Bayesian spatial smoothing for prevalence data from complex samples

Thomas Lumley (Jon Wakefield, Cici Bauer)

2013-9-4

Motivating example

Postcode-level estimation of diabetes, obesity, etc, in Washington, USA, using data from Behavioral Risk Factor Surveillance System (BRFSS)

- ▶ Small area: 20% of zip codes have \leq 9 observations
- ► Complex sampling: weights vary by a factor of 5000

Want to use Bayesian spatial model, as standard for spatial risk smoothing, but account for sampling design.

Approximate (coarsened) likelihood for data

Sample size

Approximate likelihood

 \hat{p}_i is the (Hajék) estimator of prevalence p_i in zip code i, based on m observations

▶ define an effective sample size m_i^* and model

$$m^*\hat{p}_i \sim Binomial(m_i^*, p_i)$$

 $ightharpoonup m_i^*$ chosen to match sampling and Binomial variances

$$m_i^* \widehat{var}[\hat{p}_i] = \hat{p}_i(1 - \hat{p}_i)$$

- ► Has correct mean, variance, approximately correct skewness and discreteness
- cf Raghunathan et al (2007, JASA) using

$$\sin^{-1}\sqrt{\hat{p}_i}\sim N\left(\sin^{-1}\sqrt{p_i},rac{1}{4m_i^*}
ight)$$

But zeroes!

Problems if $\hat{p} = 0$ or $m_i < 2$.

For these areas only:

- ▶ Replace \hat{p}_i by unweighted empirical-Bayes estimator \tilde{p}_i in a Beta-Binomial model
- Use empirical-Bayes estimate based on Gamma model for residual sum of squares to get var[p̂]
- ▶ Or add a single pseudo-observation with weight chosen to make $\hat{p}_i = \tilde{p}_i$

Areas with $m_i = 0$ can be treated as missing data and a posterior distribution will automatically be generated.

Shrinkage model

Random effects for each small area, but no explicit spatial structure

$$\begin{array}{ccc} \mathrm{logit} p_i & \sim & \alpha + \epsilon_i \\ \epsilon_i & \sim_{iid} & \textit{N}(0, \sigma_\epsilon^2) \\ \alpha & \sim & \textit{flat} \end{array}$$

Can easily add other area-level covariates

Spatial model

Spatial model: random effects plus conditional autoregressive spatial term linking area i to its neighbours $\mathcal{N}(i)$

$$\begin{array}{ccc} \operatorname{logit} p_{i} & \sim & \alpha + \epsilon_{i} + U_{i} \\ \epsilon_{i} & \sim_{iid} & \mathsf{N}(0, \sigma_{\epsilon}^{2}) \\ U_{i} | U_{\mathcal{N}(i)} & \sim & \mathsf{N}\left(\bar{U}_{\mathcal{N}(i)}, \frac{\sigma^{2}}{|\mathcal{N}(i)|}\right) \\ \alpha & \sim & \mathit{flat} \end{array}$$

Again, easy to add more covariates

Computation: INLA

Accurate and faster ($\times 1000$) than MCMC, for models with latent Gaussian fields (η), small number of other parameters θ

- ▶ Gaussian approximation to $P(\eta|\theta, data)$ (optionally plus spline)
- Laplace approximation to $P(\theta|data)$
- Numerical quadrature for $P(\eta|data) = \int P(\eta|data, \theta)P(\theta|data) d\theta$

Heuristically, small-area data can't provide much information about shape of η distribution, so posterior is close to Gaussian.

[only gives marginal posteriors, so can't be used for ranking areas]

Simulations

Based on Washington BRFSS data, with varying spatial structure, calibration for non-response, calibration for age/sex.

Shows bias reduction compared to unweighted spatial smoothing, variance reduction compared to direct estimates, MSE reduction compared to both

Fewer outlying estimates than arcsin-sqrt approach

Adding covariates helps

Not as good as Bayesian smoothing adjusting for correctly-specified sampling model using design variables, if these are available.

BRFSS example: shrinkage and bias

Zero correction

BRFSS example: INLA vs MCMC

BRFSS example: impact of weights on spatial model

Posterior mean count of diabetes cases

Posterior SE of diabetes cases

Summary

- Approximate binomial likelihood allows simple use of standard Bayesian spatial models
- INLA fits the models well
- Reduces bias vs unweighted Bayesian model, variance vs unshrunk/nonspatial model
- Approximate binomial likelihood seems slightly better than approximate Normal likelihood
- ▶ Need to do ad hoc things to zeroes.