0. Statistical Estimation

Conditional expectation
Mean square estimation
Maximum likelihood estimation

Maximum a posteriori estimation
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Conditional expectation

Let z,y be random variables with a joint density function f(x,y)

The conditional expectation of x given y is
Eloly) = [ of(sly)ds
where f(x|y) is the conditional density: f(x|y) = f(z,y)/f(y)

Facts:

e E[x|y] is a function of y
e E[E[z]y]] = E[z]

e For any scalar function g(y) such that E[|g(y)|] < oo,

E[(z — E[z|y])g(y)] =0

Statistical Estimation

9-2



Mean square estimation

Suppose x,y are random with a joint distribution

Problem: Find an estimate h(y) that minimizes the mean square error:
Elz — h(y)[’

Result: The optimal estimate in the mean square is the conditional mean:
h(y) = Elz]y]

Proof. Use the fact that  — E[x|y] is uncorrelated with any function of y

Ellz — h(y)|* = E ||z — Elz]y] + Elz]y] — h(y)|®
=E ||z — E[z|y][|* + E |[E[z|y] — h(y)|”

Hence, the error is minimized only when h(y) = E[x|y]
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Gaussian case: Let z,y are joinly Gaussian: (z,y) ~ N (u, C) where
p= , U= [ .
[“y] Coy Oy
The conditional density function of x given y is also Gaussian with
conditional mean
M|y = M + nycy_l(y - ,Lby),
and conditional covariance matrix
Cw|y =C, — nyCgJ_lC;y
Hence, for Gaussian distribution, the optimal mean square estimate is

E[z|y] = po + CoyCy ' (y — 11y),

The optimal estimate is linear in y
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Best linear unbiased estimate Now we restrict h(y) to be linear:

h(y) = Ky+c
In order h(y) to be unbiased, we must have
¢ = B[] - KE[y]
Define T = x — E[x| and § = y — Ely]
h(y) is then of the form

hy) = Ky + E[z]

The mean square error becomes

E|lz — h(y)|* = E||z — Ky||> = Etr(z — Ky)(z — Kg)*

=tr(C, — Cpy K — KCyy + KCy,K™)
where C;, Cy, C,,, are the covariance matrices
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Differentiating the objective w.r.t. K gives
Cry = KO,

This equation is referred as the Wiener-Hopf equation

Also obtain from the condition
E[(x —h(y)y'|=0 = E[@@-Kyg)y|=0

(the optimal residual is uncorrelated with the observation )

If Cy, is nonsingular, then K = nyCy_l

The best unbiased linear estimate is

h(y) = CuyC, H(y — Ely]) + Elz]

It coincides with the optimal mean square estimate for Gaussian RVs
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Minimizing the error covariance matrix

For any estimate h(y), the covariance matrix of the corresponding error is

E[(z = n(y))(z = h(y))]

The problem is to choose h(y) to yield the minimum covariance matrix

(instead of minimizing the mean square norm)

We compare two matrices by
M<N it M—N=<0

or M — N is nonpositive definite

Now restrict to the linear case:

h(y) = Ky +c
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The covariance matrix can be written as
(Ho — (Kpy +¢)(pa — (Kpy +¢))" + Cp — KCyp — Coy K™ + KCy K~
The objective is minimized w.r.t ¢ when
C= iy — Kpy

(same as the best unbiased linear estimate of the mean square error)

The covariance matrix of the error is reduced to
f(K)=C, — KCyy — nyK* + KCyK*

Note that f(K) > 0 because

o=t m e e
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Let K¢ be a solution to the Wiener-Hopf equation: Cy, = KoC,,

We can verify that
f(K) = f(Ko) + (K — Ko)Cy(K — Ko)”

so f(K) is minimized when K = K

The miminum covariance matrix Is

f(Kp) =C, — C:Cy(]y_l(};y

Note that suppose C' = [Cﬂ? Cflry]

e the minimum covariance matrix is the Schur complement of C, in C

e it is exactly the conditional covariance matrix for Gaussian variables
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Maximum likelihood estimation

e y = (y1,...,yn): the observations of random variables
e 0: unknown parameters to be estimated

e f(y|0): the probability density function of y for a fixed 6

In ML estimation, we assume 6 as fixed parameters

To estimate 6 from y, we maximize the density function for a given 6:

= argmax f(y|6)
Z

o f(y|0) is called the likelihood function

e () is chosen so that the observed y becomes “as likely as possible”
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Example 1 Estimate the mean and covariance matrix of Gaussian variables

Observe a sequence of independent random variables:

Yy, Yy2,..., YN

Each yy is multivariate Gaussian: yi ~ N (u, 3), but p, X are unknown
The likelihood function of y1,...,yxN for given p, X is

f(y17y27 SR 7ym‘:u7 E)

1 e : EN ( )" S )
p— . . X _ _ _

To maximize f, it is convenient to consider the log-likelihood function: (up
to a constant)

N
N _ 1 k —
L(p,2) = log f = - logdet I 1—53_1(%—#) S gk — 1)
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The loglikelihood is concave in ¥~ 1, 1, so the ML estimate satisfies the
zero gradient conditions:

oL NI 1%
o512 24

S DR
k=1
We obtain the ML estimate of u, > as
N | N
= v B = (e — )k — )"
k: k:l

® /i IS the sample mean

e .. is the (biased) sample covariance matrix
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Example 2 Linear measurements with |ID noise
Consider a linear measurement model
y = A0 +v
6 € R" is parameter to be estimated

y € R™ is the measurement
v € R"™ is IID noise

(v; are independent, identically distributed) with density f,

The density function of y — A6 is therefore the same as v:

f(yl0) = H (yx — a0

where aj are the columns of A

The ML estimate of # depends on the noise distribution f,
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Suppose v, is Gaussian with zero mean and variance o

The loglikelihood function is

1 m
L(0) =log f = —(m/2) log(27m0) —2—; yr — ag,0)?

Therefore the ML estimate of @ is

0

argmin || A0 — y/|3
0

The solution of a least-squares problem

what about other distributions of vy ?
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Maximum a posteriori (MAP) estimation

Assume that 6 is a random variable
¢ and y has a joint distribution f(y,6)

In the MAP estimation, our estimate of 6 is given by
0 = argmax fo1y(0,y)

® fg|y is called the posterior density of 6
e fg, represents our knowledge of 6 after we observe y

e The MAP estimate is the value that maximizes the conditional density
of 0, give the observed y
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From Bayes rule, the MAP estimate is also obtained by

= argmax fy10(y,0)fo(0)

Taking logarithms, we can express 0 as

0 = argmax log fyjo(y, 0) + log fo(0)

e The only difference between ML and MAP estimate is the term fy(6)
e fy is called the prior density, representing prior knowledge about 6

e log f9(#) penalizes choices of # that are unlikely to happen

Under what condition on fy is the MAP estimate identical to the ML
estimate 7
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Example: Linear measurement with |ID noise
Use the model in page 9-13 and @ has prior density fy on R"”

The MAP estimate can be found by solving

maximize log fo(0) + Zlog folyx — a; 0)

Suppose 0 ~ N (0, BI) and v ~ N(0,0), the MAP estimation is

1 1
maximize — BH@H% — ?”AH Ik

The MAP estimate with a Guassian prior is the solution to a least-squares
problem with /5 regularization

what if # has a Laplacian distribution 7
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Cramér-Rao inequality

For any unbiased estimator § with the covariance matrix of the error:

A A

cov(f) = E(0 — 0)(0 — 0)*,

we always have a lower bound on cov(#):

cov () = [E(Valog f(y]0))*(Velog f(y6))] " = — [EV3log f(y]6)]

e f(y|0) is the density function of observations y for a given 6

e the RHS is called the Cramér-Rao lower bound

e provide the minimal covariance matrix over all possible estimators 0
e J=EV2log f(y|f) is called the Fisher information matrix

e an estimator for which the equality holds is called efficient
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Proof of the Cramér-Rao inequality
As f(y|0) is a density function and 6 is unbiased, we have
L= [ sGlovdn. 6= [ o) rio)dy

Differentiate of the above equations and use Vylog f(y|0) = v?{y(%l)é)

0= / Volog f(y10)f (yl0)dy, 1= / B(y) Vo log f(y16) £ (419)dy

These two identities can be expressed as

B |(0(y) - 6)Volog f(yl6)] = I
(E is taken w.r.t y, and 0 is fixed)
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Consider a positive semidefinite matrix

O(y) — 0 oy)—0 |
N [(Velogf(yW))*] [(Velogf(yW))*] =9

Expand the product and this matrix is of the form
A T
I D

where A = E(0(y) — 0)((y) — 0)* and

D =E(Vylog f(y|0))"(Velog f(y]0))

Use the fact that its Schur complement of the (1, 1) block must be

nonnegative:
A—ID'T =0

This implies the Cramér Rao inequality
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Now it remains to show that

E(Volog f(y10))*(Velog f(y]0)) = — E Vi log f(y|0)

From the equation

0— / Vo log £ (y10) £ (410)dy.

differentiation on both sides gives

0= / V3 log £(416) (y16)dy + / Vo log £(416)"Volog £(410)F(y]6)dy

or

—E[Vjlog f(y|0)] = E[Vglog f(y|0)*Velog f(y|6)]
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Example of computing the Cramér Rao bound

Revisit a linear model with correlated Gaussian noise:
y=A0+v, v~N(0,X), X isknown

The density function f(y|0) is given by f,(y — Af) which is Gaussian

1 1
log f(y]6) = —5(y — A6)"= ™ (y — A9) - % log(2m) — 5 log det

Vo log f(yl0) = (y — A9)"2 A
Vilog f(yld) = —A*S" 1A

Hence, for any unbiased estimate 0,

cov(h) = (A*=1A)!
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Linear models with additive noise
We estimate parameters in a linear model with addtive noise:

y=A0+v, v~N(0,X), X isknown
We explore several estimates from the following approaches

e do not use information about the noise
— Least-squares estimate (LS)
e use information about the noise (Guassian distribution, 33)

— Assume 6 is a fixed parameter
* Weighted least-squares estimate (WLS)
+ Best linear unbiased estimate (BLUE)
* Maximum likelihood estimate (ML)

— Assume 6 is random and 6 ~ N (0, A)
* Least mean square estimate (LMS)
* Maximum a posteriori estimate (MAP)
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Least-squares: 0, = (A*A)~'A*y and is unbiased
cov(fis) = cov((A*A) " A*) = (A*A) A TA(A*A) !

We can verifty that cov(éls) = (A*X1A)

(The error covariance matrix is bigger than the CR bound)

However the bound is tight when the noise covariance is diagonal:
Y =0l
(the noise vy are uncorrelated)
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Weighted least-squares: For a given weight matrix W > 0

Owis = (A*WA) "' A*Wy, and is unbiased

cov(by1s) = cov((A*WA) A W)
= (A" WA) T TA WEWAA* WA) ™

cov (Oyis) attains the minimum (the CR bound) when W = £~1
Ouis = (A*S71A) LAYy
We also have seen that in this case

Hblue — QWIS

(for Gaussian, the best linear estimate is also the best among nonlinear
estimates)
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Maximum likelihood

From f(y|0) = f.(y — A0),

m 1 1 e
log f(yl0) = —Elog(Zﬂ) — ilog det > — i(y — A0)*S " (y — AF)

The zero gradient condition gives
Volog f(ylf) = (y — AG)* 2T A =0

Ot = (A*S71A)71A*S Yy
Omi is also efficient (achieves the minimum covariance matrix)

A

9m1 — ewls — eblue
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Least mean square estimate Assume 6 is random and independent of v
Moreover, we assume 6 ~ N (0, A)

Hence, 6 and y are jointly Gaussian with zero mean and the covariance
matrix
(8 @-[4 uis
oy Cuy AN ANA* + X

élms is essentially the conditional mean which can be computed readily for
Gaussian distribution

élms — E[e‘y] — CHyCy_yly
= AA*(AAA* + %)y

Alternatively, we can claim that E[f|y] is a linear function of y (because

0,y are Gaussian)
Oims = Ky

and K can be computed from the Wiener-Hopf equation
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Maximum a posteriori Assume 6 is random and independent of v
and assume 6 ~ N(0, A)
The MAP estimate can be found by solving

A

Omap = argmax log f(0|y) = argmax log f(y|f) + log f(0)
0 0
Without having to solve this problem, it is immediate that
émap — élms

since for Gaussian density function, E[f|y] maximizes f(0|y)

Nevertheless, we can write down the posteriori density function

1 1 N
log f(y|0) = —§logdet2 — §(y — AD)*S 7 (y — AB)

1 1
log f(0) = —§log det A — 59*[\9

(these terms are up to a constant)
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The MAP estimate satisfies the zero gradient (w.r.t. #) condition:
—(y —A9)*T A+ AT =0

which gives )
Omap = (A*TTA+ AHTTA*S Yy

A

® Omap Is clearly similar to éml except the extra term A~!
e when A = oo or maximum ignorance, it reduces to ML estimate

e from élms = émap, it is interesting to verify

AA*(AAA* +3) Ly = (A*S 1A+ A1) 1A' s 1y
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Define H = (AAA* + X))~y and we have
AANA"H +XH =y
We start with the expression of élms

s = AA*(ANA* +3) 1y = AA*H
Al = AMNA*H =y — S H
AA*Y P AO s = ANA*YS 1y — AAYH
= AA*S 1y — O
(I +AA* ST A = AA*S ™y
(A7 4+ A2 A) 0 = A Yy
Oims = (A1 + A*S 1A 1A S 1y 2 0,00
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To compute the covariance matrix of the error, we use Op., = E[0]y]

coV(Omap) = E[(0 — E[0|y]) (0 — E[0]y])"]

Use the fact that the optimal residual is uncorrelated with y

A

coV (Omap) = E[(6 — E[0]y])07]

Next Omap = E[f]y] is a linear function in y

A

OV (Omap) = Cg — KCyg = A — (A*S 1A+ A1 T A"~ AA
— (A*% 1A+A hy- 1[ STTA4+ATHA — A*SAA]
— (AT TTA+ AT =2 (A Ay

A

Omap Yyields a smaller covariance matrix than 0., as it should be

(ML does not use a prior knowledge about 6)
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