Chapter 3

Quotient Spaces, Direct Sums and Projections

3.1 Quotient Spaces

Definition 3.1.1. Let V be a vector space and W a subspace of V. For each $v \in V$ the set $v+W=\left\{v+w \mid w \in W\right\}$ is called a *coset* of W in V or an *affine subspace* of V. The set of all cosets, i.e., $\left\{v+W \mid v \in V\right\}$ is denoted by V/W (read 'V mod W') and is called the *quotient space* of V by W.

One thing we have to be aware of is that it is possible to have u+W=v+W for $u\neq v$, and it certainly seems possible that we could have

$$(u+W)\cap (v+W)\neq \emptyset$$
 for some $u\neq v$.

Lemma 3.1.2. Let V be a vector space and W a subspace of V. Then, for each $u, v \in V$, either u + W = v + W or $(u + W) \cap (v + W) = \emptyset$. Also, u + W = v + W if and only if $u - v \in W$.

Theorem 3.1.3. Let V be a vector space over a field F and W a subspace of V. The quotient space V/W becomes a vector space over F if we let 0+W be the zero vector and define addition and scalar multiplication by

$$(u+W)+(v+W)=(u+v)+W, \quad \text{and}$$

$$\alpha(v+W)=\alpha v+W \quad \text{for all } u,v\in V \text{ and } \alpha\in F.$$

Theorem 3.1.4. Let V be a vector space over a field F and W a subspace of V. The map $\pi:V\to V/W$ defined by

$$\pi(v) = v + W$$
 for all $v \in V$,

is a surjective linear transformation with $\ker \pi = W$.

Moreover, given any linear transformation $T:V\to V'$ such that $W\subseteq \ker T$, there exists a unique linear transformation $\phi:V/W\to V'$ such that $T=\phi\circ\pi$ and $\ker\phi=(\ker T)/W$.

Definition 3.1.5. The map $\pi:V\to V/W$ defined in Theorem 3.1.4 is called the *canonical map* (or *canonical projection*) or *natural projection*) from V onto V/W.

Remark here that the first part of Theorem 3.1.4 says that

every subspace of a vector space is the kernel of some linear transformation (in fact, it is the canonical map).

Corollary 3.1.6. The First Isomorphism Theorem

Let $T \in \mathcal{L}(V, V')$. Then there exists an isomorphism $\phi : V/\ker T \to \operatorname{im} T$. Alternatively, $V/\ker T \cong \operatorname{im} T$, i.e., $V/\ker T$ is isomorphic to $\operatorname{im} T$.

The First Isomorphism Theorem says that the image of any linear transformation with domain V is isomorphic to a quotient space of V. Thus, by identifying isomorphic spaces as being essentially the same, we can say that the images of linear transformations on V are just the quotient space of V.

Conversely, any quotient space V/W of V is the image of a linear transformation on V, in particular, V/W is the image of the surjective canonical map $\pi:V\to V/W$. Thus, up to isomorphism, images of linear transformations on V are the same as quotient spaces of V.

Proposition 3.1.7. Let W be a subspace of a vector space V and B, C be bases of V and W, respectively, such that $C \subseteq B$. Then $\{v + W \mid v \in B \setminus C\}$ is a basis of V/W.

Moreover, if $u, v \in B \setminus C$ with $u \neq v$, then $u + W \neq v + W$.

Corollary 3.1.8. Let W be a subspace of a vector space V. If any two of the vector spaces V, W and V/W are finite-dimensional, then all three spaces are finite-dimensional and

$$\dim V/W = \dim V - \dim W.$$

Recall from Definition 2.1.6 that for each $T \in \mathcal{L}(V, V')$, the rank of T, denoted by rank T, is $\dim \operatorname{Im} T$ and the nullity of T, denoted by null T, is $\dim \operatorname{Im} T$.

Theorem 3.1.9. The Rank Plus Nullity Theorem

Let $T \in \mathcal{L}(V,V')$ and assume that V is finite-dimensional. Then $\ker T$ and $\operatorname{im} T$ are also finite-dimensional and

$$\dim V = \operatorname{rank} T + \operatorname{null} T$$
.

3.2 Direct Sums

We proved that for subspaces U and W of a vector space V, the set

$$U+W=\big\{u+w\ \big|\ u\in U\ \text{and}\ w\in W\big\}$$

is a subspace of V, and in fact $U+W=\left\langle U\cup W\right\rangle$. This can easily be extended to more than two subspaces.

Theorem 3.2.1. If W_1, \ldots, W_n are subspaces of a vector space V and we let

$$W_1 + \cdots + W_n := \{ w_1 + \cdots + w_n \mid w_i \in W_i \text{ for all } i = 1, \dots, n \},$$

then $W_1 + \cdots + W_n$ is a subspace of V and

$$W_1 + \dots + W_n = \langle W_1 \cup \dots \cup W_n \rangle.$$

24 Assist. Prof. Sajee Pianskool Chapter 3 Quotient Spaces, Direct Sums and Projections

Note 3.2.2. If W_1, \ldots, W_n are subspaces of a vector space V such that $V = W_1 + \cdots + W_n$, then

$$\forall v \in V \exists w_i \in W_i \ (i = 1, \dots, n) \quad v = w_1 + \dots + w_n.$$

In general, the w_i 's are not unique.

Definition 3.2.3. Let W_1, \ldots, W_n be subspaces of a vector space V. We say that V is the *direct sum* (or *internal direct sum*) of W_1, \ldots, W_n if

(i)
$$V = W_1 + \cdots + W_n$$
, and

(ii)
$$\forall i \in \{1, \dots, n\}$$
 $W_i \cap (W_1 + \dots + W_{i-1} + W_{i+1} + \dots + W_n) = \{0\}.$

We denote this by writing $V = W_1 \oplus \cdots \oplus W_n$ or $V = \bigoplus_{i=1}^n W_i$.

Moreover, sometimes, we write $W_i \cap (W_1 + \cdots + \widehat{W_i} + \cdots + W_n)$ instead of $W_i \cap (W_1 + \cdots + W_{i-1} + W_{i+1} + \cdots + W_n)$.

Theorem 3.2.4. Let W_1, \ldots, W_n be subspaces of a vector space V such that $V = W_1 + \cdots + W_n$. Then the followings are equivalent.

(i)
$$V = W_1 \oplus + \cdots \oplus W_n$$
.

(ii) If
$$v_1+\cdots+v_n=w_1+\cdots+w_n$$
, where $v_i,w_i\in W_i$ for all $i\in\{1,\ldots,n\}$, then $v_i=w_i$ for all $i\in\{1,\ldots,n\}$.

That is, each element of V has a unique representation of the form $w_1 + \cdots + w_n$, where $w_i \in W_i$ for all i.

(iii) If $0 = w_1 + \cdots + w_n$, where $w_i \in W_i$ for all i, then $w_i = 0$ for all i.

[Remark: Some books use this theorem as the definition of direct sum.]

Proposition 3.2.5. Let W_1, \ldots, W_n be subspaces of a vector space V such that $V = W_1 \oplus \cdots \oplus W_n$ and suppose that for each $i \in \{1, \ldots, n\}$, S_i is a linearly independent subset of W_i . Then

$$S_1 \cup \ldots \cup S_n$$
 is linearly independent and $\forall i, j \in \{1, \ldots, n\}$ $i \neq j \Longrightarrow S_i \cap S_j = \emptyset$.

Theorem 3.2.6. Let V be a vector space. For any subspace W of V, there exists a subspace U of V such that $V = U \oplus W$.

Is the subspace U in Theorem 3.2.6 unique?

Definition 3.2.7. The subspace U of V in Theorem 3.2.6 is called a *complement* of W in V and is denoted by W^c .

Note 3.2.8. Theorem 3.2.6 can be rewritten as

Any subspace of a vector space has a complement.

Theorem 3.2.9. Let V,V' be vector spaces over the same field and $W_1,\ldots,W_n \preceq V$ be such that $V=W_1\oplus\cdots\oplus W_n$. Suppose that $T_i\in\mathcal{L}(W_i,V')$ for all $i\in\{1,\ldots,n\}$. Then there exists a unique linear transformation $T:V\to V'$ such that $T\mid_{W_i}=T_i$ for all $i\in\{1,\ldots,n\}$.

Recall that a direct sum is an **internal direct sum**. We can also extend a direct sum in which we must go outside of the given vector spaces to form a new vector space.

Theorem 3.2.10. Let V_1, \ldots, V_n be vector spaces over the same field F.

(i) The Cartesian product $V_1 \times \cdots \times V_n$ becomes a vector space over F if we use $(0, \dots, 0)$ as its zero vector, and define addition and scalar multiplication by

$$(u_1, \ldots, u_n) + (v_1, \ldots, v_n) = (u_1 + v_1, \ldots, u_n + v_n), \text{ and}$$

 $\alpha(v_1, \ldots, v_n) = (\alpha v_1, \ldots, \alpha v_n),$

for all $\alpha \in F$ and $(u_1, \ldots, u_n), (v_1, \ldots, v_n) \in V_1 \times \cdots \times V_n$.

(ii) If, for each $i \in \{1, ..., n\}$, we let

$$W_i = \{(v_1, \dots, v_n) \in V_1 \times \dots \times V_n \mid v_j = 0 \text{ for all } j \neq i\},$$

= \{(0, \dots, 0, v, 0, \dots, 0) \in V_1 \times \dots \times V_n \ \ v \in V_i\},

then each W_i is a subspace of $V_1 \times \cdots \times V_n$, $W_i \cong V_i$ and

$$V_1 \times \cdots \times V_n = W_1 \oplus \cdots \oplus W_n$$
.

Definition 3.2.11. Let V_1, \ldots, V_n be vector spaces over the same field. Then $V_1 \times \cdots \times V_n$ defined as in Theorem 3.2.10 is called the *external direct sum of* V_1, \ldots, V_n , denoted by $V_1 \boxplus \cdots \boxplus V_n$.

3.3 Projections

Definition 3.3.1. Let V be a vector space. A linear transformation $P:V\to V$ is called a projection if $P\circ P=P$.

Lemma 3.3.2. Let V be a vector space and $P:V\to V$ a projection. Then $Q=1_V-P$ is also a projection and $Q\circ P=P\circ Q=0$.

Definition 3.3.3. Let V be a vector space. Two linear transformations $P,Q:V\to V$ are called supplementary if $P+Q=1_V$ and $P\circ Q=0$.

Lemma 3.3.4. Let V be a vector space and P,Q be supplementary linear transformations on V. Then P and Q are both projections.

Proposition 3.3.5. Let V be a vector space and P a projection on V. Then

$$V = \ker P \oplus \operatorname{im} P$$
 and $P \mid_{\operatorname{im} P} = 1_{\operatorname{im} P}$.

From this we can easily see how to prove that, given any subspace W of a vector space V , there is a projection of V onto W .

Proposition 3.3.6. Let V be a vector space and $W \preceq V$. Then there exists a projection of V onto W, i.e., there exists a projection $P: V \to V$ such that $\operatorname{im} P = W$.