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* Multiple Choice
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Binary Choice

* Yes or No

* Buy or Not Buy

* Join or Not Join

* Own or Not Own

* Switch or Stay
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Multiple Choice

* Yes, No, Abstain
* Buy, Sell or No Action

* Buy Brand A, B, C or
None

e Jomn Plan X, Y or Z
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Mutual Exclusiveness

Note that all the choices
must be mutually exclusive
and exhaustive. One and
only one choice or event

will occur.
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Choice Model (1)

Question: What determines the
choice selection?

Model to determine the probability of
an event under a given condition
(value of independent variables)

Pr(choice#j)=Fj(X 9 G, ¢ K)

where X’s are determinants for the
probability.
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Choice Model (2)

Note that
1) ZPr(choice# j)=1

2) function Fj() must return a value

between 0 and 1
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Quantification of
Binary Choices

Example
JOIN=1 1f the observation will join

the government-run health

Insurance program

= 0, otherwise
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Quantification of
Multiple Choices

JA=I 1f the observation will join Plan A
= 0, otherwise

JB=1 if the observation will join Plan B
= (0, otherwise

JC=1 if the observation will join Plan C
= 0, otherwise

Note that JA+JB+J C 1 always

oooooooooooooooooooooooooooooooooooooooooooo
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Binary Choice Model

General Structure

Pr(JOIN =1)=F(X,, X, ... X )

Pr(JOIN =0)=1-F(X,, X,,..., X )
Note that

0<SF(X,, X, X ) <1

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University



Linear Probability Model (1)

Define  p = Pr(JOIN =1)
Assumption of LPM

Linearity of F(.)
P=0X +0,X,+ 4 fc Xy

Note that there 1s no error term

Chulalongkorn University

Linear Probability Model (2)

Formulation of LPM
E(JOIN)=(1)P+(0)(1-P)=P

==> JOIN=P+v

where v is an error term. E(v)=0
JOIN = B X, + B, X, ++ [ X +Vv ----(1)
=> QLS 1s valid but not the best. Why?
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Linear Probability Model (3)

Note that
V(V) = V(JOIN) but
V(JOIN) =(1-P)’P+(0-P) *(1-P)
= P(1-P)

==> V(V) is not constant. It depends
on the independent variables {)X’s)

==> Violation of a CLRM .
assumption or V 1s heteroscedastic
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Linear Probability Model (4)

Define W= 1
P(1-P)

JOIN™ = B X, + ,X,
tot B X +V ----(2)
where  JOIN™ = wJOIN
X, =wX, fork=1,.,K
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Linear Probability Model (5)

Note that
V) =wVy)
1
- P(1-P)
=1

P(1-P)

==> QLS is BLUE for Model (2)
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Linear Probability Model (6)

Estimation of LPM

Step 1 run OLS for unweighted model (1)
-=> JOIN = Xf8

Note that m 1s the estimate for P

Chulalongkorn University



Linear Probability Model (7)

Step 2 compute the weight

1
w =
R R
\/JOIN (1-JOIN)
Step 3 compute JOIN™, X,,X,,.... X,

Step 4 estimate the weighted model (2)
using OLS
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Linear Probability Model (8)
Step S re-compute J5]7\7 using the

N\
new set of 5.

Note that LPM does not assure that

-
0< JOIN <1
o O0<F(X,X,....X.)<I1
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Linear Probability Model (9)

Correction

If X 3<0, set JOIN=0

IfXB>1, set JOIN=1

Linear Probability Model (10)

P

/

’




Linear Probability Model (11)

 Less expensive in computer time. No

non-linear equations

« ——=p1sthe effect of X on the
oX

problébility. In general, the explanatory
variables should be unitless or are

expressed in percentage
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Logit Model (1)

Assumption of Logit

F() is a logistic function No error term

Z=F X+ Xyt + B Xy
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Logit Model (2)

0.5
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Logit Model (3)

Note that OLS does not apply

ML Estimation of Logit model
mEXL =TTy a-py*»

OI' maxInL = Zn:[Yi In(P)+(-Y,)In(1—-P)]
B i=1

Note that Y=JOIN
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Logit Model (4)

Notethat 1—P = I z
_  1+e
First-order conditions
For i=1.....K
olnL 4
= Z[ kl i _Z.
aﬁk i=1 l
Z
—Z[X d=Y) 1=0

1+e

Logit Model (5)
Solving FOC for ML estimates.

Second-order Conditions

0*InL L e’
:_Z[ kl i Z. 2]
ngaﬂk i=1 I+e™)

—jSLX X, .(1-Y)

_Zi

(1+e4)2]

yields Variance-covariance matrix ot 3



Logit Model (6)

Variance-Covariance Matrix for l}

0*InL }1

0B ;0P

Note that it is not the estimated VC matrix.
Do Z-test or Chi-square test instead of t-

V(p)= {—

test or F-test on parameters

Logit Model (7)

Interpretation

OP e i
X T A

sign of f_==>direction of the effect of X
on the probability to JOIN.



Logit Model (8)

No R” for a logit model since there is no

error term.

Define  pseudo— R* = # correct prediction

sample size (n)
It 1s a measure for goodness-of-fit.
NN

JOIN>0.5 ==> predict that JOIN=1
N .
JOIN<0.5 ==> predict that JOIN=0
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Logistic Regression (1)

Assumption of Logistic Regression

F(.) is a logistic function but the
observation(experiment) for each
given set of independent variables
(X) will be repeated several times.
Only the proportion of JOIN=I1 can
be observed.
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Logistic Regression (2)
From Logit Model

1-P

Note that P 1s the expected
proportion of population
JOINing given X’s

P
ln( j:ﬁ1X1+ﬁ2X2+°°'+ﬁKXK
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Logistic Regression (3)
Define

R.=observed proportion of observation
with the same value of X. that JOIN.

Derived Model

R.
ln[l ZR j:ﬂlxli +182X2i +"'+IBKXK1' TV

Chulalongkorn University



Logistic Regression (4)

Define w=+/N,R,(1-R))

Estimation
R =BX +p,X ++fX +v
where R =w.In K,
- 1-R,

X;; = Wiin for K =1,...,K

Logistic Regression (5)

=> OLS 1s BLUE

Interpretation of the parameters same
as those for logit model as the

underlying function is also logistic



Probit Model (1)

Assumption of Probit

. No error term
F() is a cumulative distribution

function of a standard normal.

Note that 0 < d( Z) <1 always.
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Multinomial Logit Model (1)

Assumption of Multinomial Logit
Define PA. = Pr(JAizl)

PB. = Pr(JB=1)

PC. =Pr(JC=1)

Choose the choice of plan C as the

reference.
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Multinomial Logit Model (2)
PA, _

l

PC.
where A, =a X to, X, + -+t X
PB,
=e !
PC.
where ZB. =B X, +B,X,, + -+ L Xy
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Multinomial Logit Model (3)

PA+PB, 5
=™ +e™
PC,
PA. + PB.
1+ — L—1+e™ +e™
PC,
1
PC. =
"ol e™ ™
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Multinomial Logit Model (4)

e
PA. =
"1™ ™
eZB,.
PB. =
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Multinomial Logit Model (5)

ML Estimation of Multinomial [.ogit model

max L= [ (PA)™ (PB,)" (1- PA, — PB,)"" /%
B i=1

or maxInL = Zn: [JA, In(PA,)+ JB, In(PB,)
B i=1
+(1—JA —JB)In(1— PA — PB,)]

Solving FOC yields @,

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

Multinomial Logit Model (6)

Interpretation
OPA. e
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Multinomial Logit Model (6)

Interpretation

b =

OPA 13A (1 PA )a,;-PAPB 5,

ki
own effect Cross- effect

sign of o ==>direction of the own-eftect
of X, on the probability to JOIN A.

sign of g ==>direction of the cross-effect
of X, on the probability to JOIN A.
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Other Choice Models

* Nested Logit /Serial Logit
* Ordered Logit

» Generalized Extreme-Value (GEV)

Chulalongkorn University



LIMDEP

Models for Limited Dependent

Varaibles
* Censored Regression

 Tobit Models
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