Engineering Mechanics 1

ชนัตต์ รัตนสุมาวงศ์
Chanat Ratanasumawong (CRW) 309 Salab Building Tel: 022186593

1/1 Mechanics

Mechanics is the physical science which deals with the effects of forces on objects

The subject of mechanics is divided into two parts:

1. Statics: equilibrium of bodies
2. Dynamics: motion of bodies

Applications

-Strength of machines and structures
-Vibrations (engine, building, bridge)
-Fluid mechanics (airplanes, fluid machinery)

1/2 Basic concepts

Space: the region occupied by bodies whose positions are described using coordinate system (meter)

Time: the measure of the succession of events (sec) Used in dynamics

Mass: the body's resistance to change in velocity (kg) the body's ability to generate attractive force between itself and another

Force: the action of one body to another (N)
Particle: a body of negligible dimensions (dimensions are not significant to the description of its position or forces applied to it) \rightarrow concentrated mass

Rigid body: a body with negligible deformation

1/3 Scalars and vectors

Scalars: only magnitude is associated
Ex. mass, volume, density, speed, length, angle

Vectors: magnitude and direction are important
Ex. Displacement, velocity, acceleration, force, moment

Vectors can be classified by the importance of their position

1. Free vector
2. Sliding vector
3. Fixed vector

1/3 Scalars and vectors

Free vector

Displacement of body moving without rotation

Sliding vector

Force acting on a rigid body

Fixed vector

The action of force on a deformable body

1/3 Scalars and vectors

Free vector

Displacement of body moving without rotation

Rigid body

Deformable body
The action of force on a deformable body

Vector basics (1)

- Representation

$$
\text { Vector }=\vec{V} \text { or } \mathbf{V}
$$

- Addition (parallelogram law)

Vector basics (2)

- Subtraction

- Basic relations

$$
V^{2}=V_{1}^{2}+V_{2}^{2}-2 V_{1} V_{2} \cos (\beta)
$$

$$
\frac{V_{2}}{\sin (\theta)}=\frac{V}{\sin (\beta)}
$$

Example (1)

Given: $V_{2}=12, V_{1}=10$ $\theta=30 \mathrm{deg}$

Find: V and β
cosine law $\quad V^{2}=V_{1}^{2}+V_{2}^{2}-2 V_{1} V_{2} \cos (\theta)$

$$
\begin{aligned}
& V^{2}=10^{2}+12^{2}-2(10)(12) \cos \left(30^{\circ}\right) \\
& V=6.013
\end{aligned}
$$

sine law

$$
\begin{aligned}
& \frac{V_{2}}{\sin \beta}=\frac{V}{\sin \theta} \quad \longrightarrow \quad \frac{12}{\sin \beta}=\frac{6.013}{\sin 30^{\circ}} \\
& \beta=86.26^{\circ}, 93.74^{\circ}
\end{aligned}
$$

Example (2)

Check by cosine law

$$
\begin{array}{ll}
\beta=86.26^{\circ} & \\
\text { cosine law } & 12^{2}=10^{2}+6.013^{2}-2(10)(6.013) \cos \left(86.26^{\circ}\right) \\
& 144 \neq 128 \\
\beta=93.74^{\circ} & \\
\text { cosine law } & 12^{2}=10^{2}+6.013^{2}-2(10)(6.013) \cos \left(93.74^{\circ}\right) \\
& 144=144 \longrightarrow
\end{array}
$$

$$
\therefore V=6.013, \beta=93.74^{\circ} \longrightarrow \underline{\text { Ans }}
$$

Vector basics (3)

- Components

Given V, θ and β, we have

Rectangular Components

$$
\begin{aligned}
& V_{x}=V \cos (\theta) \\
& V_{y}=V \sin (\theta)
\end{aligned}
$$

$$
V=\sqrt{V_{x}^{2}+V_{y}^{2}}
$$

$$
\theta=\tan ^{-1}\left(V_{y} / V_{x}\right)
$$

Vector basics (4)

Unit vector

$$
\vec{V}=V \hat{n}, \hat{n}=\underset{\text { unit vector; (magnitude }=1 \text {, same }}{\text { direction as } \vec{V} \text {) }}
$$

3D Rectangular component

$$
\begin{gathered}
\overrightarrow{\vec{V}}=V_{x} \hat{i}+V_{y} \hat{j}+V_{z} \hat{k} \\
V_{x}=V \cos \left(\theta_{x}\right) \\
V_{y}=V \cos \left(\theta_{y}\right) \\
V_{z}=V \cos \left(\theta_{z}\right) \\
V^{2}=V_{x}^{2}+V_{y}^{2}+V_{z}^{2} \\
1=\cos ^{2}\left(\theta_{x}\right)+\cos ^{2}\left(\theta_{y}\right)+\cos ^{2}\left(\theta_{z}\right)
\end{gathered}
$$

Newton's Laws (1)

Law 1

"A particle remains at rest or continues to move in a straight line with a uniform velocity if there is no unbalanced force acting on it."

$$
\vec{a}=0 \quad \Leftrightarrow \quad \sum \vec{F}=0
$$

Law 2

"The acceleration of a particle is proportional to the resultant force acting on it and is in the direction of this force."

$$
\sum \vec{F}=m \vec{a}
$$

Newton's Laws (2)

Law 3

"The force of action and reaction between interacting bodies are equal in magnitude, opposite in direction, and collinear."

Action $=$ Reaction

* Action and reaction are acting on different bodies.

