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Description

Determine the model parameter θ such that

e(t, θ) = y(t)− ŷ(t|t− 1; θ)

is small

• ŷ(t|t− 1; θ) is a prediction of y(t) given the data up to and including
time t− 1 and based on θ

• a general linear predictor can be expressed as

ŷ(t|t− 1; θ) = L(q−1; θ)y(t) +M(q−1; θ)u(t)

where L and M must contain one pure delay, i.e.,

L(0; θ) = 0,M(0; θ) = 0
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Elements of PEM

One has to make the following choices, in order to define the method

• Choice of model structure: the parametrization of
G(q−1; θ),H(q−1; θ) and Λ(θ) as a function of θ

• Choice of predictor: the choice of filters L,M once the model is
specified

• Choice of criterion: define a scalar-valued function of e(t, θ) that will
assess the performance of the predictor

The most common way is to let ŷ(t|t− 1; θ) be the optimal mean square

predictor

The filters are chosen such that the prediction error have as small variance
as possible
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Loss function

Let N be the number of data points. Define the sample covariance matrix

R(θ) =
1

N

N
∑

t=1

e(t, θ)e∗(t, θ)

R(θ) is a positive semidefinite matrix

In many cases, R(θ) is positive definite (e.g., when N is large)

A loss function
f(R(θ))

is a scalar-valued function defined on the set of p.d.f. matrices R

f must be monotonically increasing, i.e., let X ≻ 0 and for any ∆X � 0

f(X +∆X) ≥ f(X)
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Example 1 f(X) = tr(WX) where W ≻ 0 is a weighting matrix

f(X +∆X) = tr(WX) + tr(W∆X) ≥ f(X)

(tr(W∆X) ≥ 0 because if A � 0, B � 0, then tr(AB) ≥ 0)

Example 2 f(X) = detX

f(X +∆X)− f(X) = det(X1/2(I +X−1/2∆XX−1/2)X1/2)− detX

= detX [det(I +X−1/2∆XX−1/2)− 1]

= detX

[

n
∏

k=1

(1 + λk(X
−1/2∆XX−1/2))− 1

]

≥ 0

The last inequalty follows from X−1/2∆XX−1/2 � 0, so λk ≥ 0 for all k

Both examples satisfy f(X +∆X) = f(X) ⇐⇒ ∆X = 0
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Procedures in PEM

• Choose a model structure of the form

y(t) = G(q−1; θ)u(t) +H(q−1; θ)ν(t), E ν(t)ν(t)∗ = Λ(θ)

• Choose a predictor of the form

ŷ(t|t− 1; θ) = L(q−1; θ)y(t) +M(q−1; θ)u(t)

• Select a criterion function f(R(θ))

• Determine θ̂ that minimizes the loss function f
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Example: Least-squares method as a PEM

Use linear regression in the dynamics of the form

A(q−1)y(t) = B(q−1)u(t) + ε(t)

We can write y(t) = H(t)θ + ε(t) where

H(t) =
[

−y(t− 1) . . . −y(t− p) u(t− 1) . . . u(t− r)
]

θ =
[

a1 . . . ap b1 . . . br
]T

θ̂ that minimizes (1/N)
∑N

t=1 ε
2(t) will gives a prediction of y(t):

ŷ(t) = H(t)θ̂ = (1− Â(q−1))y(t) + B̂(q−1)u(t)
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Hence, the prediction is in the form of

ŷ(t) = L(q−1; θ)y(t) +M(q−1; θ)u(t)

where L(q−1; θ) = 1− Â(q−1) and M(q−1; θ) = B(q−1)

note that L(0; θ) = 0 and M(0; θ) = 0,

so ŷ uses the data up to time t− 1 as required

The loss function in this case is tr(R(θ)) (quadratic in the prediction error)
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Example: Maximum Likelihood estimation as a PEM

Suppose the noise ν(t) in the following model is Gaussian distributed

y(t) = G(q−1)u(t) +H(q−1)ν(t), E ν(t)ν(s)∗ = Λδt,s

Again drop θ from G,H,Λ and the unknowns are Λ, θ

The conditional likelihood function of y(t) (conditioning on the initial
conditions) is

L(Λ, θ) =
1

(2π)N ·dim(y)/2 detΛN/2
exp−

1

2

N
∑

t=1

eT (t, θ)Λ−1e(t, θ)

Take logarithms and ignore the constant term

logL(Λ, θ) = −
N

2
log detΛ−

1

2

N
∑

t=1

eT (t, θ)Λ−1e(t, θ)
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Define R(θ) = (1/N)
∑N

t=1 e(t, θ)e(t, θ)
T

logL(Λ, θ) =
N

2

{

log detΛ−1 − tr(Λ−1R(θ))
}

Setting the gradient w.r.t Λ−1 to zero gives

Λ = R(θ)

and the maximum likelihood problem turns to be

maximize − log detR(θ)

can be interpreted as a PEM using det as a loss function
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Optimal prediction

Consider the general linear model

y(t) = G(q−1)u(t) +H(q−1)ν(t), E ν(t)ν(s)∗ = Λδt,s

(we drop argument θ in G,H,Λ for notational convenience)

Assumptions:

• G(0) = 0,H(0) = I

• H−1(q−1) and H−1(q−1)G(q−1) are asymptotically stable

• u(t) and ν(s) are uncorrelated for t < s
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Rewrite y(t) as

y(t) = G(q−1)u(t) + [H(q−1)− I ]ν(t) + ν(t)

= G(q−1)u(t) + [H(q−1)− I ]H−1(q−1)[y(t)−G(q−1)u(t)] + ν(t)

=
{

H−1(q−1)G(q−1)u(t) + [I −H−1(q−1)]y(t)
}

+ ν(t)

, z(t) + ν(t)

• G(0) = 0 and H(0) = I imply z(t) contains u(s), y(s) up to time t− 1

• Hence, z(t) and ν(t) are uncorrelated

Let ŷ(t) be an arbitrary predictor of y(t)

E[y(t)− ŷ(t)][y(t)− ŷ(t)]∗ = E[z(t) + ν(t)− ŷ(t)][z(t) + ν(t)− ŷ(t)]∗

= E[z(t)− ŷ(t)][z(t)− ŷ(t)]∗ + Λ ≥ Λ

This gives a lower bound, Λ on the prediction error variance
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The optimal predictor minimizes the prediction error variance

Therefore, ŷ(t) = z(t) and is given by

ŷ(t|t− 1) = H−1(q−1)G(q−1)u(t) + [I −H−1(q−1)]y(t)

The corresponding prediction error can be written as

e(t) = y(t)− ŷ(t|t− 1) = ν(t) = H−1(q−1)[y(t)−G(q−1)u(t)]

• From G(0) = 0 and H(0) = I , ŷ(t) depends on past data up to time
t− 1

• These expressions suggest asymptotical stability assumptions in H−1G
and H−1
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Optimal predictor for an ARMAX model

Consider the model

y(t) + ay(t− 1) = bu(t− 1) + ν(t) + cν(t− 1)

where ν(t) is zero mean white noise with variance λ2

For this particular case,

G(q−1) =
bq−1

1 + aq−1
, H(q−1) =

1 + cq−1

1 + aq−1

Then the optimal predictor is given by

ŷ(t|t− 1) =
bq−1

1 + cq−1
u(t) +

(c− a)q−1

1 + cq−1
y(t)

Prediction Error Methods (PEM) 11-14



For computation, we use the recursion equation

ŷ(t|t− 1) + cŷ(t− 1|t− 2) = (c− a)y(t− 1) + bu(t− 1)

The prediction error is

e(t) =
1 + aq−1

1 + cq−1
y(t)−

b

1 + cq−1
u(t)

and it obeys

e(t) + ce(t− 1) = y(t) + ay(t− 1)− bu(t− 1)

• The recursion equation requires an initial value, i.e., e(0)

• Setting e(0) = 0 is equivalent to ŷ(0| − 1) = 0

• The transient is not significant for large t
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Kalman Filter

For systems given in a state-space form

x(t+ 1) = Ax(t) +Bu(t) + ν(t)

y(t) = Cx(t) + η(t)

where ν(t), η(t) are mutually uncorrelated white noise with zero means and
covariances R1, R2 resp.

The optimal one-step predictor of y(t) is given by the Kalman filter

x̂(t+ 1) = Ax̂(t) + Bu(t) +K[y(t)− Cx̂(t)]

ŷ(t) = Cx̂(t)

where K is the steady-state Kalman gain
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The Kalman gain is given by

K = APC∗(CPC∗ +R2)
−1

and P is the solution to the algebraic Riccati equation:

P = APA∗ +R1 −APC∗(CPC∗ +R2)
−1CPA∗

• The predictor is mean square optimal if the disturbances are Gaussian

• For other distributions, the predictor is the optimal linear predictor
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Example: Kalman filter of ARMAX model

Consider the model

y(t) + ay(t− 1) = bu(t− 1) + ζ(t) + cζ(t− 1)

where |c| < 1 and ζ(t) is zero mean white noise with variance λ2

This model can be written in state-space form as

x(t+ 1) =

[

−a 1
0 0

]

x(t) +

[

b
0

]

u(t) +

[

1
c

]

ζ(t+ 1)

y(t) =
[

1 0
]

x(t)

with ν(t) ,

[

1
c

]

ζ(t+ 1) and then R1 = λ2

[

1 c
c c2

]

, R2 = 0
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Since the last row of A is entirely zero, we can verify that P has the form

P = λ2

[

1 + α c
c c2

]

where α satisfies

α = (c− a)2 + a2α−
(c− a− aα)2

1 + α

There are two solutions, α = 0 and α = c2 − 1

Hence, we pick α = 0 to make P positive definite

The Kalman gain is therefore

K =

[

−a 1
0 0

] [

1 c
c c2

] [

1
0

](

[

1 0
]

[

1 c
c c2

] [

1
0

])

−1

=

[

c− a
0

]
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The one-step optimal predictor of the output is

x̂(t+ 1) =

[

−a 1
0 0

]

x̂(t) +

[

b
0

]

u(t) +

[

c− a
0

]

(y(t)−
[

1 0
]

x̂(t))

=

[

−c 1
0 0

]

x̂(t) +

[

b
0

]

u(t) +

[

c− a
0

]

y(t)

ŷ(t) =
[

1 0
]

x̂(t)

Then it follows that

ŷ(t) =
[

1 0
]

[

q + c −1
0 q

]

−1 [
bu(t) + (c− a)y(t)

0

]

=
1

q + c
[bu(t) + (c− a)y(t)]

=
bq−1

1 + cq−1
u(t) +

(c− a)q−1

1 + cq−1
y(t)

same result as in page 11-14
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Theoretical result

Assumptions:

1. The data {u(t), y(t)} are stationary processes

2. The input is persistently exciting

3. The Hessian ∇2f is nonsingular locally around the minimum points of
f(θ)

4. The filters G(q−1),H(q−1) are differentiable functions of θ

Under these assumptions, the PEM estimate is consistent

θ̂ → θ, as N → ∞
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Statistical efficiency

For Gaussian disturbances the PEM method is statistically efficient if

• SISO: f(θ) = tr(R(θ))

• MIMO:

– f(θ) = tr(WR(θ)) and W = Λ−1 (the true covariance of noise)
– f(θ) = det(R(θ))

Prediction Error Methods (PEM) 11-22



Computational aspects

I. Analytical solution exists

If the predictor is a linear function of the parameter

ŷ(t|t− 1) = H(t)θ

and the criterion function f(θ) is simple enough, i.e.,

f(θ) = tr(R(θ)) =
1

N

N
∑

t=1

e(t, θ)2 =
1

N

N
∑

t=1

(y(t)−H(t)θ)2

It is clear that PEM is equivalent to the LS method

This holds for ARX or FIR models (but not for ARMAX and Output error
models)
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II. No analytical solution exists

It involves a nonlinear optimization for

• general criterion functions

• predictors that depend nonlinearly on the data

Example of numerical algorithms: Newton-Ralphson, Gradient based
methods, Grid search

Typical issues in nonlinear minimization:

• solutions may consist of many local minima

• convergence rate and computational cost

• choice of initialization
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Numerical example

The true system is given by

(1−1.5q−1+0.7q−2)y(t) = (1.0q−1+0.5q−2)u(t)+(1−1.0q−1+0.2q−2)e(t)

• ARMAX model

• u(t) is binary white noise, independent of e(t)

• e(t) is white noise withzero mean and variance 1

• N = 250 (number of data points)

estimation

• assume the model structure and model order are known

• use armax command in MATLAB
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Example of MATLAB codes

%% Generate the data

N = 250; Ts = 1; u_var = 1; noise_var = 1;

a = [1 -1.5 0.7]; b = [0 1 .5]; c = [1 -1 0.2];

u = sign(randn(2*N,1))*sqrt(u_var); e = randn(2*N,1);

M = idpoly(a,b,c,1,1,noise_var,Ts);

y = sim(M,[u e]);

uv = u(N+1:end); ev = e(N+1:end); yv = y(N+1:end);

u = u(1:N); e = e(1:N); y = y(1:N);

DATe = iddata(y,u,Ts); DATv = iddata(yv,uv,Ts);

%% Identification

na = 2; nb = 2; nc = 2;

theta_pem = armax(DATe,[na nb nc 1]); % ARMAX using PEM

%% Compare the measured output and the model output

[yhat1,fit1] = compare(DATe,theta_pem);

[yhat2,fit2] = compare(DATv,theta_pem);
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t = 1:N;

figure;

subplot(2,1,1);plot(t,yhat1{1}.y,’--’,t,y);

legend(’model’,’measured’);

title(’Comparison on estimation data set’,’FontSize’,16);

ylabel(’y’);xlabel(’t’);

subplot(2,1,2);plot(t,yhat2{1}.y,’--’,t,yv);legend(’y2’,’y’);

legend(’model’,’measured’);

title(’Comparison on validation data set’,’FontSize’,16);

ylabel(’y’);xlabel(’t’);
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