Correlation Theory

Still bi-variate statistics

X ~ random variable

Y ~ random variable

(c) Pongsa Pornchaiwiseskul,

Covered Topics

- Pearson's Correlation
- Spearman's Rank Correlatiion

Population Covariance (1)

Definition

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$
$$= \iint (x - \mu_X)(y - \mu_Y)f(x, y)dxdy$$

a constant

(c) Pongsa Pornchaiwiseskul,

3

Population Covariance (2)

Sign of Covariance

Positive ==> if one RV is above or below its mean, the other RV tends to be also above or below its mean

Negative ==> if one RV is above or below its mean, the other RV tends to be below or above its mean

(c) Pongsa Pornchaiwiseskul,

Population Covariance (3)

Magnitude of Covarinace

unbounded

depends on the units of both RV's

Unit of covariance

= unit of X times unit of Y e.g., X is in Baht and Y is in Kilogram σ_{XY} is in Baht-Kilogram

(c) Pongsa Pornchaiwiseskul,

5

Population Correlation (1)

Definition

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

- Sign of Correlation
 - —same as that of Covariance

(c) Pongsa Pornchaiwiseskul,

Population Correlation (2)

Magnitude of Correlation

always bounded between -1 and 1

$$-1 \le \rho_{xy} \le +1$$

Unit of Correlation

no unit

comparable between populations

(c) Pongsa Pornchaiwiseskul,

Population Correlation (3)

Interpretation of Correlation

 ρ_{xy} =+1 ==> If a variable is above or below its mean, the other will be above or below its own mean with certainty

 ρ_{XY} =-1 ==> If a variable is above or below its mean, the other will be below or above its own mean with certainty

 $\rho_{XY} = 0 ==>$ If a variable is deviated from its mean, the other will be expected at its mean

(c) Pongsa Pornchaiwiseskul,

8

Sample Covariance

 $s_{\rm XY}$ is an estimator for $\sigma_{\rm XY}$

Required paired sample

Estimator

$$s_{XY} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

(c) Pongsa Pornchaiwiseskul,

g

Paired Sample of Size n

i	×i	Yi
1	X ₁	Y ₁
2	X_2	Y_2
:	:	:
:	:	:
n	X _n	Yn

(c) Pongsa Pornchaiwiseskul,

10

C1 1 1 1 TT ' '

Sample Correlation (1)

 r_{XY} is an estimator of ρ_{XY}

$$\underline{\text{Definition}} \quad r_{XY} = \frac{s_{XY}}{s_X s_Y}$$

Sign of sample Correlation

same as that of sample Covariance

(c) Pongsa Pornchaiwiseskul, 11

Sample Correlation (2)

Magnitude of Sample Correlation same as population correlation always bounded between -1 and 1

$$-1 \le r_{XY} \le +1$$
Unit of sample Correlation
no unit

comparable between data sets

(c) Pongsa Pornchaiwiseskul,

Test for Zero Correlation

$$H_0: \rho_{XY} = 0$$

$$H_1: \rho_{xy} \neq 0$$

Theorem

$$t_{cal} = \frac{r_{XY}}{\sqrt{\frac{1 - r_{XY}^2}{n - 2}}} \sim t(n - 2)$$

Perform a Two-sided test.

(c) Pongsa Pornchaiwiseskul,

13

Test for Non-zero Correlation (1)

$$\mathbf{H}_0: \rho_{XY} = a, \quad a \neq 0$$

$$\mathbf{H}_1: \rho_{xy} \neq a$$

Theorem

$$\omega = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right),$$

$$\mu_{\omega} = \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right)$$

(c) Pongsa Pornchaiwiseskul,

14

O1 1 1 1 TT ' '

Test for Non-zero Correlation (2)

$$\omega \sim N\left(\mu_{\omega}, \frac{1}{n-3}\right)$$

$$z_{cal} = \frac{\omega - \mu_{\omega}}{\sqrt{\frac{1}{n-3}}} \sim N(0,1)$$

Perform a Two-sided test.

(c) Pongsa Pornchaiwiseskul, 15

Rank Correlation(1)

Two judges (A and B) are to rank n different objects (contestants)

Question: Are the two judges correlated?

How can similarity or dissimilarity be measured?

(c) Pongsa Pornchaiwiseskul,

Rank Correlation(2)

Spearman's Rank Correlation (sample)

$$r' = 1 - \frac{6\sum_{i} D_{i}^{2}}{n(n^{2} - 1)}$$

No definition for population rank correlation

(c) Pongsa Pornchaiwiseskul, 17

Rank Correlation(3)

 R_{ij} = rank given to object i by judge j

 $D_i = \text{rank difference for object i}$

$$= R_{iA} - R_{iB}$$

(c) Pongsa Pornchaiwiseskul,

Rank Correlation(4)

Paired Sample of Size n

İ	RĄ;	RB _i
1	RA_1	RB_1
2	RA_2	RB_2
:	:	:
÷	:	÷
n	RA _n	RB_n

(c) Pongsa Pornchaiwiseskul

19

Rank Correlation(5)

Magnitude of Correlation

always bounded between -1 and 1

$$-1 \le r_{xy}$$
, $\le +1$

Unit of Correlation

no unit

comparable between populations

(c) Pongsa Pornchaiwiseskul,

Rank Correlation(6)

Interpretation of Sample Rank Correlation

- r'_{XY} =+1 ==> If both judges totally agree on the rankings of all the n objects
- r' =-1 ==> If both judges totally disagree on the rankings of all the n objects
- $r'_{XY} = 0 \Longrightarrow If the two judges are uncorrelated$

(c) Pongsa Pornchaiwiseskul,

21

Test for Zero Rank Correlation

$$\mathbf{H}_0: \rho'_{XY} = 0$$

$$\mathbf{H}_1:\rho'_{XY}\neq 0$$

Theorem

$$z_{cal} = \frac{r'_{XY}}{\sqrt{\frac{1}{n-1}}} \sim N(0,1)$$

Perform a Two-sided Z-test.

(c) Pongsa Pornchaiwiseskul,

Test for Non-zero Rank Correlation

No such a thing??

(c) Pongsa Pornchaiwiseskul,

23

Correlation Theory

Now tri-variate

X ~ random variable

Y ~ random variable

Z ~ random variable

Covered Topics

Partial Correlation (Pearson)

(c) Pongsa Pornchaiwiseskul,

2

Partial Correlation (1)

- X, Y and Z are three RV's
- They are assumed to be related.
- Ignoring Z, Corr (X,Y) = "direct" correlation (X,Y) + indirect effects from Z

Partial Correlation (2)

Partial Correlation

- Correlation when embedded effect of Z
 has been removed from both X and Y
- Parital Corr (X,Y) = "direct" corr(X,Y)

(c) Pongsa Pornchaiwiseskul, 4

Partial Correlation (3)

Partial Correlation (4)

Assumptions

- X.Z are related as $X = \alpha_1 + \alpha_2 Z + \varepsilon$
- Y.Z are related as $Y = \beta_1 + \beta_2 Z + \xi$

(c) Pongsa Pornchaiwiseskul,

6

Partial Correlation (5)

PCorr

- X.Z are related as $X = \alpha_1 + \alpha_2 Z + \varepsilon$
- Y.Z are related as $Y = \beta_1 + \beta_2 Z + \xi$

Partial Correlation (6)

By OLS

$$\widehat{\alpha}_{2} = \frac{\sum x_{i} z_{i}}{\sum z_{i}^{2}}, \widehat{\alpha}_{1} = \overline{X} - \widehat{\alpha}_{2} \overline{Z}$$

where
$$x_i = X_i - \overline{X}$$
, $z_i = Z_i - \overline{Z}$

(c) Pongsa Pornchaiwiseskul,

8

Partial Correlation (7)

By OLS

$$\widehat{\beta}_{2} = \frac{\sum y_{i} z_{i}}{\sum z_{i}^{2}}, \widehat{\beta}_{1} = \overline{Y} - \widehat{\beta}_{2} \overline{Z}$$

where
$$y_i = y_i - \overline{Y}$$
, $z_i = Z_i - \overline{Z}$

(c) Pongsa Pornchaiwiseskul,

Partial Correlation (8)

X without Z
$$X - \alpha_2 Z = \alpha_1 + \varepsilon$$

Y without
$$Z$$
 $Y - \beta_2 Z = \beta_1 + \xi$

Partial Corr between X and Y $(\rho_{XY,Z})$

=
$$corr(\alpha_2 + \varepsilon, \beta_1 + \xi) = corr(\varepsilon, \xi)$$

(c) Pongsa Pornchaiwiseskul,

10

Partial Correlation (9)

Sample partial correlation coefficient

$$r_{XY.Z} = \frac{\sum \left(X_i - \hat{X}_i\right) \left(Y_i - \hat{Y}_i\right)}{\sqrt{\sum \left(X_i - \hat{X}_i\right)^2} \sqrt{\sum \left(Y_i - \hat{Y}_i\right)^2}}$$

(c) Pongsa Pornchaiwiseskul,

Partial Correlation (9)

Sample partial correlation coefficient

$$r_{XY.Z} = \frac{\sum (x_i - \hat{\alpha}_2 z_i) (y_i - \hat{\beta}_2 z_i)}{\sqrt{\sum (x_i - \hat{\alpha}_2 z_i)^2} \sqrt{\sum (y_i - \hat{\beta}_2 z_i)^2}}$$

(c) Pongsa Pornchaiwiseskul,

12

Partial Correlation (9)

Sample partial correlation coefficient

$$\sum (x_i - \hat{\alpha}_2 z_i)^2 = \sum x_i^2 - 2\hat{\alpha}_2 \sum x_i z_i + \hat{\alpha}_2^2 \sum z_i^2$$

$$= \sum x_i^2 - 2 \frac{\sum x_i z_i}{\sum z_i^2} \sum x_i z_i + \left(\frac{\sum x_i z_i}{\sum z_i^2}\right)^2 \sum z_i^2$$

$$= \sum x_i^2 - \frac{(\sum x_i z_i)^2}{\sum z_i^2}$$

(c) Pongsa Pornchaiwiseskul,

Partial Correlation (10)

Sample partial correlation coefficient

$$= \sum_{i} x_{i}^{2} - \frac{\left(\sum_{i} x_{i} z_{i}\right)^{2}}{\sum_{i} x_{i}^{2} \sum_{i} z_{i}^{2}} \sum_{i} x_{i}^{2}$$

$$= \left(1 - r_{XZ}^{2}\right) \sum_{i} x_{i}^{2}$$

(c) Pongsa Pornchaiwiseskul,

14

Partial Correlation (11)

Sample partial correlation coefficient

$$\sum (y_i - \hat{\alpha}_2 z_i)^2 = (1 - r_{YZ}^2) \sum y_i^2$$

(c) Pongsa Pornchaiwiseskul,

Partial Correlation (12)

Sample partial correlation coefficient

$$\sum (x_i - \hat{\alpha}_2 z_i) (y_i - \hat{\beta}_2 z_i)$$

$$= \sum x_i y_i - \hat{\alpha}_2 \sum y_i z_i$$

$$- \hat{\beta}_2 \sum x_i z_i + \hat{\alpha}_2 \hat{\beta}_2 \sum z_i^2$$

(c) Pongsa Pornchaiwiseskul,

16

Partial Correlation (13)

Sample partial correlation coefficient

$$= \sum x_{i} y_{i} - \frac{\sum x_{i} z_{i}}{\sum z_{i}^{2}} \sum y_{i} z_{i}$$

$$- \frac{\sum y_{i} z_{i}}{\sum z_{i}^{2}} \sum x_{i} z_{i} + \frac{\sum x_{i} z_{i}}{\sum z_{i}^{2}} \frac{\sum y_{i} z_{i}}{\sum z_{i}^{2}} \sum z_{i}^{2}$$

$$= \sum x_{i} y_{i} - \frac{\sum y_{i} z_{i}}{\sum z_{i}^{2}} \sum x_{i} z_{i}$$

(c) Pongsa Pornchaiwiseskul,

17

Ø1 1 1 1 TT ' '

Partial Correlation (14)

Sample partial correlation coefficient

$$= r_{YX} \sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}$$

$$- \frac{r_{YZ} \sqrt{\sum_{i} y_{i}^{2}} \sqrt{\sum_{i} z_{i}^{2}}}{\sum_{i} z_{i}^{2}} r_{XZ} \sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} z_{i}^{2}}$$

$$= (r_{YX} - r_{YZ} r_{XZ}) \sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}$$

(c) Pongsa Pornchaiwiseskul,

18

Partial Correlation (15)

Sample partial correlation coefficient

$$r_{XY.Z} = \frac{(r_{YX} - r_{YZ}r_{XZ})\sqrt{\sum x_i^2}\sqrt{\sum y_i^2}}{\sqrt{(1 - r_{XZ}^2)\sum x_i^2}\sqrt{(1 - r_{YZ}^2)\sum y_i^2}}$$

$$= \frac{r_{YX} - r_{YZ}r_{XZ}}{\sqrt{1 - r_{XZ}^2}\sqrt{1 - r_{YZ}^2}}$$

(c) Pongsa Pornchaiwiseskul,

19

O1 1 1 1 TT '