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Linear regression

The linear regression is the simplest type of parametric model

It explains a relationship between variables y and = using a linear
function:
y = Ax

where y € RY, A € RY*" 1 € R"

y contains the measurement variables and is called the regressed
variable or regressand

Each row vector a; in matrix A is called regressor
The matrix A is sometimes called the design matrix

x is the parameter vector. Its element xj is often called regression
coefficients
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Example 1: A Polynomial trend

Suppose the model is of the form

y(t) =ag+art + ...+ a,t"

with unknown coefficients aq, ..., a,

This can be written in the form of linear regression as

y(tl) 1 tl
y(t2) | _ |1 ¢
y(tn) | 1IN

Given the measurements y(¢;) for t1,to,. ..

coefficents ay
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Example 2: Truncated weighting function

A truncated weighting function model (or FIR model) is given by

The input u is known and applied to the system to measure the output ¥y

The relationship between y and u can be fit into a linear regression as

y(0) u(0) u(—=1) ... u(—M+1) ] )
y(1) u(1) u(0) e u(—M 4+ 2) h(0)
: B : : : : h(1)
y(k) | |wk) wk-1) ... wlk—-—M-+1) :
: : : : : (h(M —1)]
y(IV) u(N) u(N—-1) ... uw(N—-M+1)]
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Solving linear regressions

e The problem is to find an estimate  from the measurements y and A

e If we choose the number of measurements, N to be equal to n, then x
can be solved by
r=A"ly,

provided that A is invertible

e In practice, in the presence of noise and disturbance, more data should
be collected in order to get a better estimate

e This leads to overdetermined linear equations where an exact solution
does not usually exist

e However, it can be solved by linear least-squares formulation
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Definition of Linear least-squares

Overdetermined linear equations
Ar =y Aism xn withm >n

for most y cannot solve for x
Linear least-squares formulation

1/2

minimize [|Az —yll2 = Z(Z ;i — yi)’

i=1 j=1

e r = Ax = y is called the residual error
e x with smallest residual norm ||r|| is called the least-squares solution

e equivalent to minimizing || Az — y||?
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Example: Data fitting

fit a function

y=g(t) = 2191(1) + 2292(t) + . .. + Tngn(t)
to data (t1,y1), (t2,42), . . ., (tm,Ym), i.e., choose the coefficients x; so
that
g(t) =y1, g(t2) R y2, ,9(tm) = Y
e g;(t) : R — R are given functions (basis functions)
e problem variables: the coefficients x1, 2o, ..., 2,

e usually m > n, hence no exact solution with g(¢;) = y; for all ¢

e applications: developing simple, approximate model of observed data
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Example: fit a polynomial to f(t) = 1/(1 + 25t%) on [—1,1]

e pick m = n points ¢; in [—1,1] and calculate y; = 1/(1 + 25t%)
e interpolate by solving Ax =y

15 ‘ ‘ ‘ 8

~

R e T .

i B e T

-—-—
b = ———
————

~
=
™

-
1
\
-,
~
~
~
~
]
L/
\
1
-

e e -
-

1
\
-
~
-
-

|
o
a1
-
~
-
~

|
-
|
o
o1
o+
o
a1
=

(blue solid line: f; red dashed line: polynomial g)

increase n does not improve the overall quality of the fit
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Same example by approximation

e pick m = 50 points ¢; in [—1,1]
e fit polynomial by minimizing ||[Ax — ||

n=2>5 n =15

blue solid line: f; red dashed line: polynomial g)

much better fit overall

Linear least-squares 7-9



Geometric interpretation of a LS problem

minimize ||Axz — y|?

A is m X n with colums aq,as,...a.,

e ||Ax — y|| is the distance of y to the vector

Ar = a1z + asxo + ... 0nTy

e solution x4 gives the linear combination of the columns of A closest to y

e Ax) is the projection of y to the range of A
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1 -1 1]
Example: A= |1 2 |,y= |4
0 0 12

east-squares solution x4

.
Avo = [4|, o=
_O_
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Orthogonal projection

ao
a1T1

e Py is the orthogonal projection of y onto R(A) spanned by a1, ..., a,

e The projection satisfies the orthogonality condition

<akapy_y>:()a Vk

(The optimal residual must be orthogonal to any vector in R(A))
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e Py gives the best approximation; for any y € R(A) and y # Py

|y — Pyl < ||y — 9

e From the orthogonality condition and Py is a linear combination of {a}

{ak,y) = (ar, Py) = (ax, zn:ajwﬁ vk
j=1
{aq,y) {ay,a1) {ai,az) ... {ai,an)]| [x1]
(a2, )| _ [(laz,a1) (a2, as) (ag,an) | | T2
_(an-, Y) (an,a1) <an;a2> oo AOn,an) | |7
e This leads to the normal equations
A*Axr = A"y
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e Ax); = Py with
P=A(A*A)" 1A

Facts: Any orthogonal projection operator satisfies
o P=P*
e P?2=P (ldempotent operator)

o ||Pz| < ||z| for any x  (contraction operator)

o /] —P>0
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Properties of full rank matrices

Suppose A is an m x n matrix. Then we always have
rank(A) < min(m,n)
If A is full rank with m > n

e rank(A) =n and N(A) = {0} (Az =0< 2 =0)

e A*A is positive definite: for any x # 0 then

(A* Az, z) = (Az, Az) = ||Az|]* >0

Similarly, if A is full rank with m <n

e rank(A) =m and N(A*) = {0}

o AA™ is positive definite
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The normal equations

A*Axr = A™b
e equivalent to the zero gradient condition:

d :
|| Az — yl}§ = A"(Az —y) = 0

if A has a zero nullspace:

e least-squares solution can be found by solving the normal equations
e 1 equations in n variables with a positive definite coefficient matrix
e the closed-form solution is x = (A*A)~1A*y

o (A*A)~1A* is a left inverse of A

Linear least-squares 7-16



Least-squares estimation

y=Ax+e

e 1 is what we want to estimate or reconstruct
® 7 IS our measurements
e ¢ is an unknown noise or measurement error

e ith row of A characterizes ithe sensor or ith measurement (and A is
deterministic)

Least-squares estimation: Choose as estimate the vector 2 that
minimizes

|AZ —y|
i.e., minimize the deviation between what we actually observed (y), and
what we would observe if x = &, and there were no noise (w = 0)
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Example: first-order linear model

estimate the parameters a, b in a linear model
2(t) =az(t — 1) + bu(t — 1) + e(t)
from the measurement z(¢) and the input wu(t)

e true parameters: a = 0.8, b =1
e u(t) is a PRBS sequence of magnitude —1,1 with period M =7

e ¢(t) is a zero mean white noise with variance 0.1

PRBS input

1t—n — A — A — A —Mf — [ —

0.5r

-0.5+

10 20 30 40 50
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Estimation: choose &,IA) that minimizes

N
Z az(t — 1)+ bu(t — 1))||? = ||Az — b]|?
[ 2(1) ] - 2(0) u(0) | .
a
Yy = ) A= : y L= [[;]
| 2(IV) Z(N —1) u(N—1)
5
4F —o—actual output
e - estimate
3 Q
Results: 2 fii I
from one realization of e(?), = | % ‘ ALY
SIS = [e% ‘.‘
) R -1f2 | IBRa oAl
a=0.7485, b =1.0768 o (. .
_37 | !
o 10 20 30 40 50
t
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Analysis of the LS estimate (static case)

Assume that

® ¢ Is white noise with zero mean and covariance matrix [

e the least-square estimate is given by
T = argmin ||Ax — y||
e The matrix A is deterministic

Then the following properties hold:

e I is an unbiased estimate of x (EZ =z, or £ = = when e = 0)

e The covariance matrix of  is given by

cov(?) = E(3 —Ei)(3 — E&)" = (4%A)"!

Linear least-squares 7-20



BLUE property
The estimator defined by
&= (A*A) 1A%y
is the optimum unbiased linear least-mean-squares estimator of x

Assume zZ = By is any other linear estimator of x

e require BA = I in order for Z to be unbiased
e cov(z) = BB~
e cov(i) = BA(A*A)"1A*B* (apply BA=1)

Using I — P > 0, we conclude that

cov(2) —cov(i) = B(I — A(A*A) 1 A*)B* = 0

Linear least-squares
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Suppose the covariance matrix of e is not I, say

Eee® =%
Scale the equation y = Az + e by ©~1/2
E_l/2y — 2_1/2Aﬂj i 2—1/26

The optimal unbiased linear least-mean-squares estimator of x is

T = (AT TTA)TTATY Ty

The solution is a special case of a weighted least-squares problem
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Weighted least-squares

minimize tr(Az —y)"W(Ax —y)

x

e IV is a given positive definite matrix

e can be solved from the modified normal equations

AW Ax = A" Wy

o Axy, is the orthogonal projection on R(A) w.r.t the new inner product

<ZC7 y>W — <WZC7 y>
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Analysis of the LS estimate (dynamic case)

Suppose we apply the LS method to a dynamical system
y(t) = H(t)0 +v(1)

where the observations y(1),y(2),...,y(IN) are available

Typically, H(t) contains the past outputs and inputs

y(1),...,y(t —1),u(l),...u(t —1)

(hence H (t) is no longer deterministic)

and v(t) is white noise with covariance A

Linear least-squares 7-24



We obtain the following results

e The LS estimate is given by

o 0is consistent, 1.e.,
lim 6 =10
N — 00

e V/N(O — 0) is asymptotically Gaussian distributed N (0, P) where

P=A[EHt)*H ()"
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Solving LS via Cholesky factorization

Every positive definite B € S™ can be factored as
B=LL"

where L is lower triangular with positive diagonal elements

Fact: For B >~ 0, a linear equation
Bx =5

can be solved in (1/3)n? flops

Solve the least-squares problem from the normal equations
A*Axr = A"y

we have A*A = 0 when A is full rank

Linear least-squares
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Solving LS via QR factorization

e full QR factorization:
AN

with [Q1 Q2] € R™*™ orthogonal, R; € R™ " upper triangular,
invertible

e multiplication by orthogonal matrix doesn’t change the norm, so

2

||A33 — y||2 — [Ql Qﬂ [}31] r—1Y

= [||Q1 Q2}T[Q1 Qﬂ[olw—[Ql QQ}TZJ
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2
Riz—Qiy

B [ —Q3y ]
= [|[Riz — QT y|* + |Q3 y||?

e this can be minimized by the choice x5 = —Rle{y
(which makes the first term zero)

e residual with optimal x is

Az —y = —Q2Q12y

o (Q1Q7 gives projection on R(A)

o (Q2Q7 gives projection on R(A)+
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