4.3 Annihilators

Definition 4.3.1. Let M be a non-empty subset of a vector space V. The annihilator M^0 of M is

$$M^0 = \big\{ \phi \in V^* \ \big| \ \phi(M) = \{0\} \big\} = \big\{ \phi \in V^* \ \big| \ \phi(m) = 0 \text{ for all } m \in M \big\}.$$

Proposition 4.3.2. Let M be a non-empty subset of a vector space V. Then M^0 is a subspace of V^* . [Note that M does not need to be a subspace of V.]

Remark 4.3.3. Let V be a vector space. Then

$$\left\{ 0\right\} ^{0}=$$
 and $V^{0}=$

Theorem 4.3.4. If W is a subspace of a finite-dimensional vector space V, then

$$\dim W^0 = \dim V - \dim W.$$

Theorem 4.3.5. Let V be a vector space.

(i) For any non-empty subsets M and N of V,

$$M \subseteq N \Longrightarrow N^0 \subseteq M^0$$
.

(ii) If V is finite-dimensional, then, identifying V^{**} with V under the natural map, we obtain that

$$M^{00} = \langle M \rangle$$
 for any non-empty subset M of V .

In particular, if W is a subspace of V, then $W^{00}=W$.

(iii) If V is finite-dimensional and $U, W \leq V$, then

$$\left(U\cap W\right)^0=U^0+W^0 \qquad \text{and} \qquad \left(U+W\right)^0=U^0\cap W^0.$$

Corollary 4.3.6. Let V be a finite-dimensional vector space and W_1, W_2 subspaces of V. Then

$$W_1 = W_2 \Longleftrightarrow W_1^0 = W_2^0.$$

Theorem 4.3.7. Let V be a finite-dimensional vector space and U,W subspaces of V such that $V=U\oplus W$. Then

- (i) $U^*\cong W^0$ [what annihilate W are all linear functionals on U] and $W^*\cong U^0$.
- (ii) $(U \oplus W)^* = U^0 \oplus W^0$.

4.4 Operator Adjoints

30

Definition 4.4.1. Let V and W be vector spaces over the same field F and $\tau \in \mathcal{L}(V,W)$. Define a map $\tau^{\times}: W^* \to V^*$ by

$$\tau^{\times}(\phi) = \phi \circ \tau := \phi \tau \quad \text{for all } \phi \in W^*.$$

[This makes sense, since $\tau \in \mathcal{L}(V,W)$ and $\phi \in \mathcal{L}(W,F)$, we have $\phi \tau \in \mathcal{L}(V,F) = V^*$.]

Moreover, $\tau^{\times}(\phi)(v) = \phi(\tau(v))$ for all $\phi \in W^*$ and $v \in V$.

The map τ^{\times} is called the *operator adjoint* of τ .

Theorem 4.4.2. Let V and W be vector spaces over the same field F. Then the operator adjoint of $\tau \in \mathcal{L}(V,W)$ is a linear transformation.

Theorem 4.4.3. Let V and W be vector spaces over the same field F.

- (i) $(\tau + \sigma)^{\times} = \tau^{\times} + \sigma^{\times}$ for all $\tau, \sigma \in \mathcal{L}(V, W)$.
- (ii) $(\alpha \tau)^{\times} = \alpha \tau^{\times}$ for all $\alpha \in F$ and $\tau \in \mathcal{L}(V, W)$.
- (iii) $(\tau \sigma)^{\times} = \sigma^{\times} \tau^{\times}$ for all $\sigma \in \mathcal{L}(V, W)$ and $\tau \in \mathcal{L}(W, U)$.
- (iv) $\left(au^{-1} \right)^{ imes} = \left(au^{ imes} \right)^{-1}$ for all invertible $au \in \mathcal{L}(V)$.

Theorem 4.4.4. Let V and W be finite-dimensional vector spaces over the same field and let $\tau \in \mathcal{L}(V,W)$. If we identify V^{**} with V and W^{**} with W, using the natural maps, then

$$\tau^{\times \times} = \tau$$
.

Theorem 4.4.5. Let $\tau \in \mathcal{L}(V, W)$. Then

- (i) $\ker \tau^{\times} = (\operatorname{im} \tau)^{0}$;
- (ii) $(\operatorname{im} \tau^{\times})^0 = \ker \tau$, under the natural identification with V and W being finite-dimensional;
- (iii) $\operatorname{im}(\tau^{\times}) \subseteq (\ker \tau)^{0}$;
- (iv) if V and W are finite-dimensional, then $\operatorname{im}(\tau^{\times}) = (\ker \tau)^0$.

Corollary 4.4.6. Let $\tau \in \mathcal{L}(V,W)$, where V,W are finite-dimensional vector spaces. Then $\operatorname{rank} \tau = \operatorname{rank} \tau^{\times}$.