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History

 “Regression Models and Life-Tables” by 
D.R. Cox, published in 1972, is one of 
the most frequently cited journal 
articles in statistics and medicine

 Introduced “maximum partial likelihood”
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Cox regression vs.logistic 
regression
Distinction between rate and proportion:
 Incidence (hazard) rate: number of new 

cases of disease per population at-risk 
per unit time (or mortality rate, if 
outcome is death) 

 Cumulative incidence: proportion of 
new cases that develop in a given time 
period
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Cox regression vs.logistic 
regression

Distinction between hazard/rate ratio and 
odds ratio/risk ratio:

 Hazard/rate ratio: ratio of incidence 
rates

 Odds/risk ratio: ratio of proportions

By taking into account time, you are taking into account 
more information than just binary yes/no.

Gain power/precision.

Logistic regression aims to estimate the odds ratio; Cox 
regression aims to estimate the hazard ratio
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Example 1: Study of publication bias

By 
Kaplan-
Meier 
methods

From: Publication bias: evidence of delayed publication in a cohort study of clinical research projects BMJ 1997;315:640-645 (13 September)
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From: Publication bias: evidence of delayed publication in a cohort study of clinical research projects BMJ 1997;315:640-645 (13 September)

Table 4 Risk factors for time to publication using univariate Cox regression analysis

Characteristic # not published # published Hazard ratio (95% CI)

Null 29 23 1.00

Non-significant 
trend

16 4 0.39 (0.13 to 1.12)

Significant 47 99 2.32 (1.47 to 3.66)

Interpretation: Significant results have a 2-fold higher 
incidence of publication compared to null results.

Univariate Cox regression
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Example 2: Study of mortality in 
academy award winners for screenwriting

Kaplan-
Meier 
methods

From: Longevity of screenwriters who win an academy award: longitudinal study   BMJ 2001;323:1491-1496 ( 22-29 December )



Table 2. Death rates for screenwriters who have won an 
academy award.* Values are percentages (95% confidence 
intervals) and are adjusted for the factor indicated 

Relative increase 
in death rate for 

winners

Basic analysis 37 (10 to 70)
Adjusted analysis
Demographic:

Year of birth 32 (6 to 64)
Sex 36 (10 to 69)
Documented education 39 (12 to 73)
All three factors 33 (7 to 65)

Professional:
Film genre 37 (10 to 70)
Total films 39 (12 to 73)
Total four star films 40 (13 to 75)
Total nominations 43 (14 to 79)
Age at first film 36 (9 to 68)
Age at first nomination 32 (6 to 64)
All six factors 40 (11 to 76)

All nine factors 35 (7 to 70)

HR=1.37; interpretation: 
37% higher incidence of 
death for winners compared 
with nominees

HR=1.35; interpretation: 
35% higher incidence of 
death for winners compared 
with nominees even after 
adjusting for potential 
confounders
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Characteristics of Cox 
Regression
 Does not require that you choose some particular 

probability model to represent survival times, and is 
therefore more robust than parametric methods 
discussed last week.

 Semi-parametric 
(recall: Kaplan-Meier is non-parametric; exponential 
and Weibull are parametric)

 Can accommodate both discrete and continuous 
measures of event times

 Easy to incorporate time-dependent covariates—
covariates that may change in value over the course 
of the observation period
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Continuous predictors
E.g.: hmohiv dataset from the lab (higher age-group 

predicted worse outcome, but couldn’t be treated as continuous in KM, and 
magnitude not quantified):

Using Cox Regression
The estimated coefficient for Age in the HMOHIV 

dataset: =.092

HR=e.092=1.096

Interpretation: 9.6% increase in mortality rate for every 
1-year older in age.
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Characteristics of Cox 
Regression, continued

 Cox models the effect of covariates on 
the hazard rate but leaves the baseline 
hazard rate unspecified.

 Does NOT assume knowledge of absolute 
risk.

 Estimates relative rather than absolute
risk.
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Assumptions of Cox Regression

 Proportional hazards assumption: the 
hazard for any individual is a fixed 
proportion of the hazard for any other 
individual

 Multiplicative risk
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Recall: The Hazard function
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In words: the probability that if you survive to t, 
you will succumb to the event in the next instant.
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The model
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Components:

•A baseline hazard function that is left unspecified but must be 
positive (=the hazard when all covariates are 0)

•A linear function of a set of k fixed covariates that is exponentiated. 
(=the relative risk)

ikkii xxtth   ...)(log)(log 110

Can take on any form!
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The model
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Proportional hazards:

Hazard functions should be strictly parallel!

Produces covariate-adjusted hazard ratios!

Hazard for person j (eg 
a non-smoker)

Hazard for person i (eg a smoker)

Hazard 
ratio



16

The model: binary predictor
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This is the hazard ratio for smoking adjusted for age.
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The model:continuous 
predictor
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Exponentiating a continuous predictor gives you the 
hazard ratio for a 1-unit increase in the predictor.

This is the hazard ratio for a 10-year increase in age, 
adjusted for smoking.
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The “Partial Likelihood” (PL)
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Where there are m event times (as in Kaplan-
Meier methods!) and Li is the partial likelihood for 
the ith event time:
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The Likelihood for each event
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Consider the following data:

Males: 1, 3, 4, 10+, 12, 18 

(call them subjects j=1-6)

Given that a death occurred at time=3, 
this is the probability that it happened to 
subject 2 rather than to one of the other 
subjects at risk.

The “risk 
set”

Note: there is a term in the likelihood for each 
event, NOT each individual—note similarity to 
likelihood for conditional logistic regression…
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The PL
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The PL
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Where,   is the censoring 
variable (1=if event, 0 if 
censored) and R(ti)is the risk 
set at time ti

j

Note: we haven’t yet 
specified how to account 
for ties (later)
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Maximum likelihood 
estimation…

 Once you’ve written out log of the PL, then 
maximize the function
 Take the derivative of the function
 Set derivative equal to 0
 Solve for the most likely values of beta (values 

that make the data most likely!).
 These are your ML estimates!
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Variance of 

 Standard maximum likelihood methods 
for variance: 

 Variance is the inverse of the observed 
information evaluated at MPLE estimate 
of :

1)ˆ()ˆ(   IVar



Hypothesis Testing
H0: =0

2. The Likelihood Ratio test:

1. The Wald test:
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Reduced=reduced model with k parameters; Full=full model with k+r parameters
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A quick note on ties…

 The PL assumed no tied values among 
the observed survival times

 Not often the case with real data
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Ties
 Exact method (time is continuous; ties are a result 

of imprecise measurement of time)
 Breslow approximation (SAS default)
 Efron approximation
 Discrete method (treats time as discrete; ties are 

real)

In SAS: 
option on the model statement:
ties=exact/efron/breslow/discrete
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Ties: Exact method
 Assumes ties result from imprecise measurement of time.
 Assumes there is a true unknown order of events in time.
 Mathematically, the exact method calculates the exact 

probability of all possible orderings of events.  
 For example, in the hmohiv data, there were 15 events at 

time=1 month.  (We can assume that all patients did not die 
at the precise same moment but that time is measured 
imprecisely.) ID’s= 13, 16, 28, 32, 52, 54, 69, 72, 78, 79, 82, 
83, 93, 96, 100

 With 15 events, there are 15! (1.3x1012)different orderings.

 Instead of 15 terms in the partial likelihood for 15 events, get 1 
term that equals:


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!15

1
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i
iOPL

Where Oi is the ith possible ordering; 
for example, here, 15!th ordering is:

100, 96, 93, 83, 82, 79, 78, 72, 69, 54, 
52, 32, 28, 16, 13
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Exact, continued
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Each P(Oi) has 15 terms; sum 15! P(Oi)’s…

Hugely complex computation!…so need approximations…
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Breslow and Efron methods
 Breslow (1974) 
 Efron (1977)
 Both are approximations to the exact method.
both have much faster calculation times
Breslow is SAS default.
Breslow does not do well when the number of 

ties at a particular time point is a large 
proportion of the number of cases at risk.

Prefer Efron to Breslow
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Discrete method
 Assumes time is truly discrete.
 When would time be discrete?
When events are only periodic, such as:
--Winning an Olympic medal (can only happen 

every 4 years)
--Missing a class (can only happen on Mondays 

or Wednesdays at 3:15pm)
--Voting for President (can only happen every 4 

years)
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Discrete method
 Models proportional odds: coefficients represent odds 

ratios, not hazard ratios.
 For example, at time= 1 month in the hmohiv data, we 

could ask the question: given that 15 events occurred, 
what is the probability that they happened to this 
particular set of 15 people out of the 98 at risk at 1 
month?
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Odds are a function of an 
individual’s covariates.

Recursive algorithm makes it 
possible to calculate.

All possible sets of 15 out of 98!
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Ties: conclusion

We’ll see how to implement in SAS and 
compare methods (often doesn’t matter 
much!).
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Evaluation of Proportional 
Hazards assumption:

Recall proportional hazards concept:

constant is HR ratio hazard  where;)()(   :implies tHRhth ji 

Hazard for person j (eg a non-smoker)

Hazard for person i (eg a smoker)

Hazard 
ratio for 
smoking
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Recall relationship between survival 
function and hazard function…
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Evaluation of Proportional 
Hazards assumption:
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i.e., log(-log) survival curves 
are parallel,
and different by log(HR)
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Evaluation of Proportional 
Hazards assumption:

e.g., graph we’ll produce in lab…
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Cox models with Non-
Proportional Hazards
Violation of the PH assumption for a given 
covariate is equivalent to that covariate having a 
significant interaction with time.
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The covariate 
multiplied by time

Time-interaction 
coefficient

If Interaction coefficient is significant indicates non-proportionality, and at the same time its 
inclusion in the model corrects for non-proportionality!

Negative value indicates that effect of x decreases linearly with time.

Positive value indicates that effect of x increases linearly with time.

This introduces the concept of a time-dependent covariate…



38

 Covariate values for an individual may change over time 
 For example, if you are evaluating the effect of taking the drug

raloxifene on breast cancer risk in an observational study, women 
may start and stop the drug at will.  Subject A may be taking 
raloxifene at the time of the first event, but may have stopped taking 
it by the time the 15th case of breast cancer happens.

 If you are evaluating the effect of weight on diabetes risk over a 
long study period, subjects may gain and lose large amounts of 
weight, making their baseline weight a less than ideal predictor.

 If you are evaluating the effects of smoking on the risk of pancreatic 
cancer, study participants may change their smoking habits 
throughout the study.

 Cox regression can handle these time-dependent covariates!

Time-dependent covariates
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 For example, evaluating the effect of taking 
oral contraceptives (OCs) on stress fracture 
risk in women athletes over two years—many 
women switch on or off OCs .

 If you just examine risk by a woman’s OC-
status at baseline, can’t see much effect for 
OCs.  But, you can incorporate times of 
starting and stopping OCs.

Time-dependent covariates



40

 Ways to look at OC use:
 Not time-dependent

 Ever/never during the study
 Yes/no use at baseline
 Total months use during the study

 Time-dependent
 Using OCs at event time t (yes/no)
 Months of OC use up to time t

Time-dependent covariates



41

Time-dependent covariates:
Example data

ID Time Fracture StartOC StopOC
1 12 1 0 12
2 11 0 10 11
3 20 1 . .
4 24 0 0 24
5 19 0 0 11
6 6 1 . .
7 17 1 1 7

4 events
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1. Time independent predictor…

 Baseline use (yes/no)
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Time-dependent covariates

ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Order by Time…
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Time-dependent covariates

ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

3 OC users at 
baseline
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Time-dependent covariates

ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

4 non-users at 
baseline
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Time-dependent covariates

ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Next is a censoring (non-user)
Second event is in a baseline 
user. (risk set: 3 users/2 non)Third event is in a non-user at 
baseline.(risk set: 2 users/2 non)
Next is a censoring (baseline 
user).Fourth and last event is in a non-
user (risk set: 1 user/1 non)
Censoring.

First event is in a non-OC user at 
baseline. (risk set: 3 users/4 non)
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The PL using baseline value of 
OC use
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The PL using ever/never value 
of OC use
A second time-independent option would be to 
use the variable “ever took OCs” during the study 
period…
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Time-dependent covariates

ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Next is a censoring (ever-user)

Second event is in an ever-user. 
(risk set: 4 users/1 never)Third event is in an ever-
user.(risk set: 3 users/1 non)
Next is a censoring (ever user).
Fourth and last event is in a never-
user (risk set: 1 user/1 non)Censoring.

First event is in a never-user. (risk 
set: 5 ever users/2 never)
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The PL using ever/never value 
of OC use
“Ever took OCs” during the study period 
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Time-dependent...
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ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Time-dependent covariates
First event at time 6
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The PL at t=6
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ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Time-dependent covariates
At the first event-time (6), 
there are 4 not on OCs and 
3 on OCs.
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The PL at t=6
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ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Time-dependent covariates
Second event at time 12
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The PL at t=12
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ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Time-dependent covariates
Third event at time 17
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The PL at t=17
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ID Time Fracture StartOC StopOC
6 6 1 . .
2 11 0 10 11
1 12 1 0 12
7 17 1 1 7
5 19 0 0 11
3 20 1 . .
4 24 0 0 24

Time-dependent covariates
Fourth event at time 20
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The PL at t=20
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vs. PL for OC-status at baseline (from before):
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