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Still bi-variate statistics

X ~ random variable

Y ~ random variable
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•Pearson’s Correlation

•Spearman’s Rank Correlatiion
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Definition

a constant
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Sign of Covariance

Positive ==> if one RV is above or below 
its mean, the other RV tends to be also 
above or below its mean

Negative ==> if one RV is above or below 
its mean, the other RV tends to be below or 
above its mean
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Magnitude of Covarinace

unbounded

depends on the units of both RV’s

Unit of covariance

= unit of X times unit of Y

e.g., X is in Baht and Y is in Kilogram

σXY is in Baht-Kilogram
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• Definition

• Sign of Correlation

–same as that of Covariance
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Magnitude of Correlation

always bounded between -1 and 1

Unit of Correlation

no unit

comparable between populations

11 +≤≤− XYρ
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Interpretation of Correlation

ρXY =+1 ==> If a variable is above or below its mean, the other will be above or below its 
own mean with certainty

ρXY =-1 ==> If a variable is above or below its mean, the other will be below or above its 
own mean with certainty

ρXY = 0 ==> If a variable is deviated from its mean, the other will be expected at its mean
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sXY is an estimator for σXY

Required paired sample 

Estimator
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i Xi Yi

1 X1 Y1

2 X2 Y2

: : :

: : :

n Xn Yn
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rXY is an estimator of ρXY
Definition

Sign of sample Correlation

same as that of sample Covariance
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Magnitude of Sample Correlation
same as population correlation
always bounded between -1 and 1

Unit of sample Correlation
no unit

comparable between data sets

11 +≤≤− XYr
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Theorem

Perform a Two-sided test.
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Perform a Two-sided test.
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Two judges (A and B) are to rank n 

different objects (contestants) 

Question: Are the two judges correlated?

How can similarity or dissimilarity be 

measured?
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Spearman’s Rank Correlation (sample)

No definition for population rank 
correlation
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R
ij
= rank given to object i by judge j

D
i
= rank difference for object i

= R
iA
- R

iB
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Paired Sample of Size n

i RAi RBi

1 RA1 RB1

2 RA2 RB2

: : :

: : :

n RAn RBn
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Magnitude of Correlation

always bounded between -1 and 1

Unit of Correlation

no unit

comparable between populations

11
, +≤≤− XYr
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Interpretation of Sample Rank Correlation

r’XY =+1 ==> If both judges totally agree on the rankings of all the n objects
r’XY =-1 ==> If both judges totally disagree on the rankings of all the n 
objects

r’XY = 0 ==> If the two judges are uncorrelated
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Theorem

Perform a Two-sided Z-test.
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Test for Non-zero Rank Correlation

No  such a thing??
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Now tri-variate

X ~ random variable

Y ~ random variable

Z ~ random variable
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•Partial Correlation (Pearson)
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•X, Y and Z are three RV’s 

•They are assumed to be related.

• Ignoring Z, Corr (X,Y) = “direct”

correlation (X,Y) + indirect effects from Z
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Partial Correlation 

•Correlation when embedded effect of Z 

has been removed from both X and Y

•Parital Corr (X,Y) = “direct” corr(X,Y)
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X

Z

Y
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Assumptions 

• X.Z are related as

• Y.Z are related as

εαα ++= ZX
21

ξββ ++= ZY 21
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PCorr

• X.Z are related as

• Y.Z are related as

εαα ++= ZX
21

ξββ ++= ZY 21
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By OLS
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By OLS
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X without Z

Y without Z

Partial Corr between X and Y

εαα +=−
12

ZX

ξββ +=− 12ZY
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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Sample partial correlation coefficient
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