p6 =

 −
500−400

1(5−0.5×1)
− 500−600

1(5−0.5×1)
− 500−400

1(5−0.5×1)

 =

 −22.222
22.222
−22.222

 mm/s2,

and

d2
(
θk̂
)

dt2

∣∣∣∣∣∣
6

=

 −
(4/3

√
3−3/2)π

1(5−0.5×1)

− −4π/3
√
3

1(5−0.5×1)

− 4π/3
√
3

1(5−0.5×1)

 =

 0.5098
0.5374
−0.5374

 rad/s2.

With these parameters, the trajectory generated by segments of the linear
function with parabolic blends for each element of the end e�ector 6-tuples may
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be written explicitly as follow;

px (t) =



500 0 ≤ t ≤ 1
500 1 < t ≤ 4.5
500 4.5 < t ≤ 5.5
500 5.5 < t ≤ 7.5

500− 12.5 (t− 7.5)2 7.5 < t ≤ 8.5
500− 25 (t− 8) 8.5 < t ≤ 11.5

500− 25 (t− 8) + 12.5 (t− 11.5)2 11.5 < t ≤ 12.5
400 12.5 < t ≤ 13.5
400 13.5 < t ≤ 14.5
400 14.5 < t ≤ 17.5
400 17.5 < t ≤ 18.5
400 18.5 < t ≤ 19.5

400 + 11.111 (t− 19.5)2 19.5 < t ≤ 20.5
400 + 22.222 (t− 20) 20.5 < t ≤ 24

400 + 22.222 (t− 20)− 11.111 (t− 24)2 24 < t ≤ 25.

py (t) =



500 0 ≤ t ≤ 1
500 1 < t ≤ 4.5
500 4.5 < t ≤ 5.5
500 5.5 < t ≤ 7.5
500 7.5 < t ≤ 8.5
500 8.5 < t ≤ 11.5

500− 10.075 (t− 11.5)2 11.5 < t ≤ 12.5
500− 20.15 (t− 12) 12.5 < t ≤ 13.5

500− 20.15 (t− 12) + 20.15 (t− 13.5)2 13.5 < t ≤ 14.5
459.7 + 20.15 (t− 14) 14.5 < t ≤ 17.5

459.7 + 20.15 (t− 14) + 4.85 (t− 17.5)2 17.5 < t ≤ 18.5
540.3 + 29.85 (t− 18) 18.5 < t ≤ 19.5

540.3 + 29.85 (t− 18)− 26.036 (t− 19.5)2 19.5 < t ≤ 20.5
600− 22.222 (t− 20) 20.5 < t ≤ 24

600− 22.222 (t− 20) + 11.111 (t− 24)2 24 < t ≤ 25.
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pz (t) =



500 + 11.111t2 0 ≤ t ≤ 1
500 + 22.222 (t− 0.5) 1 < t ≤ 4.5

500 + 22.222 (t− 0.5)− 11.111 (t− 4.5)2 4.5 < t ≤ 5.5
600 5.5 < t ≤ 7.5
600 7.5 < t ≤ 8.5
600 8.5 < t ≤ 11.5

600− 20 (t− 11.5)2 11.5 < t ≤ 12.5
600− 40 (t− 12) 12.5 < t ≤ 13.5

600− 40 (t− 12) + 15 (t− 13.5)2 13.5 < t ≤ 14.5
520− 10 (t− 14) 14.5 < t ≤ 17.5

520− 10 (t− 14)− 15 (t− 17.5)2 17.5 < t ≤ 18.5
480− 40 (t− 18) 18.5 < t ≤ 19.5

480− 40 (t− 18) + 31.111 (t− 19.5)2 19.5 < t ≤ 20.5
400 + 22.222 (t− 20) 20.5 < t ≤ 24

400 + 22.222 (t− 20)− 11.111 (t− 24)2 24 < t ≤ 25.

θkx (t) =



π√
2

+ 0.07565t2 0 ≤ t ≤ 1
π√
2

+ 0.1513 (t− 0.5) 1 < t ≤ 4.5
π√
2

+ 0.1513 (t− 0.5)− 0.07565 (t− 4.5)2 4.5 < t ≤ 5.5

0.9239π 5.5 < t ≤ 7.5

0.9239π + 0.0299 (t− 7.5)2 7.5 < t ≤ 8.5
0.9239π + 0.0598 (t− 8) 8.5 < t ≤ 11.5

0.9239π + 0.0598 (t− 8) + 0.16645 (t− 11.5)2 11.5 < t ≤ 12.5
π + 0.3927 (t− 12) 12.5 < t ≤ 13.5

π + 0.3927 (t− 12)− 0.19635 (t− 13.5)2 13.5 < t ≤ 14.5
5π
4

14.5 < t ≤ 17.5
5π
4

+ 0.19635 (t− 17.5)2 17.5 < t ≤ 18.5
5π
4

+ 0.3927 (t− 18) 18.5 < t ≤ 19.5
5π
4

+ 0.3927 (t− 18)− 0.45125 (t− 19.5)2 19.5 < t ≤ 20.5
3π
2
− 0.5098 (t− 20) 20.5 < t ≤ 24

3π
2
− 0.5098 (t− 20) + 0.2549 (t− 24)2 24 < t ≤ 25.
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θky (t) =



0 0 ≤ t ≤ 1
0 1 < t ≤ 4.5
0 4.5 < t ≤ 5.5
0 5.5 < t ≤ 7.5
0 7.5 < t ≤ 8.5
0 8.5 < t ≤ 11.5
0 11.5 < t ≤ 12.5
0 12.5 < t ≤ 13.5
0 13.5 < t ≤ 14.5
0 14.5 < t ≤ 17.5
0 17.5 < t ≤ 18.5
0 18.5 < t ≤ 19.5

−0.2687 (t− 19.5)2 19.5 < t ≤ 20.5
−0.5374 (t− 20) 20.5 < t ≤ 24

−0.5374 (t− 20) + 0.2687 (t− 24)2 24 < t ≤ 25.

θkz (t) =



π√
2
− 0.11325t2 0 ≤ t ≤ 1

π√
2
− 0.2265 (t− 0.5) 1 < t ≤ 4.5

π√
2
− 0.2265 (t− 0.5) + 0.11325 (t− 4.5)2 4.5 < t ≤ 5.5

0.3827π 5.5 < t ≤ 7.5

0.3827π − 0.1503 (t− 7.5)2 7.5 < t ≤ 8.5
0.3827π − 0.3006 (t− 8) 8.5 < t ≤ 11.5

0.3827π − 0.3006 (t− 8) + 0.1503 (t− 11.5)2 11.5 < t ≤ 12.5
0 12.5 < t ≤ 13.5
0 13.5 < t ≤ 14.5
0 14.5 < t ≤ 17.5
0 17.5 < t ≤ 18.5
0 18.5 < t ≤ 19.5

0.2687 (t− 19.5)2 19.5 < t ≤ 20.5
0.5374 (t− 20) 20.5 < t ≤ 24

0.5374 (t− 20)− 0.2687 (t− 24)2 24 < t ≤ 25.

These results of the end e�ector trajectory functions are evaluated at a rate
of 1 kHz. At a speci�c time t, the equivalent homogeneous transformation matrix
representation, BET , of

BX̄E is computed. Then the corresponding joint angles
may be determined by substituting the matrix element values into the PUMA
560 inverse kinematics closed form solution of Ex. 4.4. Speci�cally, the branch of
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the solution where

θ1 = atan2 (− (px − er13) , py − er23)

+atan2
(√

p2x + p2y − d23 + e2 (r213 + r223)− 2e (pxr13 + pyr23), d3

)
,

K =
(px − er13)2 + (py − er23)2 + (pz −H − er33)2 − a22 − a23 − d23 − d24

2a2
,

θ3 = atan2 (−d4, d3)− atan2

(√
a23 + d24 −K2, K

)
,

θ23 = atan2 (− (a2c3 + a3) (pz −H − er33) + (a2s3 − d4) [(px − er13) c1 + (py − er23) s1] ,
(a2c3 + a3) [(px − er13) c1 + (py − er23) s1] + (a2s3 − d4) (pz −H − er33)) ,

θ2 = θ23 − θ3,

θ5 = atan2

(√
1− (r13c1s23 + r23s1s23 + r33c23)

2,− (r13c1s23 + r23s1s23 + r33c23)

)
,

θ4 = atan2 (−r13s1 + r23c1,− (r13c1c23 + r23s1c23 − r33s23)) ,
θ6 = atan2 (r12c1s23 + r22s1s23 + r32c23,− (r11c1s23 + r21s1s23 + r31c23)) ,

is selected.
Plots of the trajectory, velocity, and acceleration of the joint angles are shown

in Figs. 6.11-6.16. The velocity and acceleration are computed numerically by
the backward Euler di�erentiation formula. It should be mentioned that the
computed joint space trajectory does not have the shape of the linear function
with parabolic blends as planned in the task space through the elements of BX̄E.
This is because the nonlinear inverse kinematic mapping has distorted the path
shape. Another point is there are large impulsive accelerations. It is caused by
the signi�cant digit rounding o� of the adjacent trajectory functions at the task
space level. The nonlinear kinematic mapping is a smooth mapping and so should
not be blamed for.

Chulalongkorn University Phongsaen PITAKWATCHARA



6.3 Cartesian Space Schemes 128

Figure 6.11: Joint θ1 trajectory and its velocity and acceleration pro�le generated
by segments of the linear function with parabolic blend in the task space for the
speci�ed path points, time spent during the segments, and the blending time.
The `o' marks indicate the segment transition point.

Figure 6.12: Joint θ2 trajectory and its velocity and acceleration pro�le generated
by segments of the linear function with parabolic blend in the task space for the
speci�ed path points, time spent during the segments, and the blending time.
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Figure 6.13: Joint θ3 trajectory and its velocity and acceleration pro�le generated
by segments of the linear function with parabolic blend in the task space for the
speci�ed path points, time spent during the segments, and the blending time.

Figure 6.14: Joint θ4 trajectory and its velocity and acceleration pro�le generated
by segments of the linear function with parabolic blend in the task space for the
speci�ed path points, time spent during the segments, and the blending time.
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Figure 6.15: Joint θ5 trajectory and its velocity and acceleration pro�le generated
by segments of the linear function with parabolic blend in the task space for the
speci�ed path points, time spent during the segments, and the blending time.

Figure 6.16: Joint θ6 trajectory and its velocity and acceleration pro�le generated
by segments of the linear function with parabolic blend in the task space for the
speci�ed path points, time spent during the segments, and the blending time.
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Problems

1. A single revolute joint robot is to be rotated from 40◦ to 130◦, rest to rest,
in 6 seconds. Design the trajectory using the LSPB scheme. Time spent for
each blend is chosen to be 1 second. Determine the equations of the joint
angle for every interval. Sketch the pro�les of the joint angle, velocity, and
acceleration by stacking them vertically. Indicate signi�cant points in each
graph.

2. Calculate θ̇12, θ̇23, t1, t2, and t3 for a two-segment LSPB. For this joint,
θ1 = 5◦, θ2 = 15◦, θ3 = 40◦. Assume that td12 = td23 = 1 second and that
the default acceleration to use during blends is 80◦/second2. Sketch plots
of position, velocity, and acceleration of θ.
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Design of a manipulator is a complex task involving knowledge from many
disciplinary areas. It is almost impossible to work on any aspect of the problem
in isolation from the others since they all a�ect one another. For this reason, the
design process becomes highly iterative with later decisions requiring revision of
earlier ones.

The tasks in which a manipulator can perform depend greatly with the partic-
ular design. Measures for the capability of the manipulator are, for example, the
load capacity, speed, size and shape of the workspace, resolution, and repeatabil-
ity. Although the issues in designing the manipulator are comprehension of arts
and sciences, this chapter attempts to discuss some important aspects of them.
The material starts by examining the topics that have the greatest e�ect on the
design. Then more detailed yet less important issues are considered in order.

7.1 Design Based on Task Requirements

Though the concept of the manipulator or the robot is to act as a programmable
machine that can perform any general task, in practice each robot is designed
speci�cally to serve a limited set of tasks. It is impractical to have the car
assembly robot perform the task of inserting the electronic components on the
circuit board. In most cases, task requirements may be speci�ed by the following
common attributes.

Number of degrees of freedom Generally the number of DOF for a manip-
ulator should match or exceed the number required by the tasks to be
performed. In the latter case, the manipulator will be redundant. The
robot will then have extra freedom(s) to position itself to the pose most
suitable to perform the task. Not all tasks require a full six DOF, however.

Workspace or sometimes called as the working volume or the working envelope
is one of the �rst requirements in designing the robot since it must be capa-
ble of reaching and interacting with the objects or the environment within
the con�ned vicinity to perfom the task. The overall scale of the task and
the restricted environment set the required workspace of the manipulator.
In most cases, the shape of the workspace and the location of the robot
singularity will also need to be considered.

Load capacity The manipulator must be designed to bear the speci�ed load
capacity, usually applied at the end e�ector. This a�ects the sizing of the
robot structure, the materials used, the sizing of the actuator, and the
transmission system. Naturally, load capacity is con�guration dependent
and dynamically dependent on its motion.

Speed Typically the manipulator with the potential of moving with high speed is
desirable. However, this implies the need for large actuators and lightweight
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robot structure among others. In addition, to increase the motion speed to
the maximum value in the short amount of time, the actuator is required
to possess good acceleration capability as well.

Repeatability and accuracy Accuracy is the ability to be positioned at the
desired posture within the error bound. Repeatability is the ability to
be re-positioned in the same vicinity, no matter how large the error value
will be. These properties depend largely on the manufacturing and assem-
bling quality of the robot parts. It also depends intrinsically on the sizing
of the robot, the actuator/sensor resolution, and the control methodology
adopted.

7.2 Kinematic Con�guration

As the designed requirements have been settled already, the robot design process
may begin. The �rst step should be the design of the kinematic structure of
the manipulator. For the serial robot structure, the number of joints equals the
number of the robot DOFs.

If no other special reasons, the placement of the robot joints should be so that
the last n − 3 joints orient the end e�ector and their axes mutually intersect at
the wrist point. The rest, i.e. the �rst three joints, are used to position this wrist
point. By this design, the robot structure is composed of the positioning structure
serially connected to the orienting structure or the wrist. Indeed, it is widely
employed by many industrial manipulators. Referring to the Pieper's solution [8],
this particular structure will always have the closed form kinematic solutions.
Furthermore, the positioning structure should be designed to be kinematically
simple, having the link twists equal to 0◦ or ±90◦ and having many of the link
lengths and link o�sets equal to zero. The most commonly used con�gurations
of the positioning structure are described below.

Cartesian is the most straightforward con�guration since the actuated motion
direction corresponds to the intuitive X, Y , and Z orthogonal Cartesian
coordinate direction. Thus the inverse kinematics is trivial. Figure 7.1
shows a Cartesian manipulator and its cubical workspace. It is seen that
the �rst three joints of the robot are prismatic type aligned mutally orthog-
onal to each other. The construction may be achieved using the parallel
structure yielding very sti� robot. Workspace of the Cartesian robot that
lies inside itself, while those of the others are outside, is probably the main
disadvantange of deploying this robot structure to the existing workcell.

Articulated or anthropomorphic robot typically consists of two joints forming
a shoulder and one more joint for the elbow. Figure 7.2 displays the articu-
lated robot with its workspace being shaded. The �rst joint axis is vertically
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Figure 7.1: Cartesian manipulator and its workspace. ([4], pp. 234)

aligned to rotated the whole robot about its trunk. The second joint axis
is horizontally aligned to provide the elevation out of the horizontal plane.
The third joint, or the elbow joint, axis is usually parallel to the second
joint axis. It provides the freedom for the wrist point to be positioned arbi-
trarily in the vertical plane. The structure looks like our human arms that
allow us to reach the target with minimal invasion, making it be capable
of reaching into con�ned space. Therefore it has been employed by many
industrial robots.

SCARA stands for �Selective Compliant Assembly Robot Arm� is another pop-
ular structure which employs three parallel revolute joints to move and
orient the object in the plane. The fourth prismatic joint is for moving the
object normal to the plane. Hence this structure is best suit to the planar
tasks such as pick and place. Figure 7.3 depicts the SCARA manipulator
and its workspace. By the virtue of this structure, only the carrying load
will be seen by the fourth actuator. The �rst three joint do not have to
support the load or the robot weight.

Spherical con�guration is made up by replacing the elbow joint of the articu-
lated type with the prismatic joint. This manipulator may be more suitable
to the task that requires the telescoping motion normal to the spherical
volume. Natural choice of the robot generalized coordinates would be the
spherical coordinate system (θ, φ, r). Figure 7.4 shows the spherical manip-
ulator with its workspace.

Cylindrical manipulator is inspired by the cylindrical coordinates (h, θ, r) used
to describe the position of a point in 3D. Figure 7.5 illustrates the robot
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Figure 7.2: Articulated manipulator and its workspace. ([4], pp. 235)

Figure 7.3: SCARA manipulator and its workspace. ([4], pp. 236)
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Figure 7.4: Spherical manipulator and its workspace. ([4], pp. 236)

and its workspace. The �rst prismatic joint translates the arm vertically
up by h. The second joint rotates the arm by θ about the trunk. And
the third prismatic joint extends/retracts the wrist point horizontally by r.
Consequently, the shape of its workspace will be the hollow cylinder.

The design for the orienting structure or the wrist is another subject in its
own. The most common con�guration employs two or three revolute joints with
the mutually orthogonal axes intersecting at the wrist point. Assuming no joint
angle limit, the wrist using three consecutive intersecting joints is capable of
succeeding arbitrary orientation in 3D. Furthermore, it possesses the closed form
inverse kinematic solution. As an example, Fig. 7.6 depict a compact design of
such a wrist using the set of bevel gears to drive the wrist remotely from the other
end through three concentric shafts. However, this design has a drawback of angle
limitations that prevent the continuous rotation of each joint, otherwise the end
e�ector will be jammed into the link structure. The resolution may be to employ
an additional joint which will also increase the wrist dexterity. Another way
might be to design the wrist using the nonorthogonal joint axes. In this design,
all three joints can rotate continuously without limit. However, the workspace
will be reduced to the subspace of SO3.

7.3 Quantitative Measures of Workspace At-

tributes

Some interesting quantitative measures of various workspace attributes are listed
below. They may be used in designing phase of the manipulator to satisfy certain
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Figure 7.5: Cylindrical manipulator and its workspace. ([4], pp. 237)

Figure 7.6: An orthogonal-axes wrist driven by remote actuators via three con-
centric shafts. ([4], pp. 237)
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criteria. Generally, one would like the manipulator to possess large workspace.
The following indices are related to the ability to generate the workspace.

Length sum gives an approximate measure of the total length of all linkages
forming the robot;

L =
N∑
i=1

(ai−1 + di) , (7.1)

where ai−1 and di are the link length and joint o�set of link #(i− 1). Note
that di must be interpreted as a constant equal to the travel stroke for the
prismatic joint. As a matter of fact, the robots made from the prismatic
joints, e.g. the Cartesian robot, tend to have a large value of length sum
than those of same workspace volume made from the revolute joints, e.g.
the articulated robot. The index indicates how much material have been
spent to construct the robot.

Structural length index is de�ned as the ratio of the robot length sum to the
cube root of the workspace volume W , i.e.

QL = L/
3
√
W. (7.2)

Hence lower QL is desirable to achieve a compact manipulator that can
reach more spacious workspace. The optimality of QL may be used as a
guide to the kinematic design of robot.

Not merely the large workspace, but also the ability of the robot to maneuver
smoothly is desirable. Recalling chapter 5, the robot will e�ectively lose one or
more DOFs at the singular points. This behavior is not a sudden. In the neighbor
of the singular points, the robot could fail to be well-conditioned. In other words,
the ability to move and apply force uniformly in all direction will be gradually
deteriorated. There are several measures which may be used to quantify such
e�ect.

Kinematic Manipulability is the end e�ector velocity output subject to the
constrained unit hyper-sphere joint velocity input. A simpler index called
the manipulability measure w, de�ned [9] as

w =
√

det (J (q̄) JT (q̄)), (7.3)

may be used rather. Thus, the robot should be designed to have large area
of its workspace characterized by high value of w.

Dynamic Manipulability is the end e�ector acceleration output subject to the
constrained unit applied task space force input [10]. This may be indicated
by the eigenvalues and the eigenvectors of the Cartesian mass matrix,

Mx (q̄) = J−T (q̄)M (q̄) J−1 (q̄) , (7.4)
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that forms the inertia ellipsoid given by

X̄TMx (q̄)X = 1. (7.5)

Typically, the well-conditioned robot pose will have large and spherical-
shape inertia ellipsoid. Near the singular con�guration, the ellipsoid �attens
along the directions which are di�cult to accelerate or move.

7.4 Actuation

Once the kinematic structure of the manipulator has been decided, the actu-
ation needs to be considered. Generally, the actuator, the reduction, and the
transmission are the coupled issues that must be designed altogether.

Actuators There are three common types of the actutators employed in the
manipulators. They are electrical, hydraulic, and pneumatic actuators. An
important factor is the ratio of the force to the weight of the actuator, for
which the higher the value, the more compact the actuator will be.
In general, electrical actuator has quite low force/weight ratio. Neverthe-
less, it can run at high speed and hence has moderate power/weight ratio
value. As a result, usage of the speed reducer to match the required joint
velocity is typical. This also improves the actuator system force/weight
ratio. Unfortunately, the dynamic response is deteriorated. Anyway, the
electric actuator is clean and does not require unwieldy peripheral instru-
ments. The maintainance is not a burden and it is �exible in adapting to
various applications. Consequently, electrical actuation holds the biggest
share in driving the manipulators.
In the current commercialized technology, hydraulic actuator has the high-
est force/weight ratio. Therefore, it can be applied to drive the robot joints
directly without the speed reducer. Unfortunately, the range of its output
force is too high for typical human tasks. Additionally, it requires the aug-
mented circulating and compressing systems. Thus the hydraulic force is
mainly employed in the heavy-duty manipulating systems.
Similarly, pneumatic actuator must be supplied with the piping and com-
pressed air, making it more suitable in the automation factory where such
things are already available. The hindrance is the compliant behavior of
the air which makes it having low force/weight ratio as well. From the
control point of view, it is then di�cult to make the robot move with high
precision using this pnematic force. Therefore, the light-duty on-o� tasks
may be more appropriate for this kind of actuator.

Reduction and Transmission The best place to install the actuator is at the
joint it drives, which is known as the direct-drive con�guration. It has
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the advantage of simplicity in the design and control dynamics. The joint
motion can be controlled by merely controlling the actuator motion itself.
However, in many cases this choice is not possible. Usually the actuator
alone cannot produce enough joint torque and hence call for the speed re-

duction unit which will boost up the torque on the price of slowing down
motion. Furthermore, the actuator tends to be bulky and heavy. It is thus
preferable to place it at or near the base to reduce the e�ective inertia of
the robot. For this purpose, the transmission unit is necessary to transfer
the motion from the actutor to the remotely located joint.
Aside from added complexity, the major disadvantage of the reduction and
transmission is that they introduce additional friction and �exibility into
the mechanism. According to their properties and characteristics, a sug-
gested design is to place the light-weight reduction unit at or near the joint
after the transmission, in which its �exibility will be less of a problem. The
optimal distribution of the reduction stages throughout the transmission
depends on the �exibility of the transmission, the weight and friction of the
reduction, and the ease of incorporating these components into the overall
manipulator design. In the following, some common mechanical elements
used in the transmission/reduction unit are described.
Gear is the most popular component used in the reduction unit. It can pro-
vide large reduction within compact space. It may also be simultaneously
used as the transmission unit to change or transform the motion depending
on di�erent gear types. The major drawback of using gear is the backlash
and friction.
Flexible Band, Cable, Belt wrapping around the pulleys ful�ll both
the reduction and transmission functions in transferring the power from
the actuator to the robot joint. These elements come with the inherent
�exibility. Therefore the tensioning mechanism is required to preload the
loop; ensuring that the belt or cable wrapped to the pulley securely. It
should be aware that too much tension will induce large friction force and
deformation.
Lead Screw, Ball-Bearing Screw yields large reduction and the ro-
tational to translational motion conversion in a compact package. Ball-
bearing screw is an improvement of the lead screw in that it has a circu-
lation of ball bearings rolling between the threads of the screw and nut.
Hence the friction has been substantially reduced, while for the lead screw
the friction is ampli�ed to withstand large load; thus making the mechanism
self-locking.
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Table 7.1: Sti�ness of some commonly used mechanical elements.
Element Sti�ness

uniform rounded shaft Gπd4

32l

1 : 1 spur gear Cgbr
2

η : 1 rigid speed reduction ko = η2ki
simple belt drive EA

l

hollow linkage

3πE(d4o−d4i )
64l3

for round hollow beam
E(w4

o−w4
i )

4l3
for square hollow beam

7.5 Sti�ness and De�ection

Typically, the manipulator and the drive system should be designed to be sti�
as much as possible. This is to achieve the rigid body accuracy in performing
the tasks and to avoid the resonance generated in the range of working frequency
bandwidth. In the preliminary design, it is often enough to perform rough cal-
culation of the static de�ection based on the sti�ness of the robot alone. The
e�ective sti�ness is in�uenced by the structural sti�ness and the controller sti�-
ness, where only the �rst one will be considered in this section.

Mechanical parts that make up the structure may be connected in series or
in parallel. The net sti�ness of the structure forming by the series connection of
two �exible parts is

kseries =
1

k1
+

1

k2
, (7.6)

while for the parallel connection, the value will be

kparallel = k1 + k2. (7.7)

The sti�ness of some commonly used mechanical elements are listed in Table 7.1.
More on this may be studied further in the subject of theory of elasticity and the
�nite element methods.

7.6 Sensing

Many types of sensors have been employed in the robots to measure various kinds
of physical quantities. To mention a few, most sensors are used to measure the
primitive quantities such as the encoder to measure the position, the tachometer
to measure the velocity, or the gas sensor to measure the amount of CO2 at the
site of the mobile robot. Recently, more sophisticated sensors have also been used
to acquire a bulk of data set that will form the meaningful information. Some
common ones are, for example, the video camera to obtain a sequence of images
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for further vision processing, or the laser range �nder to measure the distance of
the nearby obstacles to the robot which is useful in the navigation.

In this introductory course, only the simple position and force sensors used
in almost every robotic system are discussed.

Position Sensors

Position feedback controller is necessary for the robot to be able to perform the
desired motion precisely. One may think of sensing the position of the robot end
e�ector directly, using the laser, the magnetic wave, or the vision, for example.
However, those kinds of sensor systems are still expensive and yield rather low
accuracy (0.01 mm resolution) compared to the position obtained indirectly from
the readings of the basic motor encoders, among which the rotary optical encoder
is the most popular one.

Basic principle of the sensing is that as the encoder shaft turns, a grating disk
having many radial lines embedded interrupts a light beam. The interruption
is detected by an optosensor. It will then generate a train of ON/OFF pulses
in synchronous with the opening/blocking phases. The shaft angle can then be
determined by counting the number of pulses where the direction of the rotation
is determined by relative phase of the two square pulses. Most encoders used
in robotic system are incremental type because of the lower price and simple
installation. However, the robot needs to be calibrated for the home position
before using.

Force Sensors

If the robot needs to manipulate the objects or interact with the environment,
it should be equipped with force sensors to acquire the actual interaction force.
They are invaluable in successfully executing the robot tasks. Most force sensors,
or load cells, are to be installed between the robot end e�ector �ange and the
tool. Commonly, the sensor has the strain gauges bonded to a specially designed
structure. Once the external force/torque is applied to the sensor, the structure
is deformed by a small amount which is detected from the voltage unbalance in
the bridge circuit. Calibrating the sensor yields the conversion from the voltage
readouts to the applied force/torque.
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Figure 8.1: Overall block diagram of the robot control system. ([4], pp. 263)

Control system is a big subject in itself. Therefore, many control techniques
and methods have been applied to the control of manipulators. A selected control
method as well as the manner in which it is implemented can have a signi�cant
impact on the performance of the robot and on the ranges of its possible ap-
plications. For example, the trajectory tracking task requires a di�erent control
architecture than does the regulation task.

In addition, mechanical design of the robot pays a great in�uence on the types
of control scheme needed. The control problem of a Cartesian manipulator are
fundamentally di�erent from the ones of articulated structure mainly because the
system dynamics are di�erent. This is the hardware/software trade-o� encoun-
tered in controlling the physical plant.

In this chapter, a general control block diagram of the robot is considered.
Then the simplest robot control scheme namely the independent joint control will
be discussed. Finally, the hybrid position/force control scheme, widely adopted
in the manipulation tasks, is introduced.

8.1 Feedback and Closed Loop Control

Most of the robots have been equipped with the joint encoders which allow one
to determine the robot posture and use it as the feedback signal to generate ap-
propriate actuator torque commands that control the robot to follow the desired
motion. Figure 8.1 captures the basic manipulator control system displaying the
interconnection between the trajectory generator, the controller, and the robot.
It is quite simple to see that if the controller computed torque according to the
commanded motion matches the driving torque of the exact robot dynamics, the
robot would be driven along the commanded trajectory. Essentially, the controller
relies on the model solely. This is called the open-loop controller.

Certainly, in the actual system the scheme will not be successful due to im-
perfect knowledge of the robot model and unavoidable presence of disturbances
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Figure 8.2: PUMA 560 control system architecture. ([4], pp. 284)

and noises to the system. To cope with these unmodeled dynamics, a feedback
control scheme must be used. This is indicated by the feedback signal looping
back to the controller block as shown in Fig. 8.1. Speci�cally, the motion feed-
back is used to compute the servo error as the di�erence between the desired and
the actual motion, i.e.

e = θd − θ
ė = θ̇d − θ̇.

The control law will then determine the actuator torque required to reduce such
error while maintaining the stability of the control system.

From Fig. 8.1, it is seen that the robot control is inherently a multi-input
multi-output (MIMO) control problem due to its joint coupling dynamics. Nev-
ertheless with some reasonable justi�cations, each joint of the robot may be
controlled separately. This simpli�es the problem to N independent single-input
single-output (SISO) control system. It is the design approach adopted by most
industrial robots.

8.2 Independent Joint Control Scheme

Figure 8.2 depicts the architecture of the PUMA 560 robot control system. It
consists of the high level controller hosted by a DEC LSI-11 computer generating
and passing motion commands down to the low level six Rockwell 6503 micro-
processors. Each of them controls an individual joint angle through a PID torque
control law as depicted in the functional block diagram of Fig. 8.3.
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Figure 8.3: Functional block diagram of the low level PUMA 560 joint controller.
([4], pp. 285)

8.2.1 Simpli�ed Robot Model

A simpli�ed model of a single rotary joint of the robot will now be developed.
The actuator used in the analysis is the DC torque controlled motor. It has
the motor torque constant km that relates the armature current ia to the output
torque τm:

τm = kmia. (8.1)

Assume that

� the inductance of the armature circuit is small enough; making the time
constant of the armature current very short compared to that of the robot
motion.

� the back emf voltage is small compared to the armature voltage.

� the motor torque ripple due to the winding commutation can be neglected.

Hence, the electrical dynamics of the motor may be omitted and therefore the
motor torque may be commanded directly via the armature current through
Eq. 8.1.

Now consider the mechanical model of a DC motor and load as shown in
Fig. 8.4. The motor is connected to the load through the gear unit having the
ratio η > 1. With the supplied motor torque, τm, and the associated motor speed,
θ̇m, it causes an increase in the output torque to the load, τ , and a reduction in
the speed of the load, θ̇, governed by

τ = ητm, (8.2)

θ̇ =
1

η
θ̇m. (8.3)
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Figure 8.4: Diagram of a motor connected to the load through the gear unit. ([4],
pp. 280)

Formulating a torque balance of the system at the motor side and applying
Eq. 8.2 yield

τm = Imθ̈m + bmθ̇m +
1

η

(
Iθ̈ + bθ̇

)
, (8.4)

where Im, I, bm, and b are the inertia and the support damping coe�cient of the
motor and the load respectively. Then, recalling Eq. 8.3, one may write Eq. 8.4
in terms of the motor variables solely as

τm =

(
Im +

I

η2

)
θ̈m +

(
bm +

b

η2

)
θ̇m. (8.5)

Moreover, the equation might also be expressed in terms of the load variables as

τ =
(
I + η2Im

)
θ̈ +

(
b+ η2bm

)
θ̇. (8.6)

The terms I + η2Im and b + η2bm are the e�ective inertia/damping seen by
the load, while Im + I

η2
and bm + b

η2
are the e�ective inertia/damping seen by

the motor. Hence if the robot is highly geared, i.e. η � 1, the contribution of
the inertia from the motor, Im, will far dominate that from the load, I, which is
usually con�guration dependent. Therefore, one may estimate the total inertia to
be constant of combining the maximum load Imax and the motor inertia together.
Consequently, the design of the robot controller will become greatly simpli�ed
because the robot dynamics may be approximated by the n-decoupled second
order ODEs. A variety of well established tools in the linear system can now be
used to design the linear controller readily.

Practically in designing the controller, one cannot choose the closed loop
poles to be arbitrarily fast because this would inevitably excite the unmodeled
dynamics of the system. During deriving the equations of motion of Eqs. 8.5
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or 8.6, the �exibility of highly sti� parts such as the gear unit, the shaft, and the
robot link have not been considered. They mainly create unmodeled dynamics
of the system and it will be observed if the system is operated at high frequency
range, i.e. when the robot moves quickly. Fast robot motion might be from the
fast controller responding to the error promptly. Thus as a rule of thumb, if the
lowest structural resonance of the robot is ωr, then the bandwidth of the closed
loop system, ωn, should be limited such that

ωn ≤
1

2
ωr (8.7)

to avoid exciting the unmodeled dynamics caused by the structural compliance.
Typical industrial robots have the structural resonance in the range of 5 to 25
Hz. On the contrary, a high performance direct-drive robotics research platform
may possess the good bandwidth up to 70 Hz.

8.2.2 A Simple Robot Controller

According to the developed robot model of Eq. 8.6, a simple control law can then
be designed as follow. For each robot joint, the e�ective load inertia re�ected to
the motor axis must be determined. In order to design a simple linear controller,
the maximum load inertia will be employed. Therefore the equation of motion
may be written as

τ =
(
Imax + η2Im

)
θ̈ +

(
b+ η2bm

)
θ̇. (8.8)

The following control law

τ =
(
Imax + η2Im

)
τ ′ +

(
b+ η2bm

)
θ̇ (8.9)

is proposed where τ ′ is the new control input to be designed. This technique is
called the partitioned control method. Combining the system and the controller,
the closed loop system becomes

τ ′ = θ̈ (8.10)

as if it appears to be a unit mass.
If θd (t) is the desired joint angle determined from the trajectory generator

along with its derivatives θ̇d and θ̈d, the new control input may be proposed as

τ ′ = θ̈d + kv

(
θ̇d − θ̇

)
+ kp (θd − θ) . (8.11)

Substituting this control law into Eq. 8.10, the closed loop control system becomes

ë+ kvė+ kpe = 0 (8.12)
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where e = θd − θ is the tracking error between the desired and actual angles.
Hence, the error dynamics is governed by a second order ODE. Usually the ve-
locity and the position gains, kv and kp, will be selected such that the error
response is critically damped. Particularly,

kp = ω2
n = 1

4
ω2
r (8.13)

kv = 2
√
kp = ωr. (8.14)

However, in the real system the unmodeled system dynamics and the disturbance
distort the response from this simple behavior.

8.3 Hybrid Position/Force Control Scheme

Position control is appropriate for the task that the robot is moving in free space
such as spot welding or spray painting. In many tasks, the robot needs to make a
contact with the environment; for example, in the deburring task in manufactur-
ing. Inevitably, there will be some uncertainties in the surface geometry of the
workpiece or a small error in the tracking of the robot. They will cause a large
interaction force which is likely to damage the object or destroy the precision of
the robot.

Such tasks may be achieved naturally by controlling the normal force to the
surface in contact rather than the position in that direction. In general, the
control framework in this section is applicable to the task in which motion of
the robot is partially constrained by contact with the surfaces. The idea is that
every manipulation task may be decomposed into subtasks which are de�ned by
a particular contact scenario between the robot end e�ector, or the tool, and the
environment. For each subtask, there is a set of natural constraints that govern
the interaction according to the geometry of the matings. A robot in contact
with the rigid surface is not free to move in the normal direction and hence the
natural velocity constraint occurs. On the other hand, a robot free to slide along
the frictionless surface implies null force. Thus a natural force constraint exists
so the robot is unable to apply the force in that direction.

For the task at hand, a generalized surface may be de�ned so that there
exist natural velocity constraints along the normal direction and natural force
constraints along the tangent. Therefore, a constraint frame {C} should be set
up at the port of interaction to clarify the directions. Figure 8.5 depicts a robot
turning a crank with {C} attached. Natural constraints can then be analyzed.
Since the robot is gripping the handle, the translation and rotation of the end
e�ector along the x and z-direction is not possible; vx = 0, vz = 0, ωx = 0, ωy = 0.
However, it is allowed to freely rotate about the handle. Also, the pulling along
the y-axix does not required any e�ort for the ideal frictionless crank. Therefore,
the following natural force constraints, nz = 0 and fy = 0, are applied to the
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Figure 8.5: Natural and arti�cial constraints of the turning crank task. ([4], pp.
320)

Figure 8.6: Natural and arti�cial constraints of the turning screwdriver task. ([4],
pp. 320)

system. As another example, Fig. 8.6 displays a screwdriver with {C} attached.
If the friction torque can be neglected, the screwdriver can turn along its axis
freely; nz = 0. Additionally, the screwdriver can slip out of the slot of the screw
head; fy = 0. However, it is not allowed in the normal function to move along
the x- and z-axes as well as to rotate about the x- and y-axes. In other words,
vx = 0, vz = 0, ωx = 0, and ωy = 0.

Accordingly, these two types of constraints partition the problem into po-
sition and force control. In the hybrid position/force control scheme, arti�cial
constraints will be imposed according with their associated natural constraints
in order to specify the desired motion or force for accomplishing the task. To
be consistent with the natural constraints, arti�cial force constraints will be de-
termined along the surface normal while arti�cial velocity constraints along the
tangent. Consequently, for the turning crank task in Fig. 8.5, one may specify
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Figure 8.7: Subtasks of the peg-in-hole problem. ([4], pp. 321)

the velocity in rotating the crank to be vz = rα1 corresponding to ωz = α1. The
applied force and moment along the immovable direction may be all set to zero
to avoid any possible damage; fx = 0, fz = 0, nx = 0, and ny = 0. For the
other problem in Fig. 8.6, one may specify the turning motion of the screwdriver
by ωz = α2 while maintaining the contact of the screwdriver with the head by
some contact force fz = α3. In addition, vy = 0 is set to prevent the slipping of
the screwdriver out of the slot. As usual, the applied force along the constrained
motion direction will be set to zero, i.e. fx = 0, nx = 0, and ny = 0.

Some tasks are far complicated to be described by merely a single natural
constraints. Consider a typical assembly task known as `peg-in-hole' problem.
This task may be divided into four di�erent subtasks as shown in Fig. 8.7. In
order to transit from a subtask to the next one, the controller must detect a
threshold change in the force or velocity signal of the natural constraint. Thus,
the arti�cial constraint must be changed and enforced by the control system.

Frame {C} is attached to the peg for the description of the constraints. For
the �rst subtask (a), the peg is free to move which implies the zero natural force
constraints. Therefore, the arti�cial velocity constraints may be enforced which
moves the peg toward the ground surface, i.e. vz = vapproach, while the other
velocity components are all zero.

At the moment the peg touch the ground, fz ≥ fthreshold will be detected.
This signi�es the change to a new subtask (b) with the new natural constraints;
ωx = 0, ωy = 0, vz = 0, fx = 0, fy = 0, nz = 0. Therefore, the following arti�cial
constraints of vx = vslide, vy = 0, fz = fcontact, nx = 0, ny = 0, ωz = 0, may be
applied so the peg will be slided along the ground �rmly.

As the peg starts falling into the hole, the velocity vz ≥ vthreshold will be
detected. Thus the assembly enters the next subtask (c) with the new constraints;
vx = 0, vy = 0, ωx = 0, ωy = 0, fz = 0, nz = 0. To insert the peg into the perfectly
straight hole, the robot merely imparts the velocity in the downward direction
and regulating the rotation about the z-axis, i.e. vz = vinsert and ωz = 0. Along
the immovable directions, zero force/torque reaction are monitored to prevent
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Figure 8.8: Hybrid position/force controller block diagram. ([4], pp. 331)

jamming into the hole; fx = 0, fy = 0, nx = 0, ny = 0. Finally, when there is a
change in force along the z-axis, or fz ≥ fthreshold, the peg has just reached the
bottom of the hole and the task is �nished.

Block diagram of the hybrid force/position control scheme is illustrated in
Fig. 8.8. The inner loop controller attempts to linearize and decouple the robot so
the end e�ector closed loop dynamics appears as a set of independent uncoupled
unit masses. Note that the robot dynamics is expressed in the task natural
constraint frame {C}. The Jacobian transpose is required to transform the end
e�ector control force to the equivalent joint torque.

The outer loop controller actually implements the hybrid force/position con-
trol. Details of the position and force controllers are abstracted into the black
blocks, which imply possible variations in their implementations. Desired posi-
tion and force trajectory of the robot end e�ector may be speci�ed and expressed
in the base reference frame {B} for convenience. Thus, the transformation to
{C} must be performed in the respective controllers. Errors are determined and
utilized in the controller to generate appropriate control e�orts. They are then
fed through the switching matrices S and S ′ to select whether the position or force
control will actually be used in each degree of freedom of {C}. These matrices
may be changed according to the task the robot is currently performed.
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This appendix provides an introduction to the usage of the Robotics Tool-
box [6] in MatLAB® program. The toolbox is developed by Prof. Peter Corke,
currently at the school of Electrical Engineering, University of Melbourne. It
is assumed that the readers are familiar with MatLAB® to a certain extent.
The contents will therefore be directed to the commonly useful commands in the
toolbox which complements the study in this course.

Setting Up the System

Generally, the reader needs to install the MatLAB® program �rst, which should
be of the release R2011a or higher for compatibility reason. Then one can obtain
a copy of the Robotics Toolbox with no charge at http://petercorke.com/

Robotics_Toolbox.html by �lling some visitor information. The current toolbox
version is 9.8 (as of February 2013). After downloading the zipped �le of the
toolbox, unpack the archive which will create the directory rvctools and its
subdirectories.

The next step is to modify the MATLABPATH environment in MatLAB® so that
rvctools directory is included in the list. Then, every time you would like to
use the Robotics Toolbox, the script in rvctools/startup_rvc.m �le needs to
be executed �rst. This may be done by issuing startup_rvc at the MatLAB®

command prompt >>. The script will setup appropriate shell environments re-
quired to execute the codes in the toolbox. To verify that the setup is successful,
issue rtbdemo to run the demo of this toolbox.

Useful Commands

Following are some useful commands in Robotics Toolbox which complements
the study in this course. Commands will be grouped according to the relevant
topics. Only basic usage of these commands are described here. Interested read-
ers might need to consult the toolbox manual robot.pdf which is available at
rvctools/robot directory for complete list of all commands and their usages.

Generating the Rotation and Transformation Matrices

rotx

generate the rotation matrix corresponding to the rotation about the x-axis.

Syntax#1: R = rotx(theta) yields the rotation matrix R that repre-
sents the rotation of theta radian about the x-axis.
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Syntax#2: R = rotx(theta, `deg') with the option `deg', one can
specify the angle of rotation theta in degree.

roty

generate the rotation matrix corresponding to the rotation about the y-axis.

rotz

generate the rotation matrix corresponding to the rotation about the z-axis.

trotx

generate the homogeneous transformation matrix corresponding to the rotation
about the x-axis. Note that the translational components are all zero.

Syntax#1: T = trotx(theta) yields the homogeneous transformation
matrix T that represents the rotation of theta radian about the x-axis.

Syntax#2: T = trotx(theta, `deg') with the option `deg', one can
specify the angle of rotation theta in degree.

troty

generate the homogeneous transformation matrix corresponding to the rotation
about the y-axis.

trotz

generate the homogeneous transformation matrix corresponding to the rotation
about the z-axis.

transl

generate the homogeneous transformation matrix corresponding to the pure
translation.

Syntax#1: T = transl(x, y, z) yields the homogeneous transforma-
tion matrix representing the pure translation along the vector, of which its
components are x, y, and z.

Syntax#2: T = transl(p) speci�es the pure translation by the 1 × 3
vector p.
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Changing the Orientation Representation

tr2eul

calculate the ZY Z Euler angles, in radians or degrees, corresponding to the
speci�ed orientation by either the homogeneous transformation or the rotation
matrix. Singularity is handled by setting the �rst Euler angle to zero.

Syntax#1: eul = tr2eul(T) yields the row vector eul which describes
the rotational part of the speci�ed homogeneous transformation matrix T in the
ZY Z Euler angles representation. Option `deg' may be used to retrieve the
angles in degree instead of the default values in radian.

Syntax#2: eul = tr2eul(R) uses the rotation matrix R to specify the
orientation.

eul2tr

compute the homogeneous transformation matrix equivalent to the speci�ed
ZY Z Euler angles.

Syntax#1: T = eul2tr(eul) yields the homogeneous transformation matrix T

where its rotational part corresponds to the speci�ed row vector eul containing
the rotated angles about the moving axes Z, Y , and Z respectively. Option
`deg' may be used if the angles are measured in degree instead of the default
values in radian.

Syntax#2: T = eul2tr(phi, theta, psi) may be called if the three
Euler angles phi, theta, and psi about the moving axes Z, Y , and Z are given
explicitly.

tr2rpy

calculate the XY Z �xed angles representation of the speci�ed orientation by
either the homogeneous transformation or the rotation matrix. Singularity is
handled by setting the �rst �xed angle to zero.

Syntax#1: rpy = tr2rpy(T) yields the row vector rpy which describes
the rotational part of the speci�ed homogeneous transformation matrix T in the
XY Z �xed angles representation. Option `deg' may be used to retrieve the
angles in degree instead of the default values in radian.

Syntax#2: rpy = tr2rpy(R) uses the rotation matrix R to specify the
orientation.
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rpy2tr

compute the homogeneous transformation matrix equivalent to the speci�ed roll,
pitch, yaw angles (or the XY Z �xed angles).

Syntax#1: T = rpy2tr(rpy) yields the homogeneous transformation matrix T

where its rotational part corresponds to the speci�ed row vector rpy containing
the rotated angles about the �xed axes X, Y , and Z (or the roll, pitch, and yaw
motion) respectively. Option `deg' may be used if the angles are measured in
degree instead of the default values in radian.

Syntax#2: T = rpy2tr(roll, pitch, yaw) may be called if the three
angles are given explicitly.

tr2angvec

calculate the angle and axis of which the rotation by such angle about this axis
is described by the speci�ed rotation matrix.

Syntax#1: [theta, v] = tr2angvec(R) yields the rotated angle theta

in radian and the axis v which represent the rotation in angle-axis format of the
speci�ed rotation matrix R.

Syntax#2: [theta, v] = tr2angvec(T) is the same as the above call
except the rotation matrix is speci�ed through the homogeneous transformation
matrix.

angvec2tr

compute the homogeneous transformation matrix which describes the rotation
about the given axis by the speci�ed angle.

Syntax: T = angvec2tr(theta, v) yields the homogeneous transforma-
tion matrix T where its rotational part corresponds to the rotation about the
axis v by the angle theta. The translational part of T is zero.

Trajectory Generation

tpoly

generate a set of points along the quintic polynomial curve joining the designated
initial and �nal angles of a single DOF joint. The starting and ending velocity
and acceleration are set to zero.
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Syntax#1: [s, sd, sdd] = tpoly(s0, sf, m) returns a sequence of
equally time-spaced m discrete points along the quintic polynomial curve joining
the speci�ed initial and �nal angles s0 and sf. Corresponding velocity and ac-
celeration values may be obtained through the optional vector output arguments
sd and sdd.

Syntax#2: [s, sd, sdd] = tpoly(s0, sf, T) speci�es the sequence of
time through the vector T at which the discrete points will be computed
accordingly. The starting (0) and ending time are associated with s0 and sf.

lspb

generate a set of points along the linear segment with parabolic blends (LSPB)
curve joining the designated initial and �nal angles of a single DOF joint.

Syntax#1: [s, sd, sdd] = lspb(s0, sf, m, v) returns a sequence of
equally time-spaced m discrete points along the LSPB curve joining the speci�ed
initial and �nal angles s0 and sf. Corresponding velocity and acceleration
values may be obtained through the optional vector output arguments sd and
sdd. The constant velocity v of the linear segment may be optionally speci�ed.
Otherwise the command automatically computes the suitable velocity.

Syntax#2: [s, sd, sdd] = lspb(s0, sf, T, v) speci�es the sequence
of time through the vector T at which the discrete points will be computed
accordingly. The starting (0) and ending time are associated with s0 and sf.

mtraj

generate a sequence of samples along the customized trajectory joining the
designated initial and �nal angles of multi DOFs joints.

Syntax#1: [q, qd, qdd] = mtraj(tfunc, q0, qf, m) returns a se-
quence of equally time-spaced m discrete samples of the joint vector q along
the scalar trajectory generating function tfunc joining the speci�ed initial and
�nal angles. These values of possibly multi DOFs joints are assigned by the row
vectors q0 and qf. The heading of tfunc function is

[s, sd, sdd] = tfunc(s0, sf, m);

Corresponding velocity and acceleration values may be obtained through the
optional output arguments qd and qdd.

Syntax#2: [q, qd, qdd] = mtraj(tfunc, q0, qf, T) speci�es the se-
quence of time through the vector T at which the discrete samples will be
computed accordingly. The starting (0) and ending time are associated with q0
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and qf.

mstraj

generate a sequence of samples along the multi-segment LSPB curves joining
a set of given via points and the starting point. The function is applicable to
multi DOFs joints.

Syntax: traj = mstraj(p, qdmax, q0, dt, tacc, qd0, qdf) returns
a sequence of samples traj along the multi-segment LSPB curves joining the
initial joint values by the row vector q0 and its via points by the matrix p. The
argument qdmax in row vector is used to assign the velocity limit of each joint. If
given in column vector format, it will be interpreted as the time duration of the
segments. User may also specify the blending time for the transition between
the each segment through the vector tacc. If a scalar is given for this argument,
the value will be applied to all segments. dt is the time step used to proceed
from the current sample to the next. Additionally, the initial and �nal joint
velocity vector may be speci�ed through qd0 and qdf.

jtraj

generate a sequence of samples along the quintic polynomial curves joining the
designated initial and �nal angles of multi DOFs joints.

Syntax#1: [q, qd, qdd] = jtraj(q0, qf, m, qd0, qdf) returns a
sequence of equally time-spaced m samples q along the quintic polynomial curves
joining the speci�ed initial and �nal joint vectors q0 and qf. Optionally, the
initial and �nal joint velocity vectors qd0 and qdf may be speci�ed.

Syntax#2: [q, qd, qdd] = jtraj(q0, qf, T, qd0, qdf) speci�es the
sequence of time through the vector T at which the discrete samples will be
computed accordingly. The starting (0) and ending time are associated with q0

and qf.

ctraj

generate a sequence of samples in SE3 along the straight line joining the
designated initial and �nal pose.

Syntax#1: tc = ctraj(T0, T1, n) returns a sequence of equally time-
spaced n samples tc in SE3 joining the speci�ed initial and �nal pose T0 and T1.
The motion created follows the trapezoidal velocity pro�le along the straight line.
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Syntax#2: tc = ctraj(T0, T1, s) speci�es the sequence of fractional
distances in the range [0, 1] for the samples to be computed.

tranimate

produce the animation of a coordinate frame moving from the initial pose to the
�nal pose.

Syntax#1: tranimate(p1, p2) animates the motion of a Cartesian co-
ordinate frame starting from the initial pose p1 to the �nal pose p2. The pose
may be speci�ed using the homogeneous transformation matrix, the rotation
matrix, or the Quaternion.

Syntax#2: tranimate(pseq) animates the motion of a Cartesian coordi-
nate frame moving along the sequence of speci�ed poses.

Robot Creation

Link

create a link object representing the physical robot linkage with the associated
properties such as the kinematic and dynamic parameters. Linkages will comprise
the robot. For the matter of this introductory course, only kinematic properties
of the link are of concern. To create a link object L with the corresponding DH
parameters, the following syntax may be useful.

L = Link([THETA D A ALPHA SIGMA], `modified')

The arguments THETA, D, A, and ALPHA are the four DH parameters of joint angle
θ, joint displacement d, link length a, and link twist α. SIGMA is the �ag telling
that the joint is revolute (0) or prismatic (1). If not speci�ed, the revolute joint is
assumed. Variation of the DH parameters used in the course is the `modified'
form and needed to be speci�ed, otherwise the `standard' form is assumed.
Accordingly, an extra constant transformation is needed to bring the frame at
the robot last joint to its end e�ector ({n} to {E}).

SerialLink

create a serial robot object representing the physical serial robot. The robot is
created by specifying the array of linkages sorting in an ascending order from the
base to the end e�ector. Taking the 3 DOFs articulated arm of Fig. 3.1 as an
example to create the virtual robot in MatLAB®, �rst its linkages are created.
According to the DH parameters in Table 3.2 and the numerical values of the
link length h = 1.5, l1 = 1 and l2 = 0.8,

L(1) = Link([0 1.5 0 0], `modified')

L(2) = Link([0 0 0 0], `modified')
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L(3) = Link([0 0 0 pi/2], `modified')

L(4) = Link([0 0 1 0], `modified')

L(5) = Link([0 0 0.8 0], `modified')

Note the exact values of THETA are not important here since the joints are revolute
type and so the values will have to be input as the arguments for each command.

The robot may now be created and kept in ArticulatedBot variable with
the following construct specifying the array of linkages L as the input;

ArticulatedBot = SerialLink(L)

Details of the robot will be printed out as well. SerialLink object holds several
methods. Some useful methods are listed.

SerialLink.plot

visually draw or plot the robot.

Syntax: Robot.plot(q) receives the vector of joint variables, being θ or
d for the revolute or prismatic joint, and displays the graphical pose of Robot
rendering the simple cylinders for the robot linkages. Furthermore, the function
can animate the robot motion along the given matrix q composing of the robot
joint trajectories. For the articulated arm,

ArticulatedBot.plot([0 pi/6 pi/4 -pi/9 0])

draws the robot having the posture corresponding to θ1 = 30◦, θ2 = 45◦, and
θ3 = −20◦ as shown in Fig. 8.9. Note that the �rst and the last joint angles have
been assigned the value of 0◦ since they belong to constant transformations from
{B} to {0} and from {3} to {E}, respectively.
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Figure 8.9: A posture of the articulated robot rendered by MatLAB® with
Robotics Toolbox.

SerialLink.fkine

calculate the forward kinematics of the robot.

Syntax: T = Robot.fkine(q) determines the homogeneous transforma-
tion matrix T of the robot end e�ector frame according to the speci�ed joint
variable vector q. Rather, if the matrix q composing of the robot joint trajecto-
ries are given, the resulting matrix T will be a 3-dimensional matrix arraying the
respective homogeneous transformation matrices.

SerialLink.ikine

calculate the inverse kinematics of the robot.

Syntax: q = Robot.ikine(T, Q0, M) determines the joint variable vec-
tor q according to the speci�ed homogeneous transformation matrix T of the
robot end e�ector frame, using the Jacobian matrix iterative method. An
optional estimation of the joint vector Q0 may be speci�ed to obtain other
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possible solutions. For the case when Robot possesses fewer DOFs than six, the
6-element mask vector M corresponding to the translation in and rotation about
the x, y, z-axis of the end e�ector frame must be speci�ed to inform the function
that which DOF(s) will be ignored. The ignored DOF must be set to 0 and
the number of non-zero elements should be equal to the number of the robot
DOF. Note the function might not be able to determine the solution due to the
divergence of the answer during the iteration cycles.

SerialLink.jacob0

calculate the geometric Jacobian matrix of the robot, expressed in the world
frame.

Syntax: j0 = Robot.jacob0(q) returns the geometric Jacobian matrix
j0 associated with Robot pose speci�ed by the joint variable vector q. The
matrix is expressed in the robot world frame.

SerialLink.jacobn

calculate the geometric Jacobian matrix of the robot, expressed in the end
e�ector frame.

Syntax: jn = Robot.jacobn(q) returns the geometric Jacobian matrix
jn associated with Robot pose speci�ed by the joint variable vector q. The
matrix is expressed in the robot end e�ector frame.
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