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Description

Determine the model parameter 6 such that
e(t,0) = y(t) —y(tlt —1;0)
is small

e y(t|t — 1;0) is a prediction of y(t) given the data up to and including
time ¢ — 1 and based on 6

e a general linear predictor can be expressed as
g(tlt —1;0) = L(g;0)y(t) + M(q~ "5 0)u(t)
where L and M must contain one pure delay, i.e.,

L(0;6) = 0, M(0;6) = 0
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Elements of PEM

One has to make the following choices, in order to define the method

e Choice of model structure: the parametrization of
G(q~1:0),H(q ' 0) and A(#) as a function of 6

e Choice of predictor: the choice of filters L, M once the model is
specified

e Choice of criterion: define a scalar-valued function of e(t, #) that will
assess the performance of the predictor

The most common way is to let (t|t — 1;6) be the optimal mean square
predictor

The filters are chosen such that the prediction error have as small variance
as possible
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Loss function

Let NV be the number of data points. Define the sample covariance matrix

1 *
R(0) = N ;:1 e(t,0)e*(t,0)
R(0) is a positive semidefinite matrix

In many cases, R(f) is positive definite (e.g., when N is large)

A loss function
f(R(0))

is a scalar-valued function defined on the set of p.d.f. matrices R

f must be monotonically increasing, i.e., let X = 0 and for any AX > 0

f(X +AX) = f(X)
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Example 1 f(X) = tr(WX) where W = 0 is a weighting matrix

fIX+AX)=tr(WX) +tr(WAX) > f(X)
(tr(WAX) > 0 because if A > 0,B > 0, then tr(AB) > 0)
Example 2 f(X) =det X

FX +AX) — f(X) =det(XV2(I + X YV2AXX Y2 X1/2) — det X
= det X[det(] + X Y2AX X Y2) — 1]

=det X | [+ M(XTVPAXXT12) — 1] >0
k=1

The last inequalty follows from X ~Y/2AXX~1/2 =0, so A\;, > 0 for all k

Both examples satisfy f(X + AX) = f(X) < AX =0
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Procedures in PEM

e Choose a model structure of the form

y(t) = G(g " 0)ut) + H(g 5 0)v(t), Ev(t)v(t)* =A(0)

e Choose a predictor of the form

g(t[t — 1;0) = Lg% 0)y(t) + M (g~ 0)u(?)

e Select a criterion function f(R(6))

e Determine 6 that minimizes the loss function f
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Example: Least-squares method as a PEM

Use linear regression in the dynamics of the form
A(g~Ny(t) = Blg™ ult) + (1)
We can write y(t) = H(t)0 + e(t) where

Ht)=|-y(t—1) ... —ylt—p) u(t—1) ... wu(t—r)
]T
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Hence, the prediction is in the form of
g(t) = L5 0)y(t) + M (g~ 0)u(t)

where L(¢g7%0) =1 — A(¢g™') and M (¢ *;0) = B(¢™)

note that L(0;0) =0 and M(0;0) = 0,

so ¢ uses the data up to time t — 1 as required

The loss function in this case is tr(R(#)) (quadratic in the prediction error)
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Example: Maximum Likelihood estimation as a PEM

Suppose the noise v(t) in the following model is Gaussian distributed
y(t) = G(g ult) + H(g v(t), Ev(t)v(s)" = Adrs

Again drop 6 from GG, H, A and the unknowns are A, 0

The conditional likelihood function of y(¢) (conditioning on the initial
conditions) is

1 1 o

_ - T —1
L(A.6) = G177 qor VRSP 52 _¢ (LOA T e(t,0)

t=1

Take logarithms and ignore the constant term

N
N 1
log L(A,0) = —Elog det A — 5 Z el (t,0)A"te(t,0)

t=1
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Define R(0) = (1/N) 20 e(t,0)e(t,0)T
log L(A,0) = — {log det A=" — tr(A""R(0))}

Setting the gradient w.r.t A=! to zero gives
A = R(0)
and the maximum likelihood problem turns to be

maximize — logdet R(0)

can be interpreted as a PEM using det as a loss function
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Optimal prediction
Consider the general linear model

y(t) = G(g~ u(t) + H(g )v(t), Ev(t)r(s)" = Ad

(we drop argument 6 in G, H, A for notational convenience)

Assumptions:

e G(0)=0,H(0) =1
e H (g ') and H (¢ )G (¢~ ) are asymptotically stable

e u(t) and v(s) are uncorrelated for t < s
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Rewrite y(t) as

y(t) = G(g~Hu(t) + [H(g™) — Iv(t) + v(t)
= G(g Mult) + [H(g™") = IIH (g™ Hy(t) — Glg~u(t)] + v(t)
= {H g HG(g ult) + [T = H g )y(t)} +v(t)
2 2(t) + v(t)

e G(0)=0and H(0) =1 imply z(t) contains u(s),y(s) up to time t — 1

e Hence, z(t) and v(t) are uncorrelated

Let 4(t) be an arbitrary predictor of y(t)

Ely(t) —9(0)|ly(t) —9(t)]" = E
E

2() = (O)[=(t) = GO + A = A
This gives a lower bound, A on the prediction error variance
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The optimal predictor minimizes the prediction error variance

Therefore, §(t) = z(t) and is given by
gt —1) = H (¢~ )G(g™ ult) + [T — H (g™ ]y(t)
The corresponding prediction error can be written as

e(t) =y(t) —g(tlt —1) = v(t) = H (¢~ )[y(t) — G(g~ )u(t)]

e From G(0) =0 and H(0) = I, (t) depends on past data up to time
t—1

e These expressions suggest asymptotical stability assumptions in H~1G
and H~!
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Optimal predictor for an ARMAX model

Consider the model

y(t) +ay(t—1)=bu(t —1)+v(t) + cv(t — 1)
where v(t) is zero mean white noise with variance \?
For this particular case,

bq_1 B 1+ cq_1
+ aq

Then the optimal predictor is given by

bg—?

u
1+ cqg=1

g(tlt —1) =
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For computation, we use the recursion equation
yg(tlt — 1) +cy(t -1t —=2) =(c—a)y(t — 1) + bu(t — 1)

The prediction error is

and it obeys
e(t) +ce(t—1)=y(t) +ay(t —1) —bu(t —1)

e The recursion equation requires an initial value, i.e., €(0)
e Setting ¢(0) = 0 is equivalent to (0| — 1) =0

e The transient is not significant for large ¢
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Kalman Filter

For systems given in a state-space form

where v(t), n(t) are mutually uncorrelated white noise with zero means and
covariances R1, Ro resp.

The optimal one-step predictor of y(t) is given by the Kalman filter

Az(t) + Bu(t) + K[y(t) — C(t)]
C2(t)

B(t+1)
y(t)

>

where K is the steady-state Kalman gain
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The Kalman gain is given by
K = APC*(CPC* + Ry) ™!
and P is the solution to the algebraic Riccati equation:

P = APA* + R, — APC*(CPC* + Ry) 'CPA*

e The predictor is mean square optimal if the disturbances are Gaussian

e For other distributions, the predictor is the optimal linear predictor
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Example: Kalman filter of ARMAX model

Consider the model
y(t) +ay(t —1)=bu(t — 1)+ ((t) + cC(t —1)

where |c| < 1 and ((t) is zero mean white noise with variance \?

This model can be written in state-space form as

z(t+1) = :_O“ (1)] (t) + [8] u(t) + H C(t+1)

y(t) = 1 0] ()

]C(t+1) and then Ry = \? [1 62] ,Ro =10

cC C

1
C

with v(t) £ [
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Since the last row of A is entirely zero, we can verify that P has the form

l4+a c
C C

P:>\2[ 2

where « satisfies

(c —a — ax)?
1 4+«

a=(c—a)+a’a —

There are two solutions, « = 0 and aa = ¢® — 1
Hence, we pick o = 0 to make P positive definite

The Kalman gain is therefore
=[5l ) (ol R -
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The one-step optimal predictor of the output is

z(t+1) = o 1] z(t) + H u(t) + lcga’] (y(t) — [1 0] &(¢))

0 0 0
_ :_()C (1)] 2(t) + [8] u(t) + [CBG’] y(t)

g(t) =1 0] ()
Then it follows that

W= ofete “Tou(t) + (¢ — a)y(t)
-t ol ] o
q+c

bg ™" (c—a)g
= t t
1+cq—1u( )+ 1+ cq=1 y(t)

[bu(t) + (¢ — a)y(t)]

same result as in page 11-14
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Theoretical result

Assumptions:

1. The data {u(t),y(t)} are stationary processes
2. The input is persistently exciting

3. The Hessian V2 f is nonsingular locally around the minimum points of

()

4. The filters G(q~ 1), H(q™') are differentiable functions of 6

Under these assumptions, the PEM estimate is consistent

A

0 —60, as N — o0
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Statistical efficiency

For Gaussian disturbances the PEM method is statistically efficient if
e SISO: f(0) = tr(R(0))

e MIMO:

— f(0) =tr(WR(0)) and W = A~! (the true covariance of noise)
— 1(6) = det(R(6))
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Computational aspects

I. Analytical solution exists

If the predictor is a linear function of the parameter
y(t|t — 1) = H(t)0

and the criterion function f(6) is simple enough, i.e.,
1 , 1w )
£(0) = tr(R(6) = = > e(t.0)” = = D (w(t) — H(1)o)
t=1 t=1

It is clear that PEM is equivalent to the LS method

This holds for ARX or FIR models (but not for ARMAX and Output error
models)
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Il. No analytical solution exists

It involves a nonlinear optimization for

e general criterion functions

e predictors that depend nonlinearly on the data

Example of numerical algorithms: Newton-Ralphson, Gradient based
methods, Grid search

Typical issues in nonlinear minimization:

e solutions may consist of many local minima
e convergence rate and computational cost

e choice of initialization
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Numerical example

The true system is given by

(1—-1.5¢ 1 40.7¢ *)y(t) = (1.0~ *+0.5¢ H)u(t)+(1—-1.0¢ 1 4+0.2¢ ?)e(t)

e ARMAX model
e u(t) is binary white noise, independent of e(t)
e ¢(t) is white noise withzero mean and variance 1

e N = 250 (number of data points)
estimation

e assume the model structure and model order are known

e use armax command in MATLAB
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Example of MATLAB codes

%/ Generate the data

N = 250; Ts = 1; u_var = 1; noise_var = 1;
=[1-1.50.7]; b=[01 .5]; ¢c=1[1-10.2];
sign(randn(2*N,1))*sqrt(u_var); e = randn(2x*N,1);
idpoly(a,b,c,1,1,noise_var,Ts);

= sim(M, [u el);

uv = u(N+l:end); ev = e(N+l:end); yv = y(N+1l:end);
u=u(l:N); e = e(1:N); y = y(1:N);

DATe = iddata(y,u,Ts); DATv = iddata(yv,uv,Ts);

< =20
I

%% Identification
na = 2; nb = 2; nc = 2;
theta_pem = armax(DATe, [na nb nc 1]); 7 ARMAX using PEM

%/ Compare the measured output and the model output

[yhatl,fit1] = compare(DATe,theta_pem) ;
[yhat2,fit2] = compare(DATv,theta_pem) ;
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t = 1:N;

figure;

subplot(2,1,1);plot(t,yhati{1}.y,’-=’,t,y);

legend(’model’, ’measured’) ;

title(’Comparison on estimation data set’,’FontSize’,16);
ylabel(’y’) ;xlabel(’t’);
subplot(2,1,2);plot(t,yhat2{1}.y,’--’,t,yv);legend(’y2’,’y’);
legend (’model’ , ’measured’) ;

title(’Comparison on validation data set’,’FontSize’,16);
ylabel(’y’) ;xlabel(’t’);
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