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12. Instrumental variable methods (IVM)

• Review on the least-squares method

• Description of IV methods

• Choice of Instruments

• Extended IV methods
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Revisit the LS method

Using linear regression in dynamic models (SISO)

A(q−1)y(t) = B(q−1)u(t) + ν(t)

where ν(t) denotes the equation error

A(q−1) = 1 + a1q
−1 + . . .+ anaq

−na, B(q−1) = b1q
−1 + . . .+ bnb

q−nb

We can write the dynamic as

y(t) = H(t)θ + ν(t)

where

H(t) =
[
−y(t− 1) . . . −y(t− na) u(t− 1) . . . u(t− nb)

]

θ =
[
a1 . . . ana b1 . . . bnb

]
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The least-squares solution is the value of θ̂ that minimizes

1

N

N∑

t=1

‖ν(t)‖2

and is given by

θ̂ls =

(

1

N

N∑

t=1

H(t)∗H(t)

)−1(

1

N

N∑

t=1

H(t)∗y(t)

)

To examine if θ̂ is consistent (θ̂ → θ as N → ∞), note that

θ̂ls − θ =

(

1

N

N∑

t=1

H(t)∗H(t)

)−1{

1

N

N∑

t=1

H(t)∗y(t)−

(

1

N

N∑

t=1

H(t)∗H(t)

)

θ

}

=

(

1

N

N∑

t=1

H(t)∗H(t)

)−1(

1

N

N∑

t=1

H(t)∗ν(t)

)
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Hence, θ̂ls is consistent if

• E[H(t)∗H(t)] is nonsingular
satisfied in most cases, except u is not persistently exciting of order nb,
etc.

• E[H(t)∗ν(t)] = 0
not satisfied in most cases, except ν(t) is white noise

Summary:

• LS method for dynamical models is still certainly simple to use

• consistency is not readily obtained since the information matrix (H) is
no longer deterministic

• it gives consistent estimates under restrictive conditions

To obtain consistency of the estimates, we modify the normal equation so
that the output and the disturbance become uncorrelated
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Solutions:

• PEM (Prediction error methods)

– model the noise

– applicable to general model structures

– generally very good properties of the estimates

– computationally quite demanding

• IVM (Instrumental variable methods)

– do not model the noise

– retain the simple LS structure

– simple and computationally efficient approach

– consistent for correlated noise

– less robust and statistically less effective than PEM
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Description of IVM

Define Z(t) ∈ Rnθ with entries uncorrelated with ν(t)

1

N

N∑

t=1

Z(t)∗ν(t) =
1

N

N∑

t=1

Z∗(t)[y(t)−H(t)θ] = 0

The basic IV estimate of θ is given by

θ̂ =

(

1

N

N∑

t=1

Z(t)∗H(t)

)−1(

1

N

N∑

t=1

Z(t)∗y(t)

)

provided that the inverse exists

• Z(t) is called the instrument and is up to user’s choice

• if Z(t) = H(t), the IV estimate reduces to the LS estimate
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Choice of instruments

The instruments Z(t) have to be chosen such that

• Z(t) is uncorrelated with noise ν(t)

EZ(t)∗ν(t) = 0

• The matrix
1

N

N∑

t=1

Z(t)∗H(t) → EZ(t)∗H(t)

has full rank

In other words, Z(t) and H(t) are correlated
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One possibility is to choose

Z(t) =
[
−η(t− 1) . . . −η(t− na) u(t− 1) . . . u(t− nb)

]

where the signal η(t) is obtained by filtering the input,

C(q−1)η(t) = D(q−1)u(t)

Special choices:

• let C,D be a prior estimates of A and B

• pick C(q−1) = 1, D(q−1) = −q−nb and Z(t) becomes

Z(t) =
[
u(t− 1) . . . u(t− na − nb)

]

(with a reordering of Z(t))

Note that u(t) and the noise ν(t) are assumed to be independent
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Example via Yule-Walker equations

Consider a scalar ARMA process:

A(q−1)y(t) = C(q−1)e(t)

y(t) + a1y(t− 1) + . . .+ apy(t− p) = e(t) + c1e(t− 1) + . . .+ cre(t− r)

where e(t) is white noise with zero mean and variance λ2

Define Rk = E y(t)y(t− k)∗

Taking the expectation with y(t− k) on both sides gives

Rk + a1Rk−1 + . . .+ apRk−p = 0, k = r + 1, r + 2, . . .

where we have used EC(q−1)e(t)y(t− k)∗ = 0, , k > r

This is referred to as Yule-Walker equations
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Enumerate from k = r + 1, . . . , r +m, where m ≥ p,

the Yule-Walker equations can be fit into a matrix form







Rr Rr−1 . . . Rr+1−p

Rr+1 Rr . . . Rr+2−p
... ... ...

Rr+m−1 Rr+m−2 . . . Rr+m−p













a1
a2
...
ap






= −







Rr+1

Rr+2
...

Rr+m






, Rθ = −r

R and r are typically replaced by their sample esimates:

R̂ =
1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)




[
y(t− 1) . . . y(t− p)

]

r̂ =
1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)



 y(t)
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Hence R̂θ̂ = −r̂ is equivalent to

1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)





︸ ︷︷ ︸

Z(t)∗

[
−y(t− 1) . . . −y(t− p)

]

︸ ︷︷ ︸

H(t)

=
1

N

N∑

t=1





y(t− r − 1)
...

y(t− r −m)



 y(t)

This is the relationship in basic IVM

1

N

N∑

t=1

Z(t)∗H(t)θ =
1

N

N∑

t=1

Z(t)∗y(t)

where we use the delayed output as an instrument

Z(t) =
[
−y(t− r − 1) y(t− r − 2) . . . y(t− r −m)

]T
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Extended IV methods

The extended IV method is to generalize the basic IV in two directions:

• allow Z(t) to have more elements than θ (nz ≥ nθ)

• use prefiltered data

and the extended IV estimate of θ is obtained by

min
θ

∥
∥
∥
∥
∥

N∑

t=1

Z(t)∗F (q−1)(y(t)−H(t)θ)

∥
∥
∥
∥
∥

2

W

where ‖x‖2W = x∗Wx and W ≻ 0 is given

when F (q−1) = I, nz = nθ,W = I , we obtain the basic IV estimate
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Define

AN =
1

N

N∑

t=1

Z(t)∗F (q−1)H(t)

bN =
1

N

N∑

t=1

Z(t)∗F (q−1)y(t)

then θ̂ is obtained by

θ̂ = argmin
θ

‖bN −ANθ‖2W

This is a weighted least-squares problem

The solution is given by

θ̂ = (A∗

NWAN)−1A∗

NWbN

note that this expression is only of theoretical interest
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Theoretical analysis

Assumptions:

1. The system is strictly causal and asymptotically stable

2. The input u(t) is persistently exciting of a sufficiently high order

3. the disturbance ν(t) is a stationary stochastic process with rational
spectral density,

ν(t) = G(q−1)e(t),E e(t)2 = λ2

4. The input and the disturbance are independent

5. The model and the true system have the same transfer function if and
only if θ̂ = θ (uniqueness)

6. The instruments and the disturbances are uncorrelated
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From the system description

y(t) = H(t)θ + ν(t)

we have

bN =
1

N

N∑

t=1

Z(t)∗F (q−1)y(t)

=
1

N

N∑

t=1

Z(t)∗F (q−1)H(t)θ +
1

N

N∑

t=1

Z(t)∗F (q−1)ν(t)

, ANθ + qN

Thus,

θ̂ − θ = (A∗

NWAN)−1A∗

NWbN − θ = (A∗

NWAN)−1A∗

NWqN
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As N → ∞,

(A∗

NWAN)−1A∗

NWqN → (A∗WA)−1A∗Wq

where

A , lim
N→

AN = E[Z(t)∗F (q−1)H(t)]

q , lim
N→

qN = E[Z(t)∗F (q−1)ν(t)]

Hence, the IV estimate is consistent (limN→∞ θ̂ = θ) if

• A has full rank

• E[Z(t)∗F (q−1)ν(t)] = 0
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Numerical example

The true system is given by

(1−1.5q−1+0.7q−2)y(t) = (1.0q−1+0.5q−2)u(t)+(1−1.0q−1+0.2q−2)e(t)

• ARMAX model

• u(t) is from an ARMA process, independent of e(t)

• e(t) is white noise withzero mean and variance 1

• N = 250 (number of data points)

estimation

• use ARX model and assume na = 2, nb = 2

• compare the LS method with IVM
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Fit , 100(1− ‖y − ŷ‖/‖y − ȳ‖),LS fit = 66.97%, IV fit= 77.50%
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Example of MATLAB codes

%% Generate the data

close all; clear all;

N = 250; Ts = 1;

a = [1 -1.5 0.7]; b = [0 1 .5]; c = [1 -1 0.2];

Au = [1 -0.1 -0.12]; Bu = [0 1 0.2]; Mu = idpoly(Au,Bu,Ts);

u = sim(Mu,randn(2*N,1)); % u is ARMA process

noise_var = 1; e = randn(2*N,1);

M = idpoly(a,b,c,1,1,noise_var,Ts);

y = sim(M,[u e]);

uv = u(N+1:end); ev = e(N+1:end); yv = y(N+1:end);

u = u(1:N); e = e(1:N); y = y(1:N);

DATe = iddata(y,u,Ts); DATv = iddata(yv,uv,Ts);

%% Identification

na = 2; nb = 2; nc = 2;

theta_iv = iv4(DATe,[na nb 1]); % ARX using iv4

theta_ls = arx(DATe,[na nb 1]); % ARX using LS
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%% Compare the measured output and the model output

[yhat2,fit2] = compare(DATv,theta_iv);

[yhat4,fit4] = compare(DATv,theta_ls);

figure;t = 1:N;

plot(t,yhat2{1}.y(t),’--’,t,yhat4{1}.y(t),’-.’,t,yv(t));

legend(’model (iv)’,’model (LS)’,’measured’)

title(’Comparison on validation data set’,’FontSize’,16);
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