
EE531 (Semester II, 2010)

9. Statistical Estimation

• Conditional expectation

• Mean square estimation

• Maximum likelihood estimation

• Maximum a posteriori estimation
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Conditional expectation

Let x, y be random variables with a joint density function f(x, y)

The conditional expectation of x given y is

E[x|y] =

∫

xf(x|y)dx

where f(x|y) is the conditional density: f(x|y) = f(x, y)/f(y)

Facts:

• E[x|y] is a function of y

• E[E[x|y]] = E[x]

• For any scalar function g(y) such that E[|g(y)|] < ∞,

E [(x−E[x|y])g(y)] = 0
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Mean square estimation

Suppose x, y are random with a joint distribution

Problem: Find an estimate h(y) that minimizes the mean square error:

E‖x− h(y)‖2

Result: The optimal estimate in the mean square is the conditional mean:

h(y) = E[x|y]

Proof. Use the fact that x−E[x|y] is uncorrelated with any function of y

E‖x− h(y)‖2 = E ‖x−E[x|y] +E[x|y]− h(y)‖2

= E ‖x−E[x|y]‖2 +E ‖E[x|y]− h(y)‖2

Hence, the error is minimized only when h(y) = E[x|y]
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Gaussian case: Let x, y are joinly Gaussian: (x, y) ∼ N (µ,C) where

µ =

[

µx

µy

]

, C =

[

Cx Cxy

C∗
xy Cy

]

The conditional density function of x given y is also Gaussian with
conditional mean

µx|y = µx + CxyC
−1
y (y − µy),

and conditional covariance matrix

Cx|y = Cx − CxyC
−1
y C∗

xy

Hence, for Gaussian distribution, the optimal mean square estimate is

E[x|y] = µx + CxyC
−1
y (y − µy),

The optimal estimate is linear in y
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Best linear unbiased estimate Now we restrict h(y) to be linear:

h(y) = Ky + c

In order h(y) to be unbiased, we must have

c = E[x]−KE[y]

Define x̃ = x−E[x] and ỹ = y −E[y]

h(y) is then of the form

h(y) = Kỹ +E[x]

The mean square error becomes

E‖x− h(y)‖2 = E‖x̃−Kỹ‖2 = Etr(x̃−Kỹ)(x̃−Kỹ)∗

= tr(Cx − CxyK
∗ −KCyx +KCyK

∗)

where Cx, Cy, Cxy are the covariance matrices
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Differentiating the objective w.r.t. K gives

Cxy = KCy

This equation is referred as the Wiener-Hopf equation

Also obtain from the condition

E[(x− h(y))y∗] = 0 ⇒ E[(x̃−Kỹ)ỹ∗] = 0

(the optimal residual is uncorrelated with the observation y)

If Cy is nonsingular, then K = CxyC
−1
y

The best unbiased linear estimate is

h(y) = CxyC
−1
y (y −E[y]) +E[x]

It coincides with the optimal mean square estimate for Gaussian RVs
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Minimizing the error covariance matrix

For any estimate h(y), the covariance matrix of the corresponding error is

E [(x− h(y))(x− h(y))∗]

The problem is to choose h(y) to yield the minimum covariance matrix

(instead of minimizing the mean square norm)

We compare two matrices by

M � N if M −N � 0

or M −N is nonpositive definite

Now restrict to the linear case:

h(y) = Ky + c
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The covariance matrix can be written as

(µx − (Kµy + c))(µx − (Kµy + c))∗ + Cx −KCyx − CxyK
∗ +KCyK

∗

The objective is minimized w.r.t c when

c = µx −Kµy

(same as the best unbiased linear estimate of the mean square error)

The covariance matrix of the error is reduced to

f(K) = Cx −KCyx − CxyK
∗ +KCyK

∗

Note that f(K) � 0 because

f(K) =
[

−I K
]

[

Cx Cxy

C∗
xy Cy

] [

−I
K∗

]

Statistical Estimation 9-8



Let K0 be a solution to the Wiener-Hopf equation: Cxy = K0Cy

We can verify that

f(K) = f(K0) + (K −K0)Cy(K −K0)
∗

so f(K) is minimized when K = K0

The miminum covariance matrix is

f(K0) = Cx − CxyC
−1
y C∗

xy

Note that suppose C =

[

Cx Cxy

C∗
xy Cy

]

• the minimum covariance matrix is the Schur complement of Cx in C

• it is exactly the conditional covariance matrix for Gaussian variables
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Maximum likelihood estimation

• y = (y1, . . . , yN): the observations of random variables

• θ: unknown parameters to be estimated

• f(y|θ): the probability density function of y for a fixed θ

In ML estimation, we assume θ as fixed parameters

To estimate θ from y, we maximize the density function for a given θ:

θ̂ = argmax
θ

f(y|θ)

• f(y|θ) is called the likelihood function

• θ is chosen so that the observed y becomes “as likely as possible”
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Example 1 Estimate the mean and covariance matrix of Gaussian variables

Observe a sequence of independent random variables:

y1, y2, . . . , yN

Each yk is multivariate Gaussian: yk ∼ N (µ,Σ), but µ,Σ are unknown

The likelihood function of y1, . . . , yN for given µ,Σ is

f(y1, y2, . . . , ym|µ,Σ)

=
1

(2π)N/2
·

1

|Σ|N/2
· exp−

1

2

N
∑

k=1

(yk − µ)∗Σ−1(yk − µ)

To maximize f , it is convenient to consider the log-likelihood function: (up
to a constant)

L(µ,Σ) = log f =
N

2
log detΣ−1 −

1

2

N
∑

k=1

(yk − µ)∗Σ−1(yk − µ)
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The loglikelihood is concave in Σ−1, µ, so the ML estimate satisfies the
zero gradient conditions:

∂L

∂Σ−1
=

NΣ

2
−

1

2

N
∑

k=1

(yk − µ)(yk − µ)∗ = 0

∂L

∂µ
=

N
∑

k=1

Σ−1(yk − µ) = 0

We obtain the ML estimate of µ,Σ as

µ̂ =
1

N

N
∑

k=1

yk, Σ =
1

N

N
∑

k=1

(yk − µ̂)(yk − µ̂)∗

• µ̂ml is the sample mean

• Σ̂ml is the (biased) sample covariance matrix
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Example 2 Linear measurements with IID noise

Consider a linear measurement model

y = Aθ + v

θ ∈ Rn is parameter to be estimated
y ∈ Rm is the measurement
v ∈ Rm is IID noise

(vi are independent, identically distributed) with density fv

The density function of y −Aθ is therefore the same as v:

f(y|θ) =
m
∏

k=1

fv(yk − aTk θ)

where ak are the columns of A

The ML estimate of θ depends on the noise distribution fv
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Suppose vk is Gaussian with zero mean and variance σ

The loglikelihood function is

L(θ) = log f = −(m/2) log(2πσ)−
1

2σ2

m
∑

k=1

(yk − aTk θ)
2

Therefore the ML estimate of θ is

θ̂ = argmin
θ

‖Aθ − y‖22

The solution of a least-squares problem

what about other distributions of vk ?
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Maximum a posteriori (MAP) estimation

Assume that θ is a random variable

θ and y has a joint distribution f(y, θ)

In the MAP estimation, our estimate of θ is given by

θ̂ = argmax
θ

fθ|y(θ, y)

• fθ|y is called the posterior density of θ

• fθ|y represents our knowledge of θ after we observe y

• The MAP estimate is the value that maximizes the conditional density
of θ, give the observed y
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From Bayes rule, the MAP estimate is also obtained by

θ̂ = argmax
θ

fy|θ(y, θ)fθ(θ)

Taking logarithms, we can express θ̂ as

θ̂ = argmax
θ

log fy|θ(y, θ) + log fθ(θ)

• The only difference between ML and MAP estimate is the term fθ(θ)

• fθ is called the prior density, representing prior knowledge about θ

• log fθ(θ) penalizes choices of θ that are unlikely to happen

Under what condition on fθ is the MAP estimate identical to the ML
estimate ?
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Example: Linear measurement with IID noise

Use the model in page 9-13 and θ has prior density fθ on Rn

The MAP estimate can be found by solving

maximize log fθ(θ) +
m
∑

k=1

log fv(yk − aTk θ)

Suppose θ ∼ N (0, βI) and vk ∼ N (0, σ), the MAP estimation is

maximize −
1

β
‖θ‖22 −

1

σ2
‖Aθ − y‖22

The MAP estimate with a Guassian prior is the solution to a least-squares
problem with ℓ2 regularization

what if θ has a Laplacian distribution ?
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Cramér-Rao inequality

For any unbiased estimator θ̂ with the covariance matrix of the error:

cov(θ̂) = E(θ − θ̂)(θ − θ̂)∗,

we always have a lower bound on cov(θ̂):

cov(θ̂) � [E(∇θ log f(y|θ))
∗(∇θ log f(y|θ))]

−1
= −

[

E∇2
θ log f(y|θ)

]−1

• f(y|θ) is the density function of observations y for a given θ

• the RHS is called the Cramér-Rao lower bound

• provide the minimal covariance matrix over all possible estimators θ̂

• J , E∇2
θ log f(y|θ) is called the Fisher information matrix

• an estimator for which the equality holds is called efficient
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Proof of the Cramér-Rao inequality

As f(y|θ) is a density function and θ̂ is unbiased, we have

1 =

∫

f(y|θ)dy, θ =

∫

θ̂(y)f(y|θ)dy

Differentiate of the above equations and use ∇θ log f(y|θ) =
∇θf(y|θ)
f(y|θ)

0 =

∫

∇θ log f(y|θ)f(y|θ)dy, I =

∫

θ̂(y)∇θ log f(y|θ)f(y|θ)dy

These two identities can be expressed as

E

[

(θ̂(y)− θ)∇θ log f(y|θ)
]

= I

(E is taken w.r.t y, and θ is fixed)
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Consider a positive semidefinite matrix

E

[

θ̂(y)− θ
(∇θ log f(y|θ))

∗

] [

θ̂(y)− θ
(∇θ log f(y|θ))

∗

]∗

� 0

Expand the product and this matrix is of the form

[

A I
I D

]

where A = E(θ̂(y)− θ)(θ̂(y)− θ)∗ and

D = E(∇θ log f(y|θ))
∗(∇θ log f(y|θ))

Use the fact that its Schur complement of the (1, 1) block must be
nonnegative:

A− ID−1I � 0

This implies the Cramér Rao inequality
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Now it remains to show that

E(∇θ log f(y|θ))
∗(∇θ log f(y|θ)) = −E∇2

θ log f(y|θ)

From the equation

0 =

∫

∇θ log f(y|θ)f(y|θ)dy,

differentiation on both sides gives

0 =

∫

∇2
θ log f(y|θ)f(y|θ)dy +

∫

∇θ log f(y|θ)
∗∇θ log f(y|θ)f(y|θ)dy

or
−E[∇2

θ log f(y|θ)] = E[∇θ log f(y|θ)
∗∇θ log f(y|θ)]
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Example of computing the Cramér Rao bound

Revisit a linear model with correlated Gaussian noise:

y = Aθ + v, v ∼ N (0,Σ), Σ is known

The density function f(y|θ) is given by fv(y −Aθ) which is Gaussian

log f(y|θ) = −
1

2
(y −Aθ)∗Σ−1(y −Aθ)−

m

2
log(2π)−

1

2
log detΣ

∇θ log f(y|θ) = (y − Aθ)∗Σ−1A

∇2
θ log f(y|θ) = −A∗Σ−1A

Hence, for any unbiased estimate θ̂,

cov(θ̂) � (A∗Σ−1A)−1
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Linear models with additive noise

We estimate parameters in a linear model with addtive noise:

y = Aθ + v, v ∼ N (0,Σ), Σ is known

We explore several estimates from the following approaches

• do not use information about the noise

– Least-squares estimate (LS)

• use information about the noise (Guassian distribution, Σ)

– Assume θ is a fixed parameter
∗ Weighted least-squares estimate (WLS)
∗ Best linear unbiased estimate (BLUE)
∗ Maximum likelihood estimate (ML)

– Assume θ is random and θ ∼ N (0,Λ)
∗ Least mean square estimate (LMS)
∗ Maximum a posteriori estimate (MAP)
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Least-squares: θ̂ls = (A∗A)−1A∗y and is unbiased

cov(θ̂ls) = cov((A∗A)−1A∗v) = (A∗A)−1A∗ΣA(A∗A)−1

We can verifty that cov(θ̂ls) � (A∗Σ−1A)−1

(The error covariance matrix is bigger than the CR bound)

However the bound is tight when the noise covariance is diagonal:

Σ = σ2I

(the noise vk are uncorrelated)
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Weighted least-squares: For a given weight matrix W ≻ 0

θ̂wls = (A∗WA)−1A∗Wy, and is unbiased

cov(θ̂wls) = cov((A∗WA)−1A∗Wv)

= (A∗WA)−1A∗WΣWA(A∗WA)−1

cov(θ̂wls) attains the minimum (the CR bound) when W = Σ−1

θ̂wls = (A∗Σ−1A)−1A∗Σ−1y

We also have seen that in this case

θ̂blue = θ̂wls

(for Gaussian, the best linear estimate is also the best among nonlinear
estimates)
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Maximum likelihood

From f(y|θ) = fv(y −Aθ),

log f(y|θ) = −
m

2
log(2π)−

1

2
log detΣ−

1

2
(y −Aθ)∗Σ−1(y −Aθ)

The zero gradient condition gives

∇θ log f(y|θ) = (y − Aθ)∗Σ−1A = 0

θ̂ml = (A∗Σ−1A)−1A∗Σ−1y

θ̂ml is also efficient (achieves the minimum covariance matrix)

θ̂ml = θ̂wls = θ̂blue
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Least mean square estimate Assume θ is random and independent of v

Moreover, we assume θ ∼ N (0,Λ)

Hence, θ and y are jointly Gaussian with zero mean and the covariance
matrix

C =

[

Cθ Cθy

C∗
θy Cyy

]

=

[

Λ ΛA∗

AΛ AΛA∗ +Σ

]

θ̂lms is essentially the conditional mean which can be computed readily for
Gaussian distribution

θ̂lms = E[θ|y] = CθyC
−1
yy y

= ΛA∗(AΛA∗ +Σ)−1y

Alternatively, we can claim that E[θ|y] is a linear function of y (because
θ, y are Gaussian)

θ̂lms = Ky

and K can be computed from the Wiener-Hopf equation
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Maximum a posteriori Assume θ is random and independent of v

and assume θ ∼ N (0,Λ)

The MAP estimate can be found by solving

θ̂map = argmax
θ

log f(θ|y) = argmax
θ

log f(y|θ) + log f(θ)

Without having to solve this problem, it is immediate that

θ̂map = θ̂lms

since for Gaussian density function, E[θ|y] maximizes f(θ|y)

Nevertheless, we can write down the posteriori density function

log f(y|θ) = −
1

2
log detΣ−

1

2
(y − Aθ)∗Σ−1(y − Aθ)

log f(θ) = −
1

2
log detΛ−

1

2
θ∗Λθ

(these terms are up to a constant)
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The MAP estimate satisfies the zero gradient (w.r.t. θ) condition:

−(y −Aθ)∗Σ−1A+ θ∗Λ−1 = 0

which gives
θ̂map = (A∗Σ−1A+ Λ−1)−1A∗Σ−1y

• θ̂map is clearly similar to θ̂ml except the extra term Λ−1

• when Λ = ∞ or maximum ignorance, it reduces to ML estimate

• from θ̂lms = θ̂map, it is interesting to verify

ΛA∗(AΛA∗ +Σ)−1y = (A∗Σ−1A+ Λ−1)−1A∗Σ−1y
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Define H = (AΛA∗ + Σ)−1y and we have

AΛA∗H +ΣH = y

We start with the expression of θ̂lms

θ̂lms = ΛA∗(AΛA∗ +Σ)−1y = ΛA∗H

Aθ̂lms = AΛA∗H = y − ΣH

ΛA∗Σ−1Aθlms = ΛA∗Σ−1y − ΛA∗H

= ΛA∗Σ−1y − θ̂lms

(I + ΛA∗Σ−1A)θ̂lms = ΛA∗Σ−1y

(Λ−1 + A∗Σ−1A)θ̂lms = A∗Σ−1y

θ̂lms = (Λ−1 +A∗Σ−1A)−1A∗Σ−1y , θ̂map
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To compute the covariance matrix of the error, we use θ̂map = E[θ|y]

cov(θ̂map) = E [(θ −E[θ|y])(θ −E[θ|y])∗]

Use the fact that the optimal residual is uncorrelated with y

cov(θ̂map) = E [(θ −E[θ|y])θ∗]

Next θ̂map = E[θ|y] is a linear function in y

cov(θ̂map) = Cθ −KCyθ = Λ− (A∗Σ−1A+ Λ−1)−1A∗Σ−1AΛ

= (A∗Σ−1A+ Λ−1)−1
[

(A∗Σ−1A+ Λ−1)Λ−A∗Σ−1AΛ
]

= (A∗Σ−1A+ Λ−1)−1 � (A∗Σ−1A)−1

θ̂map yields a smaller covariance matrix than θ̂ml as it should be

(ML does not use a prior knowledge about θ)
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