Chapter 1

Basic Concepts

1.1 Fields

Definition 1.1.1. A *field* F is a non-empty set together with two binary operations (denoted by + and \cdot) and two distinguished elements (denoted by 0 and 1), satisfying the following properties:

- (i) (F, +) is an abelian group, i.e.,
 - (a) (F,+) is closed:- $\forall x,y \in F \ x+y \in F$,
 - (b) (F,+) is associative:- $\forall x,y,z \in F \ (x+y)+z=x+(y+z)$,
 - (c) 0 is the additive identity of (F, +):- $\forall x \in F \ x + 0 = x = 0 + x$,
 - (d) each element of F has the additive inverse:- $\forall \ x \in F \ \exists \ y \in F \ x+y=0=y+x;$ moreover, we write -x as the additive inverse of x for each $x \in F$,
 - (e) (F,+) is abelian:- $\forall x,y \in F \ x+y=y+x$,
- (ii) (F^*, \cdot) is an abelian group, where $F^* := F \setminus \{0\}$, i.e.,
 - (a) (F^*,\cdot) is closed:- $\forall \ x,y \in F^* \ \ x \cdot y \in F^*$,
 - (b) (F^*,\cdot) is associative:- $\forall \ x,y,z\in F^* \ (x\cdot y)\cdot z=x\cdot (y\cdot z)$,
 - (c) 1 is the multiplicative identity of (F^*, \cdot) :- $\forall x \in F^* \ x \cdot 1 = x = 1 \cdot x$,
 - (d) each element of F^* has the *multiplicative inverse*:- $\forall \ x \in F^* \ \exists \ y \in F^* \ x \cdot y = 1 = y \cdot x$; moreover, we write x^{-1} as the multiplicative inverse of x for each $x \in F^*$,
 - (e) (F^*, \cdot) is abelian:- $\forall x, y \in F^* \ x \cdot y = x \cdot y$,
- (iii) F satisfies the *left* and *right distributive laws*, i.e., $\forall x, y, z \in F$ $x \cdot (y+z) = x \cdot y + x \cdot z = (y+z) \cdot x$.

Remark 1.1.2. From now on, we write F instead of a field $(F,+,\cdot)$, x-y instead of x+(-y) and xy instead of $x\cdot y$ for all $x,y\in F$. Moreover, we write x/y or $\frac{x}{y}$ instead of xy^{-1} for all $x\in F$ and $y\in F^*$.

Example 1.1.3.

- (i) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are examples of (infinite) fields.
- (ii) \mathbb{Z}_p , where p is a prime number, is a finite filed with order p. Recall that $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$ is the set of integers modulo p where the addition and multiplication are the ones modulo p.
- (iii) \mathbb{Z} is not a field because

Lemma 1.1.4. Let F be a field.

- (i) If $x \in F$ satisfies the property that $\forall y \in F$ x + y = y, then x = 0.
- (ii) If $x \in F$ satisfies the property that $\forall y \in F^*$ xy = y, then x = 1.
- (iii) $\forall x \in F \ x = 0 = 0 x$.
- (iv) If $x, y \in F$ xy = 0, then x = 0 or y = 0.

Definition 1.1.5. A field F is algebraically closed if every non-constant polynomial with coefficients in F has a root in F.

Equivalently, F is algebraically closed if and only if for each polynomial $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ with $a_0,a_1,\ldots,a_n\in F$, $a_n\neq 0$ and $n\geq 1$ there exists $\alpha\in F$ such that $p(\alpha)=0$.

Theorem 1.1.6. The field \mathbb{C} of complex numbers is algebraically closed.

Definition 1.1.7. Let F be a field and K a subset of F. Then K is a *subfield* of F if

- (i) $0_F, 1_F \in K$
- (ii) K is closed under the operations + and \cdot
- (iii) K is a field with the identities 0_F and 1_F and with the restrictions of + and \cdot to K.

Theorem 1.1.8. Let K be a field. Then there exists an algebraically closed field F having K as a subfield.

Example 1.1.9. $\mathbb Q$ is not algebraically closed (why?). However, $\mathbb Q$ is a subfield of $\mathbb C$ which is algebraically closed.

Definition 1.1.10. Let F be a field. If there is a positive integer m such that

$$\underbrace{1+1+\cdots+1}_{m \text{ times}} = 0,$$

then the *characteristic* of F, denoted by char F, is defined by

$$\operatorname{char} F = \min \Big\{ m \in \mathbb{N} \ \big| \ \underbrace{1 + 1 + \dots + 1}_{m \text{ times}} = 0 \Big\}.$$

Otherwise, we call F a field of *characteristic zero*, denoted by $\operatorname{char} F = 0$.

Example 1.1.11.

- (i) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields of characteristic
- (ii) char $\mathbb{Z}_p =$ where p is a prime number.

1.2 Systems of Linear Equations

Definition 1.2.1. Let F be a field. A system of m linear equations in n unknowns x_1, x_2, \ldots, x_n is of the form

where b_1, b_2, \ldots, b_m and a_{ij} with $1 \le i \le m$ and $1 \le j \le n$ belong to F. Note that we may write AX = B for the above system, where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad \text{and} \qquad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

We call A the matrix of coefficients (or coefficient matrix), X the variable matrix and B the constant matrix of the system.

Any n-tuple (x_1, x_2, \ldots, x_n) of elements of F which satisfies each of the above equations is called a *solution* to the system. If $b_1 = b_2 = \cdots = b_m = 0$, then we say that the system is homogeneous.

Theorem 1.2.2. Let F be a field with char F=0. Given a system of linear equations over F. Then one of the followings holds.

- (i) There is no solution to the system.
- (ii) There is a unique solution to the system.
- (iii) There are infinitely many solutions to the system.

1.3 Matrices and Elementary Row Operations

Definition 1.3.1. Let A be an $m \times n$ matrix over a field F. There are three *elementary row operations* on A as follows:

- (i) interchanging of two rows of A,
- (ii) multiplication of one row of A by a non-zero scalar c,
- (iii) replacement of the rth row of A by the row r plus c times the row s where $c \in F \setminus \{0\}$ and $r \neq s$.

Definition 1.3.2. If A and B are $m \times n$ matrices over a field, we say that B is *row-equivalent* to A if B can be obtained from A by a finite sequence of elementary row operations.

Note 1.3.3. We can show that row-equivalence is an equivalence relation.

Theorem 1.3.4. If A and B are $m \times n$ equivalent matrices over a field, the homogeneous systems of linear equations AX = 0 and BX = 0 have exactly the same solutions.

1.4 Row-Reduced Echelon Matrices

Definition 1.4.1. An $m \times n$ matrix R is row-reduced if

- (i) all rows of R consisting only of 0s appear at the bottom of R;
- (ii) in any non-zero row of R, the first non-zero entry must be 1, called the *leading one* or *leading entry*;
- (iii) for any two consecutive rows, the leading entry of the lower row is to the right of the leading entry of the upper row.

Theorem 1.4.2. Every $m \times n$ matrix over a field is row-equivalent to a row-reduced matrix.

Definition 1.4.3. An $m \times n$ matrix R is a row-reduced echelon matrix if

- (i) R is row-reduced;
- (ii) any column that contains a leading entry has 0s in all other positions.

Theorem 1.4.4. Every $m \times n$ over a field matrix is row-equivalent to a row-reduced echeleon matrix.

Theorem 1.4.5. If A is an $m \times n$ matrix over a field and m < n, then the homogeneous system of linear equations AX = 0 has a non-trivial solution.

Theorem 1.4.6. If A is an $n \times n$ (square) matrix over a field, then A is row-equivalent to the $n \times n$ identity matrix if and only if the system of linear equations AX = 0 has only the trivial solution.

Definition 1.4.7. An $m \times n$ matrix over a field is an *elementary matrix* if it can be obtained from the $m \times n$ identity matrix by means of a single elementary row operation.

Theorem 1.4.8. Let A and B be $m \times n$ matrices over a field. Then B is row-equivalent to A if and only if B = PA where P is a product of $m \times m$ elementary matrices.

1.5 Invertible Matrices

Theorem 1.5.1. If A is an $n \times n$ matrix, the followings are equivalent.

- (i) A is invertible.
- (ii) A is row-equivalent to the $n \times n$ identity matrix.
- (iii) A is a product of elementary matrices.

Corollary 1.5.2. If A is an invertible $n \times n$ matrix, and if a sequence of elementary row operations reduces A to the identity I, then that same sequence of operations when applied to I yields A^{-1} .

Corollary 1.5.3. Let A and B be $m \times n$ matrices. Then B is row-equivalent to A if and only if B = PA where P is an invertible $m \times m$ matrix.

Theorem 1.5.4. If A is an $n \times n$ matrix, the followings are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = B has a solution X for each $n \times 1$ matrix B.

1.6 Vector Spaces

Definition 1.6.1. A vector space (or linear space) consists of the followings:

- (i) a field F of scalars;
- (ii) a set V of objects, called *vectors*;
- (iii) a rule (or operation) +, called *vector operation*, which associates with each pair of vectors $u, v \in V$ a vector $u + v \in V$, called the *sum of* u *and* v, in such a way that (V, +) is an abelian group with the identity 0, the *zero vector*.
- (iv) a rule (or operation), called *scalar operation*, which associates with each scalar $\alpha \in F$ and vector $v \in V$ a vector $\alpha v \in V$, called the *product of* α *and* v, in such a way that
 - (a) 1v = v for every $v \in V$;
 - (b) $(\alpha\beta)v = \alpha(\beta v)$ for all $\alpha, \beta \in F$ and $v \in V$;
 - (c) $\alpha(u+v) = \alpha u + \alpha v$ for all $\alpha \in F$ and $u,v \in V$;
 - (d) $(\alpha + \beta)v = \alpha v + \beta v$ for all $\alpha, \beta \in F$ and $v \in V$.

We also say that V is a vector space over the field F.

Example 1.6.2. The followings are examples of vector spaces.

(i) Let F be a field, $n \in \mathbb{N}$ and let

$$F^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in F \text{ for all } 1 \le i \le n\}.$$

For each $x=(x_1,x_2,\ldots,x_n),y=(y_1,y_2,\ldots,y_n)\in F^n$ and $\alpha\in F$, define

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 and $\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$.

Then F^n is a vector space over F and is called the n-tuple space. In particular, F is a vector space over F.

(ii) Let F be a field and $m, n \in \mathbb{N}$. Define

$$M_{mn}(F) := \Big\{ A = [a_{ij}]_{m \times n} \ \Big| \ a_{ij} \in F \text{ for all } i, j \Big\}.$$

For each $A=[a_{ij}], B=[b_{ij}]\in M_{mn}(F)$ and $\alpha\in F$, define

$$A + B = [a_{ij} + b_{ij}]$$
 and $\alpha A = [\alpha a_{ij}].$

Then $M_{mn}(F)$ is a vector space over F and is called the *space of* $m \times n$ *matrices*.

(iii) Let F be a field and S a non-empty set. Define

$$F^S := \{ f \mid f : S \to F \}.$$

For each $f,g\in F^S$ and $\alpha\in F$, define

$$(f+g)(x) = f(x) + g(x)$$
 and $(\alpha f)(x) = \alpha(f(x))$ for all $x \in S$.

Then F^S is a vector space over F and is called the *space of functions from the set* S *to the field* F.

(iv) Let F be a field. Define

$$F_n[x] := \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mid a_i \in F \text{ for all } 0 \le i \le n \}, \text{ where } n \in \mathbb{N}.$$

$$F[x] := \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mid n \in \mathbb{N}_0 \text{ and } a_i \in F \text{ for all } 0 \le i \le n \}.$$

Then $F_n[x]$ (where $n \in \mathbb{N}$) and F[x] are vector spaces over F and are called the *space of polynomials of degree not more than* n and *space of polynomials*, respectively.

(v) \mathbb{C} is a vector space over \mathbb{R} . In general, if we let

$$V = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{C} \text{ for all } 1 \le i \le n\}.$$

For each $x=(x_1,x_2,\ldots,x_n),y=(y_1,y_2,\ldots,y_n)\in V$ and $\alpha\in\mathbb{R}$, define

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 and $\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$.

Then we obtain that V is a vector space over \mathbb{R} which is quite different from the space \mathbb{C}^n over \mathbb{C} (as in (i) while $F = \mathbb{C}$) and the space \mathbb{R}^n over \mathbb{R} .

(vi) Let R be a ring with identity 1 and suppose that R has a subfield F such that $1 \in F$. Let $\bar{0}$ be the zero element of R, the addition is the addition operation already defined on R, and for $\alpha \in F$ and $v \in R$, since $F \subseteq R$, we have $\alpha, v \in R$ so that αv may be defined to be the usual product of elements of R. Then R is a vector space over F.

Theorem 1.6.3. Let V be a vector space over a field F.

- (i) If $u \in V$ is such that u + v = v for some $v \in V$, then u = 0.
- (ii) $\forall v \in V \ 0v = \bar{0}$.
- (iii) $\forall \alpha \in F \ \alpha \bar{0} = \bar{0}$.
- (iv) $\forall v \in V v = (-1)v$.
- (v) $\forall \alpha \in F \ \forall u, v \in V \ \alpha(u-v) = \alpha u \alpha v$.

1.7 Subspaces

Definition 1.7.1. Let V be a vector space over a field F and W a non-empty subset of V. We call W a *subspace* of V, denoted by $W \leq V$, if W is a vector space over F with the same operations of vector addition and scalar multiplication on V.

Theorem 1.7.2. Let V be a vector space over a field F. Then W is a subspace of V if and only if

- (i) $\emptyset \neq W \subseteq V$
- (ii) $\forall v, w \in W \ \forall \ \alpha, \beta \in F \ \alpha v + \beta w \in W$.

Example 1.7.3. Let F be a field.

- (i) For a vector space V, we have $V \leq V$ and $\{\bar{0}\} \leq V$. Note that $\{\bar{0}\}$ is called the *zero space* of V.
- (ii) Let $W = \{(\alpha, \alpha, \dots, \alpha) \mid \alpha \in F\} \subseteq F^n$ where $n \in \mathbb{N}$. Then $W \preceq F^n$.
- (iii) $\{(0, x_2, x_3, \dots, x_n) \mid x_2, x_3, \dots, x_n \in F\} \leq F^n$ where $n \in \mathbb{N}$.
- (iv) Let $n \in \mathbb{N}$ and $n \geq 2$. Then $\{(1+x_2,x_2,x_3,\ldots,x_n) \mid x_2,x_3,\ldots,x_n \in F\}$ is not a subspace of F^n because
- (v) Let

$$V:=\big\{f:F\to F\ \big|\ \text{there exists a non-negative interger n such that}$$

$$f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$$
 for all $x\in F$, where $a_i\in F$ for all $0\leq i\leq n\big\}.$

Then $V \leq F^F$.

- (vi) Let $n \in \mathbb{N}$. Then $F_n[x] \preceq F[x]$. Here, the zero polynomial has degree $-\infty$. Recall that for each $p(x), q(x) \in F[x]$, we have $\deg \big(p(x)q(x)\big) = \deg p(x) + \deg q(x) \quad \text{and} \quad \deg \big(p(x)+q(x)\big) \quad \leq \max\{\deg p(x), \deg q(x)\}.$
- $\text{(vii)} \ \left\{ f: \mathbb{R} \to \mathbb{R} \ \middle| \ f \text{ is continuous} \right\} \preceq \mathbb{R}^{\mathbb{R}}.$
- (viii) $\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable}\} \leq \mathbb{R}^{\mathbb{R}}$.
- (ix) A matrix $A=[a_{ij}]\in M_{mn}(F)$ is symmetric if and only if $a_{ij}=a_{ji}$ for all i,j. We have $\{A\in M_{mn}(F)\mid A \text{ is symmetric}\} \preceq M_{mn}(F)$.
- (x) Let $A \in M_{mn}(F)$. Then $W = \{X \in M_{n \times 1}(F) \mid AX = 0\} \leq M_{n \times 1}(F)$. We call W the solution space of a system of homogeneous linear equations.

Theorem 1.7.4. Let V be a vector space over a field and $\{W_{\gamma} \mid \gamma \in \Lambda\}$ be a collection of subspaces of V. Then $\bigcap_{\gamma \in \Lambda} W_{\gamma}$ is also a subspace of V.

Definition 1.7.5. Let V be a vector space over a field and $S \subseteq V$. Let $\{W_{\gamma} \mid \gamma \in \Lambda\}$ denote the collection of all subspaces of V containing S. That is

$$\big\{W_{\gamma}\ \big|\ \gamma\in\Lambda\big\}=\big\{W\ \big|\ W\preceq V\ \text{and}\ S\subseteq W\big\}.$$

The subspace (of V) spanned by S is defined to be $\bigcap_{\gamma \in \Lambda} W_{\gamma}$ and denoted by $\langle S \rangle$.

When S is finite, i.e., $S = \{v_1, v_2, \dots, v_n\}$, we shall simply call $\langle S \rangle$ the subspace (of V) spanned by the vectors v_1, v_2, \dots, v_n and write $\langle v_1, v_2, \dots, v_n \rangle$ instead of $\langle S \rangle$.

Note 1.7.6. Let S be a subset of a vector space of V. Then $\langle S \rangle$ is the smallest subspace of V containing S. In another word, $\langle S \rangle$ satisfies the followings:

- (i) $\langle S \rangle \leq V$
- (ii) $S \subseteq \langle S \rangle$
- (iii) $\forall W \leq V \ S \subseteq W \Longrightarrow \langle S \rangle \subseteq W$.

Note also that $\langle\emptyset\rangle=\{0\}$, the zero space.

Theorem 1.7.7. Let V be a vector space over F and $S \subseteq V$. If $S \neq \emptyset$, then

$$\left\langle S\right\rangle = \left\{\alpha_1x_1 + \alpha_2x_2 + \dots + \alpha_nx_n \mid n\in\mathbb{N}, \ \alpha_1,\alpha_2,\dots,\alpha_n\in F, \ \text{and} \ \ x_1,x_2,\dots,x_n\in S\right\}.$$

Note that such the $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$ is called a linear combination of x_1, x_2, \ldots, x_n (over F).