Chapter 4

Dual Spaces

4.1 Dual Spaces

Let F be a field and V a vector space over F. In this chapter, we study linear transformations from V to F by thinking of F as a vector space over itself.

Definition 4.1.1. Let V be a vector space over a field F. The *dual space* of V, denoted by V^* , is the set of all linear transformations from V to F. Thus

$$V^* = \mathcal{L}(V, F) = \{ \phi : V \to F \mid \phi \text{ is a linear transformation} \}.$$

The elements of V^* are called *linear functionals on* V.

Note that $\mathcal{L}(V,W)$ is also a vector space whenever V and W are vector spaces. Thus, V^* is always a vector space whenever V is. Hence, what is a basis of V^* ?

Proposition 4.1.2. Let $V \neq \{0\}$ be a finite-dimensional vector space over a field F and let $B = \{v_1, \ldots, v_n\}$ be a basis of V. For each $i \in \{1, \ldots, n\}$, define $\phi_i \in V^*$ by

$$\phi_i(v_j) = \delta_{ij}$$
 for all $j \in \{1, \dots, n\}$.

Then $\{\phi_1,\ldots,\phi_n\}$ is a basis of V^* .

In fact, for each i, we define $\psi_i: B \to F$ by $\psi_i(v_j) = \delta_{ij}$ for all j, then there exists a unique linear transformation $\phi_i: V \to F$, i.e., $\phi_i \in V^*$, such that $\phi_i \mid_B = \psi_i$ and this defines a unique element of V^* .

Definition 4.1.3. The basis $\{\phi_1, \dots, \phi_n\}$ defined in Proposition 4.1.2 is called the *dual basis* of the basis $\{v_1, \dots, v_n\}$.

Remark 4.1.4. Let V be a vector space. Then

$$\forall \phi \in V^* \quad \phi = \phi(v_1)\phi_1 + \dots + \phi(v_n)\phi_n$$
$$\forall v \in V \quad v = \phi_1(v)v_1 + \dots + \phi_n(v)v_n.$$

Let $v \in V$. Then $v = \alpha_1 v_1 + \dots + \alpha_n v_n$ so that $\phi_i(v) = \alpha_1 \phi_i(v_1) + \dots + \alpha_n \phi_i(v_n) = \alpha_i$.

Corollary 4.1.5. Let V be a finite-dimensional vector space. Then $\dim V = \dim V^*$ and $V \cong V^*$.

Proposition 4.1.6. Let V,W be vector spaces over a field F and $T \in \mathcal{L}(V,W)$. Define $T^*: W^* \to F^V = \{f \mid f: V \to F\}$ by

$$T^*(\phi) = \phi \circ T \quad \text{for all } \phi \in W^*, \qquad \text{i.e.,} \qquad T \\ V \xrightarrow{\phi} F$$

Then

- (i) $T^* \in \mathcal{L}(W^*, V^*)$,
- (ii) T^* is injective if and only if T is surjective,
- (iii) T^* is surjective if and only if T is injective.

4.2 Double Dual Spaces

If V is a vector space, then so is the dual space V^* . Hence, we may form the double dual space $(V^*)^*$.

Definition 4.2.1. Let V be a vector space over a field F. The double dual space of V, denoted by V^{**} , is defined as

$$V^{**} = \mathcal{L}(V^*, F) = \{\bar{v} : V^* \to F \mid \bar{v} \text{ is a linear functional}\}.$$

What are elements of V^{**} ? If $v \in V$, consider the map $\bar{v}: V^* \to F$ defined by

$$\bar{v}(\phi) = \phi(v)$$
 for all $\phi \in V^*$.

This map is called the *evaluation at* v. To see that $\bar{v} \in V^{**}$, we must show that it is linear. But if $\alpha, \beta \in F$, $\phi, \psi \in V^*$, then

$$\bar{v}(\alpha\phi + \beta\psi) = (\alpha\phi + \beta\psi)(v) = \alpha\phi(v) + \beta\psi(v) = \alpha\bar{v}(\phi) + \beta\bar{v}(\psi)$$

for all $v \in V$, and so \bar{v} is indeed linear.

Since the evaluation at v is in V^{**} for all $v \in V$, we can define a map $\tau: V \to V^{**}$ by

$$\tau(v) = \bar{v} \quad \text{for all } v \in V.$$

This is called the *canonical map* (or the *natural map*) from V to V^{**} .

Theorem 4.2.2. Let V be a vector space over a field F.

(i) For any non-zero vector $v \in V$, there exists a linear functional $\phi \in V^*$ for which $\phi(v) \neq 0$.

28

(ii) A vector $v \in V$ is zero if and only if $\phi(v) = 0$ for all $\phi \in V^*$.

Theorem 4.2.3. Let V be a vector space over a field F. Then the canonical map τ is a monomorphism. Furthermore, if V is finite-dimensional, then τ is an isomorphism.

Corollary 4.2.4. Let V be a finite-dimensional vector space over a field F. If $f \in V^{**}$, then there exists a unique vector $v \in V$ such that

$$f(\phi) = \phi(v)$$
 for all $\phi \in V^*$.

Let V be a **finite-dimensional** vector space. Then

$$V \cong V^* \cong V^{**}$$
.

Thus, we can conclude that $V\cong V^{**}$ by $v\mapsto \bar v$. That is, we can **identify** the double dual space V^{**} with V. Alternatively, we say that V is the **dual space** of V^* , or the spaces V,V^* are naturally in duality with one another. Each is the dual space of the other.

Is every basis of V^* the dual basis of some basis of V? Equivalently,

 $\forall \ B^* \subseteq V^* \quad B^* \text{ is a basis of } V^* \implies \exists \text{ a basis } B \text{ of } V \text{ such that } B^* \text{ is the dual basis of } B$

Proposition 4.2.5. Let V be a finite-dimensional vector space over a field F. Then each basis of V^* is the dual basis of some basis of V.

Let \ensuremath{V} be a **finite-dimensional** vector space. Then

 V^* is the dual space of V with B^* is the dual basis of a basis B and V "is" the dual space of V^* with B "is" the dual basis of a basis B^* .