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10. Model Parametrization

• Model classification

• General model structure

• Uniqueness properties
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Model Classification

• SISO/MIMO models

• Linear/Nonlinear models

• Parametric/Nonparametric models

• Time invariant/Time varying models

• Time domain/Frequency domain models

• Lumped/Distributed parameter models

• Deterministic/Stochastic models
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General model structure

M(θ) : y(t) = G(q−1; θ)u(t) +H(q−1; θ)e(t)

E e(t)e(s)∗ = Λ(θ)δt,s

• y(t) is ny-dimensional output

• u(t) is nu-dimensional input

• e(t) is an i.i.d. random variable with zero mean (white noise)

• q−1 is backward shift operator

• H,G,Λ are functions of the parameter vector θ

• This model is a genearal linear model in u and e
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Feasible set of parameters

θ take the values such that

• H−1 and H−1G are asymptotically stable

• G(0; θ) = 0 and H(0; θ) = I

• Λ(θ) � 0
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General SISO model structure

A(q−1)y(t) =
B(q−1)

F (q−1)
u(t) +

C(q−1)

D(q−1)
e(t), E e(t)e(t)∗ = λ2

where

A(q−1) = 1 + a1q
−1 + . . . apq

−p

B(q−1) = b1q
−1 + b2q

−2 + . . .+ bnq
−n

C(q−1) = 1 + c1q
−1 + . . .+ cmq−m

D(q−1) = 1 + d1q
−1 + . . .+ dsq

−s

F (q−1) = 1 + f1q
−1 + . . .+ frq

−r
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Special cases

Output error structure

y(t) =
B(q−1)

F (q−1)
u(t) + e(t)

In this case H(q−1; θ) = 1

The output error is the difference between the measurable output y(t) and
the model output B(q−1)/F (q−1)u(t)

If A(q−1) = 1

y(t) =
B(q−1)

F (q−1)
u(t) +

C(q−1)

D(q−1)
e(t)

• G and H have no common paramater

• possible to estimate G consistently even if the choice of H is not
appropriate
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ARMAX models

An autoregressive moving average model with an exogenous input:

A(q−1)y(t) = B(q−1)u(t) + C(q−1)e(t)

where

A(q−1) = I + a1q
−1 + . . . apq

−p

B(q−1) = b1q
−1 + b2q

−2 + . . .+ bnq
−n

C(q−1) = I + c1q
−1 + . . .+ cmq−m

with E e(t)e(t)∗ = λ2I

The parameter vector is

θ = (a1, a2, . . . , ap, b1, b2, . . . , bn, c1, c2, . . . , cm)

(the noise covariance could be a parameter to be estimated too)
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Special cases of ARMAX models

• Autoregressive (AR) models

A(q−1)y(t) = e(t)

• Moving average (MA) models

y(t) = C(q−1)e(t)

• Finite impulse response (FIR) models

y(t) = B(q−1)u(t) + e(t)

• Autoregressive with exogenous input (ARX) models

A(q−1)y(t) = B(q−1)u(t) + e(t)
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State-space models

A linear stochastic model:

x(t+ 1) = A(θ)x(t) +B(θ)u(t) + ν(t)

y(t) = C(θ)x(t) + η(t)

ν(t) and η(t) are white noise sequences with zero means and

E

[

ν(t)
η(t)

] [

ν(s)
η(s)

]

∗

=

[

R1(θ)δt,s R12(θ)δt,s
R∗

12(θ)δt,s R2(θ)δt,s

]

• ν(t) is the process noise

• η(t) is the measurement noise

• needs to transform to the so-called innovation form to compare with the
standard model
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Chooing a class of model structures

Important factors:

• Flexibility: the model structure should describe most of the different
system dynamics expected in the application

• Parsimony: the model should contain the smallest number of free
parameters required to explain the data adequately

• Algorithm complexity: the form of model structure can considerably
influence the computational cost

• Properties of the criterion function: for example, the asymptotic
properties of prediction-error method depends crucially on the criterion
function and the model structure
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Uniqueness properties

Within a model structure, we are concerned with the problem of
adequately and uniquely describing a given system

Define D the set of θ for which (Ĝ, Ĥ, Λ̂) gives a perfect description of the
true system

Three possibilities of this set can occur:

• the set D is empty or underparametrization

• the set D contains one point

• the set D consists of several points or overparametrization
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Uniqueness properties for a scalar ARMA model

Let the true ARMA model is given by

A(q−1)y(t) = C(q−1)e(t), E e(t)2 = λ2

D is the set of Â, B̂, Ĉ, λ̂ for which

C(q−1)

A(q−1)
=

Ĉ(q−1)

Â(q−1)
, λ̂2 = λ2

In order for these equalities to have a solution, we must have

deg(Â) ≥ deg(A), deg(Ĉ) ≥ deg(C)

or,

n∗ , min
{

deg(Â)− deg(A), deg(Ĉ)− deg(C)
}

≥ 0
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• A and C have no common factor

• C(q−1)
A(q−1)

and Ĉ(q−1)

Â(q−1)
must have the same poles and zeros

These implies

Â(q−1) = A(q−1)D(q−1), Ĉ(q−1) = C(q−1)D(q−1)

where D(q−1) has arbitrary coefficients

deg(D) = min{deg(Â)− deg(A), deg(Ĉ)− deg(C)} = n∗

• n∗ > 0: infinitely many solutions of Ĉ, Â, λ̂ (by varying D)

• n∗ = 0: this gives D(q−1) = 1, or at least one of Â and Ĉ has the
same degree as the true polynomial
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Nonuniqueness of general state-space models

Consider the multivariable model

x(t+ 1) = A(θ)x(t) +B(θ)u(t) + ν(t)

y(t) = C(θ)x(t) + η(t)

where ν(t) and η(t) are mutually independent white noise with zero means
and covariance R1, R2 resp.

Also consider a second model

z(t+ 1) = Ā(θ)z(t) + B̄(θ)u(t) + ν̄(t)

y(t) = C̄(θ)z(t) + η(t)

where E ν̄(t)ν̄(s)∗ = R̄1δt,s and

Ā = QAQ−1, B̄ = QB, C̄ = CQ−1, R̄1 = QR1Q
∗

for some nonsingular matrix Q
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The two models are equivalent:

• they have the same transfer function from u to y

G(q−1) = C̄(qI −A)−1B̄ = CQ−1(qI −QAQ−1)−1QB = C(qI −A)−1B

• the outputs y from the two models have the same second-order
properties, i.e., the spectral densities are the same

Sy(ω) = C̄(eiω − Ā)−1R̄1(e
iω − Ā)−∗C̄∗ +R2

= CQ−1(eiω − Ā)−1QR1Q
∗(eiω − Ā)−∗Q−∗C∗ + R2

= C[Q−1(eiω − Ā)Q]−1R1[Q
∗(eiω − Ā)∗Q−∗]−1C∗ + R2

= C(eiω −A)−1R1(e
iω − A)−∗C∗ +R2

The model is not unique since Q can be chosen arbitrarily
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