
EE531 (Semester II, 2010)

3. Correlation analysis

• Correlation and Covariance functions

• Analysis on LTI systems
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Correlation and Covariance

Suppose X,Y are random variables with means µx and µy resp.

Cross Correlation:
Rxy = E[XY ∗]

Cross Covariance:

Cxy = E [(X − µx)(Y − µy)
∗]

Autocorrelation:
R = E[XX∗]

Autocovariance:
C = E [(X − µx)(X − µx)

∗]

correlation = covariance when considering zero mean
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Correlation and Covariance functions

Suppose x(t), y(t) are random processes

Cross Correlation: Rxy(t1, t2) = Ex(t1)y(t2)
∗

Cross Covariance:

Cxy(t1, t2) = E [(x(t1)− µx(t1))(y(t2)− µy(t2))
∗]

where µx(t) = Ex(t) and µy(t) = E y(t)

Autocorrelation: R(t1, t2) = Ex(t1)x(t2)
∗

Autocovariance:

C(t1, t2) = E [(x(t1)− µ(t1))(x(t2)− µ(t2))
∗]
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Wide-sense stationary process

Strictly stationary process: the joint distribution is invariant with time

Weakly (wide-sense) stationary process:

1. Ex(t) = constant

2. R(t1, t2) = R(t1 − t2)

With wide-sense stationary assumption, the correlation function is given by

Rxy(τ) = Ex(t+ τ)y(t)∗

and the covariance function is simplified to

Cxy(τ) = Ex(t+ τ)y(t)∗ − µxµ
∗

y
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Example

Determine the mean and the autocorrelation of a random process

x(t) = A cos(ωt+ φ)

where the random variables A and φ are independent and φ is uniform on
(−π, π)

Since A and φ are independent, the mean is given by

Ex(t) = E[A]E[cos(ωt+ φ)]

Using the uniform distribution in φ, the last term is

E cos(ωt+ φ) =
1

2π

∫ π

−π

cos(ωt+ φ)dφ = 0

Therefore, Ex(t) = 0
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Example (cont.)

Using trigonometric identities, the autocorrelation is determined by

Ex(t1)x(t2) =
1

2
EA2

E[cosω(t1 − t2) + cos(ωt1 + ωt2 + 2φ)]

Since

E[cos(ωt1 + ωt2 + 2φ)] =
1

2π

∫ π

−π

cos(ωt1 + ωt2 + 2φ)dφ = 0

Therefore,
R(t1, t2) = (1/2)E[A2] cosω(t1 − t2)

We conclude that the random process in this example is wide-sense
stationary
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Connection with spectral density

Wiener-Khinchin theorem:

If a process is wide-sense stationary, the autocorrelation function and the
power spectral density form a Fourier transform pair:

S(ω) =

∫

∞

−∞

e−iωτR(τ)dτ Continuous

S(ω) =
k=∞
∑

k=−∞

R(k)e−iωk Discrete

Therfore, the autocorrelation function at τ = 0 indicates the average
power:

R(0) = E[x(t)x(t)∗] =
1

2π

∫

∞

−∞

S(ω)dω

(similarly, use discrete inverse Fourier transform for discrete systems)
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Properties of autocorrelation functions

• R(−t) = R(t)∗ (if the process is real and scalar, then R(−t) = R(t)

• Non-negativity: that is for any ai, aj ∈ Cn, with i, j = 1, . . . N , we have

N
∑

i

N
∑

j

a∗iR(i− j)aj ≥ 0,

which follows from

N
∑

i

N
∑

j

a∗iR(i−j)aj =
N
∑

i

N
∑

j

E[a∗ix(i)x(j)
∗aj] = E





(

N
∑

i

a∗ix(i)

)2


 ≥ 0.
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Correlation analysis

Consider a discrete LTI system with a disturbance v(t)

y(t) =

∞
∑

k=0

h(k)u(t− k) + v(t)

Assume u, v have zero mean and Eu(t)v(s)∗ = 0,∀t, s.

The correlation function is given by

Ryu(τ) = E y(t+ τ)u(t)∗ =

∞
∑

k=0

h(k)Ru(τ − k)

If u(t) is white noise (Ru(τ) = 0, τ 6= 0), it is simplified to

Ryu(k) = h(k)Ru(0)
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Correlation analysis (cont.)

Use finite approximation of Ryu(k) and Ru(0) to solve for h(k)

R̂yu(τ) =
1

N

N−τ
∑

t=1

y(t+ τ)u(t)∗, τ = 0, 1, 2, . . .

R̂uu(τ) =
1

N

N−τ
∑

t=1

u(t+ τ)u(t)∗, τ = 0, 1, 2, . . .

When u(t) is not exactly white

• filter both inputs and outputs that makes the input as white as possible

• truncate the impulse response at a certain order
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FIR model

Assume that
h(k) = 0, k > M

This is called a finite impulse respose (FIR) or a truncated weighting
function

The correlation equation becomes

Ryu(τ) =
M
∑

k=0

h(k)Ru(τ − k)

Writing out this equation for τ = 0, 1, . . . ,M gives a linear equation:









R∗

yu(0)
R∗

yu(1)
...

R∗

yu(M)









=









Ru(0) Ru(1) · · · Ru(M)
Ru(−1) Ru(0) · · · Ru(M − 1)

... ... . . . ...
Ru(−M) Ru(−M + 1) · · · Ru(0)

















h∗(0)
h∗(1)

...
h∗(M)








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Example with white noise input

Consider a scalar system

x(t) + ax(t− 1) = bu(t− 1), |a| < 1

y(t) = x(t) + v(t)

with a = 0.5, b = 5

Assume that u(t) and v(t) are independent white noise with variances
σ2

u = σ2

v = 0.1

The transfer function is

H(z) =
bz−1

1 + az−1
= b(z−1 − az−2 + a2z−3 − a3z−4 + . . .)

The impulse response is therefore given by

h(0) = 0, h(k) = b(−a)k−1, k ≥ 1
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Example with white noise input

The estimate of the impulse response is

ĥ(k) = R̂yu(k)/σ̂
2
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