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Motivating example

Postcode-level estimation of diabetes, obesity, etc, in Washington,
USA, using data from Behavioral Risk Factor Surveillance System
(BRFSS)

» Small area: 20% of zip codes have < 9 observations

» Complex sampling: weights vary by a factor of 5000

Want to use Bayesian spatial model, as standard for spatial risk
smoothing, but account for sampling design.

» Approximate (coarsened) likelihood for data



Sample size
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Approximate likelihood

pi is the (Hajék) estimator of prevalence p; in zip code i, based on
m observations

» define an effective sample size m; and model
m*pj ~ Binomial(mj, p;)
» m; chosen to match sampling and Binomial variances
mj var[pj] = pi(1 — pi)

» Has correct mean, variance, approximately correct skewness
and discreteness

» cf Raghunathan et al (2007, JASA) using
1
sin 1 \/E ~ N (sin_1 VPi, *>

4m?



But zeroes!

Problems if p =0 or m; < 2.

For these areas only:
» Replace p; by unweighted empirical-Bayes estimator p; in a
Beta-Binomial model

» Use empirical-Bayes estimate based on Gamma model for
residual sum of squares to get var[p]
» Or add a single pseudo-observation with weight chosen to
make p; = pi
Areas with m; = 0 can be treated as missing data and a posterior
distribution will automatically be generated.



Shrinkage model

Random effects for each small area, but no explicit spatial structure

logitp; ~ a+¢€
e ~iig N(0,0?)
a ~ flat

Can easily add other area-level covariates



Spatial model

Spatial model: random effects plus conditional autoregressive
spatial term linking area i to its neighbours N (1)

logitp; ~ a+¢ 4+ U
¢ ~ig N(0,0?)

_ 0'2
. o~ N .
UilUn(iy (UN(m !N(i)|)

a ~ flat

Again, easy to add more covariates



Computation: INLA

Accurate and faster (x1000) than MCMC, for models with latent
Gaussian fields (n), small number of other parameters ¢

» Gaussian approximation to P(n|6, data) (optionally plus
spline)

> Laplace approximation to P(f|data)

» Numerical quadrature for
P(n|data) = | P(n|data,0)P(6|data) do

Heuristically, small-area data can’t provide much information about
shape of 7 distribution, so posterior is close to Gaussian.

[only gives marginal posteriors, so can't be used for ranking areas]



Simulations

Based on Washington BRFSS data, with varying spatial structure,
calibration for non-response, calibration for age/sex.

Shows bias reduction compared to unweighted spatial smoothing,
variance reduction compared to direct estimates, MSE reduction
compared to both

Fewer outlying estimates than arcsin-sqrt approach
Adding covariates helps

Not as good as Bayesian smoothing adjusting for correctly-specified
sampling model using design variables, if these are available.



example: shrinkage and bias
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/Zero correction
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BRFSS example: INLA vs

WinBUGS
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BRFSS example: impact of weights on spatial model
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Posterior mean count of diabetes cases

. » & \‘ - 9

i soal et ﬁ-,
AN RN

465 0 h"
Q%-%&;&x& e

O under 100

O 100- 500 o .‘Ei
8 500-1000 “1 » "{d ‘

= 105 B S %
H over 2000

T T
124 22 120 118



Posterior SE of diabetes cases
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Summary

» Approximate binomial likelihood allows simple use of standard
Bayesian spatial models

» INLA fits the models well

» Reduces bias vs unweighted Bayesian model, variance vs
unshrunk/nonspatial model

» Approximate binomial likelihood seems slightly better than
approximate Normal likelihood

> Need to do ad hoc things to zeroes.



