7. Linear least-squares

- Linear regression
- Linear least-squares problems
- Examples
- Analysis of least-squares estimate
- Computational aspects

Linear regression

- The linear regression is the simplest type of *parametric* model
- It explains a relationship between variables y and x using a linear function:

$$y = Ax$$

where $y \in \mathbf{R}^N$, $A \in \mathbf{R}^{N \times n}$, $x \in \mathbf{R}^n$

- y contains the measurement variables and is called the *regressed* variable or regressand
- ullet Each row vector a_k^T in matrix A is called regressor
- ullet The matrix A is sometimes called the design matrix
- x is the parameter vector. Its element x_k is often called regression coefficients

Example 1: A Polynomial trend

Suppose the model is of the form

$$y(t) = a_0 + a_1 t + \ldots + a_r t^r$$

with unknown coefficients a_0, \ldots, a_r

This can be written in the form of linear regression as

$$\begin{bmatrix} y(t_1) \\ y(t_2) \\ \vdots \\ y(t_N) \end{bmatrix} = \begin{bmatrix} 1 & t_1 & \dots & t_1^r \\ 1 & t_2 & \dots & t_2^r \\ \vdots & \vdots & \vdots & \vdots \\ 1 & t_N & \dots & t_N^r \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_r \end{bmatrix}$$

Given the measurements $y(t_i)$ for t_1, t_2, \ldots, t_N , we want to estimate the coefficents a_k

Example 2: Truncated weighting function

A truncated weighting function model (or FIR model) is given by

$$y(k) = \sum_{k=0}^{M-1} h(k)u(t-k)$$

The input u is known and applied to the system to measure the output y. The relationship between y and u can be fit into a linear regression as

$$\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(k) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} u(0) & u(-1) & \dots & u(-M+1) \\ u(1) & u(0) & \dots & u(-M+2) \\ \vdots & \vdots & \vdots & \vdots \\ u(k) & u(k-1) & \dots & u(k-M+1) \\ \vdots & \vdots & \vdots & \vdots \\ u(N) & u(N-1) & \dots & u(N-M+1) \end{bmatrix} \begin{bmatrix} h(0) \\ h(1) \\ \vdots \\ h(M-1) \end{bmatrix}$$

Solving linear regressions

- ullet The problem is to find an estimate \hat{x} from the measurements y and A
- ullet If we choose the number of measurements, N to be equal to n, then x can be solved by

$$x = A^{-1}y,$$

provided that A is invertible

- In practice, in the presence of noise and disturbance, more data should be collected in order to get a better estimate
- This leads to overdetermined linear equations where an exact solution does not usually exist
- However, it can be solved by linear least-squares formulation

Definition of Linear least-squares

Overdetermined linear equations

$$Ax = y$$
 A is $m \times n$ with $m > n$

for most y cannot solve for x

Linear least-squares formulation

minimize
$$||Ax - y||_2 = \left(\sum_{i=1}^m (\sum_{j=1}^n a_{ij}x_j - y_i)^2\right)^{1/2}$$

- r = Ax = y is called the residual error
- \bullet x with smallest residual norm ||r|| is called the least-squares solution
- equivalent to minimizing $||Ax y||^2$

Example: Data fitting

fit a function

$$y = g(t) = x_1 g_1(t) + x_2 g_2(t) + \dots + x_n g_n(t)$$

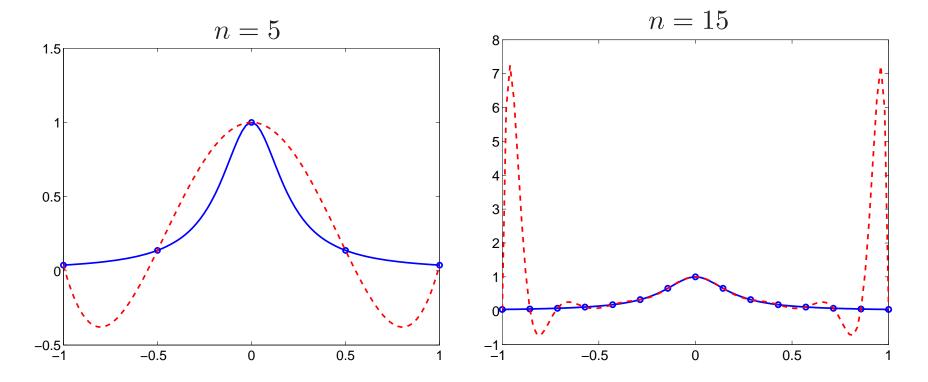
to data (t_1,y_1) , (t_2,y_2) , . . . , (t_m,y_m) , i.e., choose the coefficients x_k so that

$$g(t_1) \approx y_1, \quad g(t_2) \approx y_2, \quad , g(t_m) \approx y_m$$

- $g_i(t): \mathbf{R} \to \mathbf{R}$ are given functions (basis functions)
- problem variables: the coefficients x_1, x_2, \ldots, x_n
- usually $m \gg n$, hence no exact solution with $g(t_i) = y_i$ for all i
- applications: developing simple, approximate model of observed data

Example: fit a polynomial to $f(t) = 1/(1+25t^2)$ on [-1,1]

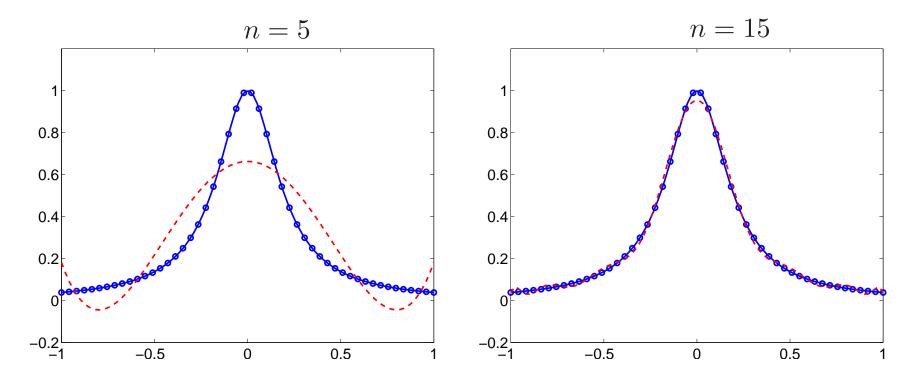
- pick m=n points t_i in [-1,1] and calculate $y_i=1/(1+25t_i^2)$
- interpolate by solving Ax = y



(blue solid line: f; red dashed line: polynomial g) increase n does not improve the overall quality of the fit

Same example by approximation

- pick m = 50 points t_i in [-1, 1]
- fit polynomial by minimizing ||Ax y||



blue solid line: f; red dashed line: polynomial g) much better fit overall

Geometric interpretation of a LS problem

minimize
$$||Ax - y||^2$$

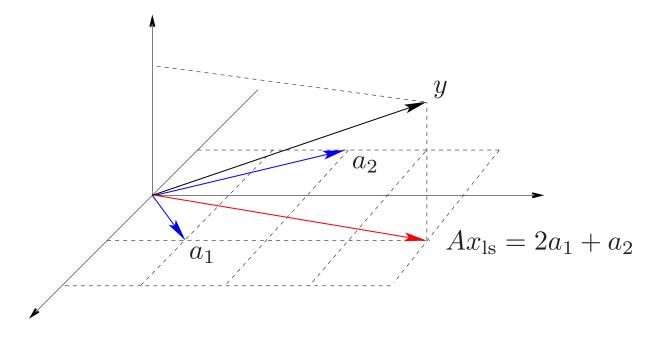
A is $m \times n$ with colums $a_1, a_2, \dots a_m$

• ||Ax - y|| is the distance of y to the vector

$$Ax = a_1x_1 + a_2x_2 + \dots a_nx_n$$

- ullet solution x_{ls} gives the linear combination of the columns of A closest to y
- Ax_{ls} is the **projection** of y to the range of A

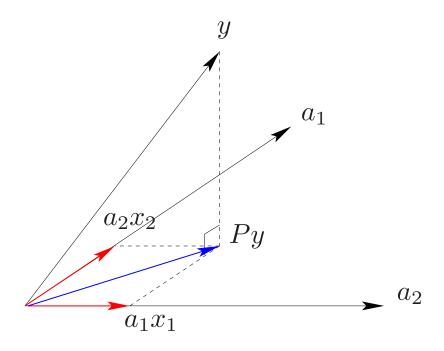
Example:
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 2 \\ 0 & 0 \end{bmatrix}$$
, $y = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$



Least-squares solution $x_{\rm ls}$

$$Ax_{\rm ls} = \begin{bmatrix} 1\\4\\0 \end{bmatrix}, \quad x_{\rm ls} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

Orthogonal projection



- Py is the orthogonal projection of y onto $\mathcal{R}(A)$ spanned by a_1, \ldots, a_n
- The projection satisfies the **orthogonality condition**

$$\langle a_k, Py - y \rangle = 0, \quad \forall k$$

(The optimal residual must be orthogonal to any vector in $\mathcal{R}(A)$)

• Py gives the best approximation; for any $\hat{y} \in \mathcal{R}(A)$ and $\hat{y} \neq Py$

$$||y - Py|| < ||y - \hat{y}||$$

• From the orthogonality condition and Py is a linear combination of $\{a_k\}$

$$\langle a_k, y \rangle = \langle a_k, Py \rangle = \langle a_k, \sum_{j=1}^n a_j x_j \rangle \quad \forall k$$

$$\begin{bmatrix} \langle a_1, y \rangle \\ \langle a_2, y \rangle \\ \vdots \\ \langle a_n, y \rangle \end{bmatrix} = \begin{bmatrix} \langle a_1, a_1 \rangle & \langle a_1, a_2 \rangle & \dots & \langle a_1, a_n \rangle \\ \langle a_2, a_1 \rangle & \langle a_2, a_2 \rangle & \dots & \langle a_2, a_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle a_n, a_1 \rangle & \langle a_n, a_2 \rangle & \dots & \langle a_n, a_n \rangle \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

This leads to the normal equations

$$A^*Ax = A^*y$$

• $Ax_{ls} = Py$ with

$$P = A(A^*A)^{-1}A^*$$

Facts: Any orthogonal projection operator satisfies

- \bullet $P = P^*$
- $P^2 = P$ (Idempotent operator)
- $||Px|| \le ||x||$ for any x (contraction operator)
- $I P \succeq 0$

Properties of full rank matrices

Suppose A is an $m \times n$ matrix. Then we always have

$$\operatorname{rank}(A) \leq \min(m, n)$$

If A is full rank with $m \ge n$

- $\operatorname{rank}(A) = n \text{ and } \mathcal{N}(A) = \{0\} \ (Ax = 0 \Leftrightarrow x = 0)$
- A^*A is positive definite: for any $x \neq 0$ then

$$\langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2 > 0$$

Similarly, if A is **full rank** with $m \leq n$

- $\operatorname{rank}(A) = m \text{ and } \mathcal{N}(A^*) = \{0\}$
- AA^* is positive definite

The normal equations

$$A^*Ax = A^*b$$

equivalent to the zero gradient condition:

$$\frac{d}{dx}||Ax - y||_2^2 = A^*(Ax - y) = 0$$

if A has a zero nullspace:

- least-squares solution can be found by solving the normal equations
- ullet n equations in n variables with a positive definite coefficient matrix
- ullet the closed-form solution is $x=(A^*A)^{-1}A^*y$
- $(A^*A)^{-1}A^*$ is a left inverse of A

Least-squares estimation

$$y = Ax + e$$

- x is what we want to estimate or reconstruct
- *y* is our measurements
- e is an unknown noise or measurement error
- ith row of A characterizes ithe sensor or ith measurement (and A is deterministic)

Least-squares estimation: Choose as estimate the vector \hat{x} that minimizes

$$||A\hat{x} - y||$$

i.e., minimize the deviation between what we actually observed (y), and what we would observe if $x = \hat{x}$, and there were no noise (w = 0)

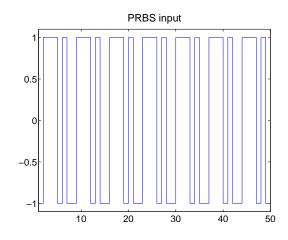
Example: first-order linear model

estimate the parameters a, b in a linear model

$$z(t) = az(t - 1) + bu(t - 1) + e(t)$$

from the measurement z(t) and the input u(t)

- true parameters: a = 0.8, b = 1
- $\bullet \ u(t)$ is a PRBS sequence of magnitude -1.1 with period M=7
- ullet e(t) is a zero mean white noise with variance 0.1



Estimation: choose \hat{a}, \hat{b} that minimizes

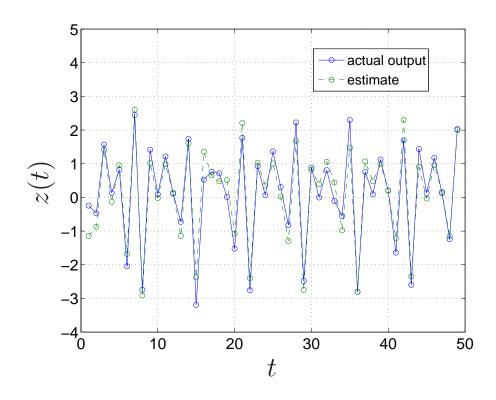
$$\sum_{t=1}^{N} ||z(t) - (\hat{a}z(t-1) + \hat{b}u(t-1))||^2 = ||Ax - b||^2$$

$$y = \begin{bmatrix} z(1) \\ \vdots \\ z(N) \end{bmatrix}, \quad A = \begin{bmatrix} z(0) & u(0) \\ \vdots & \vdots \\ z(N-1) & u(N-1) \end{bmatrix}, \quad x = \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix}$$

Results:

from one realization of e(t),

$$\hat{a} = 0.7485, \quad \hat{b} = 1.0768$$



Analysis of the LS estimate (static case)

Assume that

- ullet e is white noise with zero mean and covariance matrix I
- the least-square estimate is given by

$$\hat{x} = \operatorname{argmin} \|Ax - y\|$$

• The matrix A is deterministic

Then the following properties hold:

- \hat{x} is an unbiased estimate of x ($\mathbf{E} \, \hat{x} = x$, or $\hat{x} = x$ when e = 0)
- The covariance matrix of \hat{x} is given by

$$\mathbf{cov}(\hat{x}) = \mathbf{E}(\hat{x} - \mathbf{E}\,\hat{x})(\hat{x} - \mathbf{E}\,\hat{x})^* = (A^*A)^{-1}$$

BLUE property

The estimator defined by

$$\hat{x} = (A^*A)^{-1}A^*y$$

is the optimum unbiased linear least-mean-squares estimator of x

Assume $\hat{z} = By$ is any other linear estimator of x

- ullet require BA=I in order for \hat{z} to be unbiased
- $\mathbf{cov}(\hat{z}) = BB^*$
- $\operatorname{cov}(\hat{x}) = BA(A^*A)^{-1}A^*B^*$ (apply BA = I)

Using $I - P \succeq 0$, we conclude that

$$cov(\hat{z}) - cov(\hat{x}) = B(I - A(A^*A)^{-1}A^*)B^* \succeq 0$$

Suppose the covariance matrix of e is not I, say

$$\mathbf{E} e e^* = \Sigma$$

Scale the equation y = Ax + e by $\Sigma^{-1/2}$

$$\Sigma^{-1/2}y = \Sigma^{-1/2}Ax + \Sigma^{-1/2}e$$

The optimal unbiased linear least-mean-squares estimator of x is

$$\hat{x} = (A^* \Sigma^{-1} A)^{-1} A^* \Sigma^{-1} y$$

The solution is a special case of a weighted least-squares problem

Weighted least-squares

$$\underset{x}{\text{minimize}} \quad \mathbf{tr}(Ax - y)^* W(Ax - y)$$

- ullet W is a given positive definite matrix
- can be solved from the modified normal equations

$$A^*WAx = A^*Wy$$

• Ax_{wls} is the *orthogonal projection* on $\mathcal{R}(A)$ w.r.t the new inner product

$$\langle x, y \rangle_W = \langle Wx, y \rangle$$

Analysis of the LS estimate (dynamic case)

Suppose we apply the LS method to a dynamical system

$$y(t) = H(t)\theta + \nu(t)$$

where the observations $y(1), y(2), \ldots, y(N)$ are available

Typically, H(t) contains the past outputs and inputs

$$y(1), \ldots, y(t-1), u(1), \ldots u(t-1)$$

(hence H(t) is no longer deterministic)

and $\nu(t)$ is white noise with covariance Λ

We obtain the following results

The LS estimate is given by

$$\hat{\theta} = \left[\frac{1}{N} \sum_{t=1}^{N} H(t)^* H(t) \right]^{-1} \left[\frac{1}{N} \sum_{t=1}^{N} H(t)^* y(t) \right]$$

• $\hat{\theta}$ is consistent, *i.e.*,

$$\lim_{N \to \infty} \hat{\theta} = \theta$$

ullet $\sqrt{N}(\hat{ heta}- heta)$ is asymptotically Gaussian distributed $\mathcal{N}(0,P)$ where

$$P = \Lambda [\mathbf{E} H(t)^* H(t)]^{-1}$$

Solving LS via Cholesky factorization

Every positive definite $B \in \mathbf{S}^n$ can be factored as

$$B = LL^T$$

where L is lower triangular with positive diagonal elements

Fact: For $B \succ 0$, a linear equation

$$Bx = b$$

can be solved in $(1/3)n^2$ flops

Solve the least-squares problem from the normal equations

$$A^*Ax = A^*y$$

we have $A^*A \succ 0$ when A is full rank

Solving LS via QR factorization

• full QR factorization:

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

with $[Q_1 \ Q_2] \in \mathbf{R}^{m \times m}$ orthogonal, $R_1 \in \mathbf{R}^{n \times n}$ upper triangular, invertible

• multiplication by orthogonal matrix doesn't change the norm, so

$$||Ax - y||^2 = ||[Q_1 \quad Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x - y||^2$$

$$= ||[Q_1 \quad Q_2]^T [Q_1 \quad Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x - [Q_1 \quad Q_2]^T y||^2$$

$$= \left\| \begin{bmatrix} R_1 x - Q_1^T y \\ -Q_2^T y \end{bmatrix} \right\|^2$$
$$= \|R_1 x - Q_1^T y\|^2 + \|Q_2^T y\|^2$$

- this can be minimized by the choice $x_{ls} = -R_1^{-1}Q_1^Ty$ (which makes the first term zero)
- ullet residual with optimal x is

$$Ax_{ls} - y = -Q_2 Q_2^T y$$

- $Q_1Q_1^T$ gives projection on $\mathcal{R}(A)$
- ullet $Q_2Q_2^T$ gives projection on $\mathcal{R}(A)^\perp$

References

Chapter 4 in

T. Söderström and P. Stoica, System Identification, Prentice Hall, 1989

Chapter 2-3 in

T. Kailath, A. Sayed, and B. Hassibi, *Linear Estimation*, Prentice Hall, 2000

Lectures on

Linear least-squares and The solution of a least-squares problem, EE103, Lieven Vandenberghe, UCLA,

http://www.ee.ucla.edu/~vandenbe/ee103.html

Lectures on

Least-squares and Least-squares applications, EE263, Stephen Boyd, Stanford, http://www.stanford.edu/class/ee263/letures.html

Linear least-squares