Maximum Likelihood (ML)

e an estimation method

ML = Mode Regression while
LS = Mean Regression

* assume the probability distribution of
the involved random variables up to
(all or some of) their parameters, e.g.,
normal

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

ML Principle

The observed data set 1s the most likely.
[t must be at the mode of their joint

probability distribution.

Choose the estimator that maximizes
the likelihood (mode) of the observed

data set.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University



ML Estimator for £ (1)

Assumption

X~N(,07)
pdf of X

[ 1 (x-pY
f(x)—mGeXp[ 2( - jj

Hand O 2 are unknown parameters

(c) Pongsa Pornchaiwiseskul. , Faculty of Economics,

ML Estimator for LI (2)

Given the randomly sampled data [x ,x.,....x ],
its joint pdf (Likelihood function) can be

written as

Lo X) =] £(x)



ML Estimator for [/ (3)

In general, maximization of Log of the
likelihood function is much easier

InL(g.0%:X) = Y In(f (x)

n 1
— —Eln(27zc72) e ;(xl. — ,u)2

Same solution as maximization of the
likelihood function. Why?

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

ML Estimator for LI (4)

n 1
21:2( —Eln(27202) — . ; (xl. — ,u)2

Solution /LAlML — l Z X,




ML Estimator for LI (5)

{1, is an unbiased (fortunately)

estimator of ,u

&]‘Zﬂ 1s a biased but consistent

estimator of O >

ML Estimator for [ (6)
First-order Conditions vinz = {O}
x1 LY

where o

Oln L 1 &

Bu ?lzl(xi - ,u)
VinlL = =
Oln L n | 2
Kleall __ 207 20" ;(xl ~4)




ML Estimator for LI (7)

Asymptotic variance-covariance matrix 1s

__621nL 621nL__1

ou’ - Slegtol?,

[—V2 In Lr =
B o0°InL B 0 InL
oo’ olo

evaluated at the solution.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

ML Estimator for [ (8)

Asymptotic variance-covariance matrix

- -1 ]
0 =0
O n




ML Estimator for [/ (9)

Asymptotic Distribution

A
\/;(/LA!ML — 1)~ N(O, GML)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

ML Estimator for ££(10)

Approx. Variances (for stat. Inference)

)

A O
V()= L

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



ML Estimator for £ (11)

(1-2)100% approx. Confidence Interval

for d= 4, * \/ GML

(1-¢)100% approx. Conﬁdence Interval

2 _ A2 A2 2
for 0°= oy, *2, \/ Z(CTML / n

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

ML Estimator for A (1)

Assumption

X~ Poisson(ﬂ)
pmf of X

—A
e A

x!

p(x) =



ML Estimator for A (2)

Given the randomly sampled data [x x,....x ],

its log Likelihood function can be written as

n -1 1x;
lnL(/I;X):ZIn[e A j
i=1

X!

=-nl+ ln(ﬁ)zn: X, — Z In(x;!)
i=1 i=1

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

ML Estimator for A (3)

max  —nA+In(1)) x,— > In(x!)
A I i=1
FOC —n+12xi =0

=1 R 1 n
Solution Aoy = ; Z X,
i—1

unbiased => E(,iML) — lZE(xl) =
| n -

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



ML Estimator for ﬂ (4)

Asymptotic Variance of ,{ML

d*InL [ &
B =
] |
= /X :_AML
n- 5 n
ML Estimator for A (5)

Asymptotic Distribution of ﬁtML

A
(A, —A)~ N(o, At )
(1-2)100% approx. Confidence Interval

for A = ﬁ/:MLiz



ML Estimator for CLNRM (1)

E=Y-XB~MVN(0, O°1)

pdf for each €.
2
11 1(Y-XB
E. )= cXp| —
/(&) e o P 2( - j

ML Estimator for CLNRM (2)

Given the observation (Y,X), the log Likelihood

function can be written as

In L(B, 0> Y,X) = —%ln(Zﬂaz)

- 1 Zﬁ:(Yz _XiB)z




ML Estimator for CLNRM (3)

max — " In(270?) ~ - [Y - XBI'TY - X!
, 20

B.Oo

Solution

BML — [XTX]_IXTY ==> ﬁML — BOLS

. 1 A ~ 1
GZ%fL — ;[Y - XBML]T[Y - XB, 1= ;SSR

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

longkorn University

ML Estimator for CLNRM (4)

FOC
[ OlnL| [ 1 o il
VinL = =
OlnL n 1
— Y-XBI'[Y-X
i oo’ ] L 20 ’ 20" : Pl B]_




ML Estimator for CLNRM (5)

Asymptotic Variance of §,,,672,
1 | 1 T
—XX = —X[Y-
= l = [Y—-XP]

R
1 i 1 T

— [Y-XBI'X — +—[Y-XBI[Y-XB]

e 200 ©O |

evaluated at the solution.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

longkorn University

ML Estimator for CLNRM (6)

Asymptotic Variance of B,,,6.,
- | 1 . : ]
XX 0 XX 0
| . 2 .
0
i 26" i ’ no_




ML Estimator for CLNRM (7)

Asymptotic Distribution of §,,,,8>

Jn ~MVN || || e

ML Estimator for CLNRM (8)

Log Likelihood Value

InL@P,,,6%,,Y,X)= ——1n(27z SS—RJ -2
2 n 2

=—— {1 +1In(27) + ln( IR j}
2 n



ML Estimator for CLNRM (9)

Since the log likelihood value 1s
simply a function of SSR from
OLS, 1t 1s generally also
reported in the OLS result
report. No ML estimation 1s
actually done.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Restricted ML (1)

Elimination Approach (see RLS)
P=7Z0+¢

max —ﬁln(Zﬂaz)— 12
S 5 2 20
,O

Solution: same as RLS except for o

[P—-Z0][P—-Z0]

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Restricted ML (2)

Lagrange Method
max —Zin(2707) - ! > [Y = XBI[Y - XB]
20
B.o”
subject to RB=r
—~ P~
MXKKXI Mx1
Restricted ML (3)
FOC OlnL R"a o
op
VinL = =
Oln L 0
oo’ o

A is the Mx1 Lagrange Multiplier vector

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Restricted ML (4)

Define @ = g*\
From FOC, X'[Y-Xp,]-R"0=0
X'Y-X'XB,-R"0=0
B, =[X'X]'[X'Y-R"0]
=[X'X]"'X'"Y -[X"X]'R"6
=B, —[X'X]'R"6

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Restricted ML (5)

Substitute into RB=r
[Rp, —r]-R[X'X]'R"0 =0
0=S"'[Rf, —r]
where S =R[X'X]'R’
Solution: same f§  as that in RLS but

., _ SSR
52 _ SR,

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Restricted ML (6)

Asymptotic Var-cov matrix of 3, o

i 1
X'X — X' [Y-
L] =2 et
i[Y—st X | "
K ! 26,

Restricted ML (7)

Asymptotic Var-cov matrix of [A} R é\'i
] - 1
XX —R®
Ko

[—V2 lnLT1 =6 ———————————




Restricted ML (8)

Inverse of the Second-order matrix ??

Identical Var-Covar matrix as in RLS??

Testing CLNRM using ML

Assume large sample
* Likelihood Ratio(LR) Test
» Wald Test

 Lagrange Multiplier(LM) Test

(c) Pongsa Pornchaiwiseskul. , Faculty of Economics,



LR Test (1)

* An alternative to Generalized F-test (RLS)
for large sample

e Compare likelihood of the restricted model
(L,) with that of the unrestricted model (LU)

* InL is always less than or equal to InL
* Small gap ==>H is true

LR=-2 h{i—’?) =2(InL,-InL,)~ y*(M)

U
» Perform the right-tailed Chi-square test

ongsa Pornchaiwiseskul, Faculty of Econ

Chulalongkorn University

LR Test (2)

Lo X

Accept H a Reject H |

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University



LR Test (3)

Technical Details

InL, :—ﬁ<1+ln(27z)+ln 3R, S
2 . n )]

- \\

InL, =-—41+In(27)+1n 3R, |
2 no )

\ J

LR=-2(nL,—-InL,)=nln ook,
SSR,

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 39

Chulalongkorn University

LR Test (4)

Why does LR have a Chi-square distribution?

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 40

Chulalongkorn University



Wald Test (1)

For large sample,
asymptotic Variance of B, = 62 [X"X]”

Same concept as the single-run
Generalized F-test.

If Rp, —r =0, then, H cannot be
rejected. Only when the difference
from zero is significant enough, then,

H, will be rejected.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

longkorn University

Wald Test (2)

Wald statistic
W =[RB -r]"[RV(B)RT]'[RB —r]
=[Rf—r]'[6;, RIX'X]'R"]" [RB r]
=[RPp-r]"[RIX"X]'RTT" :

~ 1 (M)
where ﬁ: |§U




Wald Test (3)

Perform the same right-tailed Chi-

square test. Same criterion as in LR

test.

It 1s the Chi-square statistic reported in

EViews Wald test output.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

longkorn University

LM Test (3)

Solution  § BR’ GR’
Undoubtedly accept H, 1f ): =0

when the constraints did not affect
solution (same as that of unrestricted
model). Only the difference from
zero becomes significant before H,
will be rejected

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

longkorn University




LM Test (4)

LM statistic
LM =0 VW'~ * (M)
Perform a right-tailed Chi-square test

with the same criterion as LR and
Wald tests.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

LM Test (6)

Technical Details

A

From §—S[Rf, —r]
where S=R[X'X]'R"

V(@) =S'RV(p,)R"'S™
where

V(0)=0c’S'RIX"X]'R"S™

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



LM Test (7)

Technical Details

Since & is a consistent estimator, the
consistent estimator of A
A 1 _1 A
A= 5 S [RB U l']

o
: R. :
and 1ts asymptotic variance

V(L) = %S‘l
UR

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

LM Test (8)

Technical Details

LM = }2 [RB, —r]"S”'SS”'[RB,, —r]
O
| R S
=—[RB, —~rI"S"[RB, —r]
O-R

which 1s similar to Wald statistic except

that &7 is used instead of &

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University



Order of Magnitude

For a Multiple Linear Regression

IM < LR<W

They give different values of Zz cal
for the same hypothesis testing.

Note that the Wald test might reject
H, while LM accepts it.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Overall F-test with large sample

LR test
SSR
c = —nln(—j =-nln(1- R’
anl SST ( )
Wald test

, n(SST—-SSR) nR’
A SSR 1—R?

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Overall F-test with large sample

LM test
,  n(SST—SSR)
Aca SST

nR*

Feel free to prove them.



