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7. Linear least-squares

• Linear regression

• Linear least-squares problems

• Examples

• Analysis of least-squares estimate

• Computational aspects
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Linear regression

• The linear regression is the simplest type of parametric model

• It explains a relationship between variables y and x using a linear
function:

y = Ax

where y ∈ RN , A ∈ RN×n, x ∈ Rn

• y contains the measurement variables and is called the regressed

variable or regressand

• Each row vector aTk in matrix A is called regressor

• The matrix A is sometimes called the design matrix

• x is the parameter vector. Its element xk is often called regression

coefficients
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Example 1: A Polynomial trend

Suppose the model is of the form

y(t) = a0 + a1t+ . . .+ art
r

with unknown coefficients a0, . . . , ar

This can be written in the form of linear regression as
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Given the measurements y(ti) for t1, t2, . . . , tN , we want to estimate the
coefficents ak
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Example 2: Truncated weighting function

A truncated weighting function model (or FIR model) is given by

y(k) =
M−1
∑

k=0

h(k)u(t− k)

The input u is known and applied to the system to measure the output y

The relationship between y and u can be fit into a linear regression as
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Solving linear regressions

• The problem is to find an estimate x̂ from the measurements y and A

• If we choose the number of measurements, N to be equal to n, then x
can be solved by

x = A−1y,

provided that A is invertible

• In practice, in the presence of noise and disturbance, more data should
be collected in order to get a better estimate

• This leads to overdetermined linear equations where an exact solution
does not usually exist

• However, it can be solved by linear least-squares formulation
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Definition of Linear least-squares

Overdetermined linear equations

Ax = y A is m× n with m > n

for most y cannot solve for x

Linear least-squares formulation

minimize ‖Ax− y‖2 =


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2
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1/2

• r = Ax = y is called the residual error

• x with smallest residual norm ‖r‖ is called the least-squares solution

• equivalent to minimizing ‖Ax− y‖2
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Example: Data fitting

fit a function

y = g(t) = x1g1(t) + x2g2(t) + . . .+ xngn(t)

to data (t1, y1), (t2, y2), . . . , (tm, ym), i.e., choose the coefficients xk so
that

g(t1) ≈ y1, g(t2) ≈ y2, , g(tm) ≈ ym

• gi(t) : R → R are given functions (basis functions)

• problem variables: the coefficients x1, x2, . . . , xn

• usually m ≫ n, hence no exact solution with g(ti) = yi for all i

• applications: developing simple, approximate model of observed data
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Example: fit a polynomial to f(t) = 1/(1 + 25t2) on [−1, 1]

• pick m = n points ti in [−1, 1] and calculate yi = 1/(1 + 25t2i )

• interpolate by solving Ax = y
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increase n does not improve the overall quality of the fit
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Same example by approximation

• pick m = 50 points ti in [−1, 1]

• fit polynomial by minimizing ‖Ax− y‖
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much better fit overall
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Geometric interpretation of a LS problem

minimize ‖Ax− y‖2

A is m× n with colums a1, a2, . . . am

• ‖Ax− y‖ is the distance of y to the vector

Ax = a1x1 + a2x2 + . . . anxn

• solution xls gives the linear combination of the columns of A closest to y

• Axls is the projection of y to the range of A
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Example: A =
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Orthogonal projection

a1
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y

Py

a1x1

a2x2

• Py is the orthogonal projection of y onto R(A) spanned by a1, . . . , an

• The projection satisfies the orthogonality condition

〈ak, Py − y〉 = 0, ∀k

(The optimal residual must be orthogonal to any vector in R(A))
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• Py gives the best approximation; for any ŷ ∈ R(A) and ŷ 6= Py

‖y − Py‖ < ‖y − ŷ‖

• From the orthogonality condition and Py is a linear combination of {ak}

〈ak, y〉 = 〈ak, Py〉 = 〈ak,
n
∑

j=1

ajxj〉 ∀k
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• This leads to the normal equations

A∗Ax = A∗y
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• Axls = Py with
P = A(A∗A)−1A∗

Facts: Any orthogonal projection operator satisfies

• P = P ∗

• P 2 = P (Idempotent operator)

• ‖Px‖ ≤ ‖x‖ for any x (contraction operator)

• I − P � 0
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Properties of full rank matrices

Suppose A is an m× n matrix. Then we always have

rank(A) ≤ min(m,n)

If A is full rank with m ≥ n

• rank(A) = n and N (A) = {0} (Ax = 0 ⇔ x = 0)

• A∗A is positive definite: for any x 6= 0 then

〈A∗Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 > 0

Similarly, if A is full rank with m ≤ n

• rank(A) = m and N (A∗) = {0}
• AA∗ is positive definite
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The normal equations

A∗Ax = A∗b

• equivalent to the zero gradient condition:

d

dx
‖Ax− y‖2

2
= A∗(Ax− y) = 0

if A has a zero nullspace:

• least-squares solution can be found by solving the normal equations

• n equations in n variables with a positive definite coefficient matrix

• the closed-form solution is x = (A∗A)−1A∗y

• (A∗A)−1A∗ is a left inverse of A
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Least-squares estimation

y = Ax+ e

• x is what we want to estimate or reconstruct

• y is our measurements

• e is an unknown noise or measurement error

• ith row of A characterizes ithe sensor or ith measurement (and A is
deterministic)

Least-squares estimation: Choose as estimate the vector x̂ that
minimizes

‖Ax̂− y‖
i.e., minimize the deviation between what we actually observed (y), and
what we would observe if x = x̂, and there were no noise (w = 0)
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Example: first-order linear model

estimate the parameters a, b in a linear model

z(t) = az(t− 1) + bu(t− 1) + e(t)

from the measurement z(t) and the input u(t)

• true parameters: a = 0.8, b = 1

• u(t) is a PRBS sequence of magnitude −1,1 with period M = 7

• e(t) is a zero mean white noise with variance 0.1
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Estimation: choose â, b̂ that minimizes

N
∑

t=1

‖z(t)− (âz(t− 1) + b̂u(t− 1))‖2 = ‖Ax− b‖2

y =





z(1)
...

z(N)



 , A =





z(0) u(0)
... ...

z(N − 1) u(N − 1)



 , x =

[

â
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Results:

from one realization of e(t),

â = 0.7485, b̂ = 1.0768
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Analysis of the LS estimate (static case)

Assume that

• e is white noise with zero mean and covariance matrix I

• the least-square estimate is given by

x̂ = argmin ‖Ax− y‖

• The matrix A is deterministic

Then the following properties hold:

• x̂ is an unbiased estimate of x (E x̂ = x, or x̂ = x when e = 0)

• The covariance matrix of x̂ is given by

cov(x̂) = E(x̂−E x̂)(x̂−E x̂)∗ = (A∗A)−1
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BLUE property

The estimator defined by

x̂ = (A∗A)−1A∗y

is the optimum unbiased linear least-mean-squares estimator of x

Assume ẑ = By is any other linear estimator of x

• require BA = I in order for ẑ to be unbiased

• cov(ẑ) = BB∗

• cov(x̂) = BA(A∗A)−1A∗B∗ (apply BA = I)

Using I − P � 0, we conclude that

cov(ẑ)− cov(x̂) = B(I −A(A∗A)−1A∗)B∗ � 0
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Suppose the covariance matrix of e is not I , say

E ee∗ = Σ

Scale the equation y = Ax+ e by Σ−1/2

Σ−1/2y = Σ−1/2Ax+Σ−1/2e

The optimal unbiased linear least-mean-squares estimator of x is

x̂ = (A∗Σ−1A)−1A∗Σ−1y

The solution is a special case of a weighted least-squares problem
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Weighted least-squares

minimize
x

tr(Ax− y)∗W (Ax− y)

• W is a given positive definite matrix

• can be solved from the modified normal equations

A∗WAx = A∗Wy

• Axwls is the orthogonal projection on R(A) w.r.t the new inner product

〈x, y〉W = 〈Wx, y〉

Linear least-squares 7-23



Analysis of the LS estimate (dynamic case)

Suppose we apply the LS method to a dynamical system

y(t) = H(t)θ + ν(t)

where the observations y(1), y(2), . . . , y(N) are available

Typically, H(t) contains the past outputs and inputs

y(1), . . . , y(t− 1), u(1), . . . u(t− 1)

(hence H(t) is no longer deterministic)

and ν(t) is white noise with covariance Λ
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We obtain the following results

• The LS estimate is given by

θ̂ =

[

1

N

N
∑

t=1

H(t)∗H(t)

]−1 [

1

N

N
∑

t=1

H(t)∗y(t)

]

• θ̂ is consistent, i.e.,
lim

N→∞

θ̂ = θ

•
√
N(θ̂ − θ) is asymptotically Gaussian distributed N (0, P ) where

P = Λ[EH(t)∗H(t)]−1
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Solving LS via Cholesky factorization

Every positive definite B ∈ Sn can be factored as

B = LLT

where L is lower triangular with positive diagonal elements

Fact: For B ≻ 0, a linear equation

Bx = b

can be solved in (1/3)n2 flops

Solve the least-squares problem from the normal equations

A∗Ax = A∗y

we have A∗A ≻ 0 when A is full rank
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Solving LS via QR factorization

• full QR factorization:

A =
[

Q1 Q2

]

[

R1

0

]

with [Q1 Q2] ∈ Rm×m orthogonal, R1 ∈ Rn×n upper triangular,
invertible

• multiplication by orthogonal matrix doesn’t change the norm, so
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∥

∥
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∥

∥
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∥
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• this can be minimized by the choice xls = −R−1

1
QT

1 y
(which makes the first term zero)

• residual with optimal x is

Axls − y = −Q2Q
T
2
y

• Q1Q
T
1 gives projection on R(A)

• Q2Q
T
2
gives projection on R(A)⊥
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