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10. Model Parametrization

e Model classification
e General model structure

e Uniqueness properties
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Model Classification

e SISO/MIMO models

e Linear/Nonlinear models

e Parametric/Nonparametric models

e Time invariant/Time varying models

e Time domain/Frequency domain models
e Lumped/Distributed parameter models

e Deterministic/Stochastic models
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General model structure

M(O): y(t) =Glg i 0)u(t) + H(g 5 0)e(t)
Ee(t)e(s)” = A(0)d;

e y(t) is ny-dimensional output

e u(t) is nu-dimensional input

e ¢(t) is an i.i.d. random variable with zero mean (white noise)
e ¢! is backward shift operator

e H. G, A are functions of the parameter vector 6

e This model is a genearal linear model in u and e
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Feasible set of parameters

6 take the values such that
o H~!and H'G are asymptotically stable
e G(0;0)=0and H(0;0) =1

e A(A) =0
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where

Model Parametrization

General SISO model structure
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Special cases

Output error structure

In this case H(q~;0) =1

The output error is the difference between the measurable output y(¢) and
the model output B(q™1)/F (¢~ )u(t)

If A(¢g71) =1

e (G and H have no common paramater
e possible to estimate GG consistently even if the choice of H is not

appropriate
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ARMAX models
An autoregressive moving average model with an exogenous input:

A(g " yt) = B(g~")u(t) + Cg~He(?)

where
Al = T+aiqgt+...a,q?
B(g7") = big b P+ A bpg "
Clg7t) = T4+cqgt+...+emg ™

with Ee(t)e(t)* = N1

The parameter vector is
0 = (&1,&2,...,&p,bl,bz,...,bn,Cl,Cg,...,Cm)
(the noise covariance could be a parameter to be estimated too)
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Special cases of ARMAX models

e Autoregressive (AR) models

e Moving average (MA) models
y(t) = Clg e(t)
e Finite impulse response (FIR) models
y(t) = B(g ult) + e(t)
e Autoregressive with exogenous input (ARX) models

A(g " y@t) = B(g~")u(t) + e(t)
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State-space models

A linear stochastic model:

z(t+1) = A(0)x(t)
y(t) = C(0)x(t)

+ B(0)u(t) 4+ v(t)
+ ()
v(t) and n(t) are white noise sequences with zero means and
- [V(t)] [V(s)r _ [Rl(e)at,s R12(0)54,
12(0)0r,s  R2(0)0r,s
e v(t) is the process noise

e 17)(t) is the measurement noise

e needs to transform to the so-called innovation form to compare with the
standard model
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Chooing a class of model structures

Important factors:

e Flexibility: the model structure should describe most of the different
system dynamics expected in the application

e Parsimony: the model should contain the smallest number of free
parameters required to explain the data adequately

e Algorithm complexity: the form of model structure can considerably
influence the computational cost

e Properties of the criterion function: for example, the asymptotic
properties of prediction-error method depends crucially on the criterion
function and the model structure
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Uniqueness properties
Within a model structure, we are concerned with the problem of
adequately and uniquely describing a given system

Define D the set of 6 for which (é, I:I, A) gives a perfect description of the
true system

Three possibilities of this set can occur:

e the set D is empty or underparametrization
e the set D contains one point

e the set D consists of several points or overparametrization
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Uniqueness properties for a scalar ARMA model

Let the true ARMA model is given by
A(g~Hy(t) = ClgNe(t), Ee(t)? =N

D is the set of fl, B, C’, ) for which

A2 =\

In order for these equalities to have a solution, we must have
deg(A) > deg(4), deg(C) > deg(C)

or,

n* £ min {deg(fl) — deg(A), deg(C) — deg(C)} >0
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e A and C have no common factor

C(g~ Clg™h
* A M Z must have the same poles and zeros

These implies

Al = AlgHD(g"), Clg™") =ClgHD(g)
where D(q™1) has arbitrary coefficients
deg(D) = min{deg(A) — deg(A), deg(C) — deg(C)} = n*

e n* > 0: infinitely many solutions of C, A\ (by varying D)

e n* = 0: this gives D(¢~ ') = 1, or at least one of A and C has the
same degree as the true polynomial
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Nonuniqueness of general state-space models

Consider the multivariable model

x(t+1)=A0)x(t) + B(O)u(t) + v(t)
y(t) = C(0)x(t) +n(t)

where v(t) and 7(t) are mutually independent white noise with zero means
and covariance Ry, Ry resp.

Also consider a second model

z(t+1) = A(0)z(t)
y(t) = C(0)2(t)

where E 0(t)v(s)* = R16; s and
A=QAQ™, B=QB, C=0Q", Ri=QRQ"
for some nonsingular matrix )
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The two models are equivalent:

e they have the same transfer function from u to y

Glg ) =Cgl—A)"'B=CQ (¢l —QAQ™")'QB=C(ql — A)~'B

e the outputs y from the two models have the same second-order
properties, i.e., the spectral densities are the same

Ce“ — A 'Ri(e* — A)™*C* + Ry

= CQ 1Y —A)IQRIQ* (¥ — A)T*Q *C* + Ry
. _
C

Q7 ~ AQIT RIQ( ~ )'Q )7 C + R,
(eiw — A)_lRl(eiw — A)_*C* + RQ

The model is not unique since () can be chosen arbitrarily
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