6. Input signals

- Common input signals in system identification
 - step function
 - sum of sinusoids
 - ARMA sequences
 - Pseudo random binary sequence
- Spectral characteristics
- Persistent excitation

Step function

A step function is given by

$$u(t) = \begin{cases} 0, & t < 0 \\ u_0, & t \ge 0 \end{cases}$$

where the amplitude u_0 is arbitrarily chosen

The step response can be related to rise time, overshoots, static gain, etc.

It is useful for systems with a large signal-to-noise ratio

Sum of sinusoids

The input signal u(t) is given by

$$u(t) = \sum_{k=1}^{m} a_k \sin(\omega_k t + \phi_k)$$

where the angular frequencies $\{\omega_k\}$ are distinct,

$$0 \le \omega_1 < \omega_2 < \ldots < \omega_m \le \pi$$

and the amplitudes and phases a_k, ϕ_k are chosen by the user

Characterization of sinusoids

Let S_N be the average of a sinusoid over N points

$$S_N = \frac{1}{N} \sum_{t=1}^{N} a \sin(\omega t + \phi)$$

Let μ be the mean of the sinusoidal function

$$\mu = \lim_{N \to \infty} S_N = \begin{cases} a \sin \phi, & \omega = 2n\pi, n = 0, \pm 1, \pm 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

Therefore, $u(t) = \sum_{k=1}^{m} a_k \sin(\omega_k t + \phi_k)$ has zero mean if $\omega_1 > 0$

Otherwise, we can always subtract the mean from u(t)

WLOG, assume zero mean for u(t)

Spectrum of sinusoidal inputs

The autocorrelation function can be computed by

$$R(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} u(t+\tau)u(t)$$
$$= \sum_{k=1}^{m} C_k \cos(\omega_k \tau)$$

with $C_k = a_k^2/2$ for $k = 1, 2, \dots, m$

If $\omega_m = \pi$, the coefficient C_m should be modified by

$$C_m = a_m^2 \sin^2 \phi_m$$

Therefore, the spectrum is

$$S(\omega) = \sum_{k=1}^{m} (C_k/2) \left[\delta(\omega - \omega_k) + \delta(\omega + \omega_k) \right]$$

Autoregressive Moving Average sequence

Let e(t) be a pseudorandom sequence similar to white noise in the sense that

$$\frac{1}{N} \sum_{t=1}^{N} e(t)e(t+\tau) \to 0, \quad \text{as } N \to \infty$$

A general input u(t) can be obtained by linear filtering

$$u(t) + c_1 u(t-1) + \dots + c_p u(t-p) = e(t) + d_1 e(t-1) + \dots + d_q e(t-p)$$

- u(t) is called ARMA (autoregressive moving average) process
- When all $c_i = 0$ it is called MA (moving average) process
- When all $d_i = 0$ it is called AR (autoregressive) process
- ullet The user gets to choose c_i,d_i and the random generator of e(t)

ARMA sequence (cont.)

The transfer function from e(t) to u(t) can be written as

$$U(z) = \frac{D(z)}{C(z)}E(z)$$

where

$$C(z) = 1 + c_1 z^{-1} + c_2 z^{-2} + \dots c_p z^{-p}$$

$$D(z) = 1 + d_1 z^{-1} + d_2 z^{-2} + \dots d_q z^{-q}$$

- ullet The distribution of e(t) is often chosen to be Gaussian
- c_i, d_i are chosen such that C(z), D(z) have zeros outside the unit circle
- Different choices of c_i , d_i lead to inputs with various spectral characteristics

Spectrum of ARMA process

Let e(t) be a white noise with variance λ^2

The spectral density of ARMA process is

$$S(\omega) = \lambda^2 \left| \frac{D(\omega)}{C(\omega)} \right|^2$$

Pseudorandom binary sequence (PRBS)

$$x(t+1) = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 1 & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ 0 & \dots & 1 & 0 \end{bmatrix} x(t)$$
$$y(t) = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix} x(t)$$

PRBS (cont.)

- Every initial state is allowed except the all-zero state
- The feedback coefficients a_1, a_2, \ldots, a_n are either 0 or 1
- All additions is modulo-two operation
- The sequences are two-state signals (binary)
- There are possible $2^n 1$ different state vectors x (all-zero state is excluded)
- A PRBS of period equal to $M=2^n-1$ is called a maximum length PRBS (ML PRBS)
- For maximum length PRBS, its characteristic resembles white random noise (pseudorandom)

Input signals

Influence of the feedback path on the period

Let n=3 and initialize x with x(0)=(1,0,0)

• With a=(1,1,0), the state vectors $x(k), k=1,2,\ldots$ are

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

The sequence has period equal to 3

ullet With a=(1,0,1), the state vectors $x(k), k=1,2,\ldots$ are

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

The sequence has period equal to 7 (the maximum period, 2^3-1)

Maximum length PRBS

Denote q^{-1} the unit delay operator and let

$$A(q^{-1}) = 1 \oplus a_1 q^{-1} \oplus a_2 q^{-2} \oplus \ldots \oplus a_n q^{-n}$$

The PRBS y(t) satisfies the homogeneous equation:

$$A(q^{-1})y(t) = 0$$

This equation has only solutions of period $M=2^n-1$ if and only if

1. The binary polynomial $A(q^{-1})$ is irreducible, *i.e.*, there do not exist any two polynomial $A_1(q^{-1})$ and $A_2(q^{-1})$ such that

$$A(q^{-1}) = A_1(q^{-1})A_2(q^{-1})$$

2. $A(q^{-1})$ is a factor of $1 \oplus q^{-M}$ but is not a factor of $1 \oplus q^{-p}$ for any p < M

Generating Maximum length PRBS

Examples of polynomials ${\cal A}(z)$ satisfying the previous two conditions

\overline{n}	A(z)	
3	$1 \oplus z \oplus z^3$	$1 \oplus z^2 \oplus z^3$
4	$1 \oplus z \oplus z^4$	$1 \oplus z^3 \oplus z^4$
5	$1 \oplus z^2 \oplus z^5$	$1 \oplus z^3 \oplus z^5$
6	$1 \oplus z \oplus z^6$	$1 \oplus z^5 \oplus z^6$
7	$1 \oplus z \oplus z^7$	$1 \oplus z^3 \oplus z^7$
8	$1 \oplus z \oplus z^2 \oplus z^7 \oplus z^8$	$1 \oplus z \oplus z^6 \oplus z^7 \oplus z^8$
9	$1 \oplus z^4 \oplus z^9$	$1 \oplus z^5 \oplus z^9$
10	$1 \oplus z^3 \oplus z^{10}$	$1\oplus z^7\oplus z^{10}$

Properties of maximum length PRBS

Let y(t) be an ML PRBS of period $M=2^n-1$

- Within one period y(t) contains $(M+1)/2=2^{n-1}$ ones and $(M-1)/2=2^{n-1}-1$ zeros
- For k = 1, 2, ..., M 1,

$$y(t) \oplus y(t-k) = y(t-l)$$

for some $l \in [1, M-1]$ that depends on k

Moreover, for any binary variables x, y,

$$xy = \frac{1}{2}(x + y - (x \oplus y))$$

These properties will be used to compute the covariance function of maximum length PRBS

Covariance function of maximum length PRBS

The mean is given by counting the number of outcome 1 in y(t):

$$m = \frac{1}{M} \sum_{t=1}^{M} y(t) = \frac{1}{M} \left(\frac{M+1}{2} \right) = \frac{1}{2} + \frac{1}{2M}$$

The mean is slightly greater than 0.5

Using $y^2(t) = y(t)$, we have the covariance function at lag zero as

$$C(0) = \frac{1}{M} \sum_{t=1}^{M} y^{2}(t) - m^{2} = m - m^{2} = \frac{M^{2} - 1}{4M^{2}}$$

The variance is therefore slightly less than 1/4

Covariance function of maximum length PRBS

For $\tau = 1, 2, ...,$

$$C(\tau) = (1/M) \sum_{t=1}^{M} y(t+\tau)y(t) - m^{2}$$

$$= \frac{1}{2M} \sum_{t=1}^{M} [y(t+\tau) + y(t) - (y(t+\tau) \oplus y(t))] - m^{2}$$

$$= m - \frac{1}{2M} \sum_{t=1}^{M} y(t+\tau - l) - m^{2} = m/2 - m^{2}$$

$$= -\frac{M+1}{4M^{2}}$$

Asymptotic behavior of the covariance function of PRBS

Define $\tilde{y}(t) = -1 + 2y(t)$ so that its outcome is either -1 or 1

$$\tilde{m} = -1 + 2m = 1/M \approx 0$$

$$\tilde{C}(0) = 4C(0) = 1 - 1/M^2 \approx 1$$

$$\tilde{C}(\tau) = 4C(\tau) = -1/M - 1/M^2 \approx -1/M, \quad \tau = 1, 2, \dots, M-1$$

When M is large, the covariance function of PRBS has similar properties to a white noise

However, their spectral density matrices can be drastically different

Spectral density of PRBS

The output of PRBS sequence is shifted to values -a and a with period M

The autocorrelation function is also periodic and given by

$$R(\tau) = \begin{cases} a^2, & \tau = 0, \pm M, \pm 2M, \dots \\ -\frac{a^2}{M}, & \text{otherwise} \end{cases}$$

Since $R(\tau)$ is periodic with period M, it has a Fourier representation:

$$R(au) = \sum_{k=0}^{M-1} C_k e^{\mathrm{i}2\pi au k/M},$$
 with Fourier coefficients C_k

Therefore, the spectrum of PRBS is an impulse train:

$$S(\omega) = \sum_{k=0}^{M-1} C_k \delta(\omega - \frac{2\pi k}{M})$$

Spectral density of PRBS

Hence, the Fourier coefficients

$$C_k = \frac{1}{M} \sum_{\tau=0}^{M-1} R(\tau) e^{-i2\pi\tau k/M}$$

are also the spectral coefficients of $S(\omega)$

Using the expression of $R(\tau)$, we have

$$C_0 = \frac{a^2}{M^2}, \quad C_k = \frac{a^2}{M^2}(M+1), \quad k = 1, 2, \dots$$

Therefore,

$$S(\omega) = \frac{a^2}{M^2} \left[\delta(\omega) + (M+1) \sum_{k=1}^{M-1} \delta(\omega - 2\pi k/M) \right]$$

It does not resemble spectral characteristic of a white noise (flat spectrum)

Comparison of the covariances between filtered inputs

Define $y_1(t)$ as the output of a filter:

$$y_1(t) - ay_1(t-1) = u_1(t),$$

with white noise u(t) of zero mean and variance λ^2

Let $y_2(t)$ be the output of the same filter:

$$y_2(t) - ay_2(t-1) = u_2(t),$$

where $u_2(t)$ is a PRBS of period M and amplitude λ

What can we say about the covariances of $y_1(t)$ and $y_2(t)$?

Comparison of the correlations between filtered inputs

The correlation function of $y_1(t)$ is given by

$$R_1(\tau) = \frac{\lambda^2}{1 - a^2} a^{\tau}, \quad \tau \ge 0$$

The correlation function of $y_2(t)$ can be calculated as

$$R_{2}(\tau) = \int_{-\pi}^{\pi} S_{y_{2}}(\omega) e^{i\omega\tau} d\omega$$

$$= \int_{-\pi}^{\pi} S_{u_{2}}(\omega) \left| \frac{1}{1 - ae^{i\omega}} \right|^{2} e^{i\tau\omega} d\omega$$

$$= \frac{\lambda^{2}}{M} \left[\frac{1}{(1 - a)^{2}} + (M + 1) \sum_{k=1}^{M-1} \frac{\cos(2\pi\tau k/M)}{1 + a^{2} - 2a\cos(2\pi k/M)} \right]$$

Input signals

Plots of the correlation functions

- The filter parameter is a = 0.8
- ullet R(au) of white noise and PRBS inputs are very close when M is large

Input signals 6-22

Persistent excitation

A signal u(t) is persistently exciting of order n if

1. The following limit exists:

$$R(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} u(t+\tau)u(t)^*$$

2. The following matrix is positive definite

$$\mathbf{R}(n) = \begin{bmatrix} R(0) & R(1) & \dots & R(n-1) \\ R(-1) & R(0) & \dots & R(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ R(1-n) & R(2-n) & \dots & R(0) \end{bmatrix}$$

(if u(t) is from an ergodic stochastic process, then $\mathbf{R}(n)$ is the usual covariance matrix (assume zero mean))

Examining the order of persistent excitation

• White noise input of zero mean and variance λ^2

$$R(\tau) = \lambda^2 \delta(\tau), \quad \mathbf{R}(n) = \lambda^2 I_n$$

Thus, white noise is persistently exciting of all orders

• **Step input** of magnitude λ

$$R(\tau) = \lambda^2, \forall \tau, \quad \mathbf{R}(n) = \lambda^2 \mathbf{1}_n$$

A step function is persistently exciting of order 1

• Impulse input: u(t) = 1 for t = 0 and 0 otherwise

$$R(\tau) = 0, \forall \tau, \quad \mathbf{R}(n) = 0$$

An impulse is not persistently exciting of any order

Example 1: FIR models

Recall the problem of estimating an FIR model where

$$h(k) = 0, \quad k \ge M$$

The coefficients h(k) are the solution to the following equation

$$\begin{bmatrix} R_{yu}^*(0) \\ R_{yu}^*(1) \\ \vdots \\ R_{yu}^*(M-1) \end{bmatrix} = \begin{bmatrix} R_u(0) & R_u(1) & \cdots & R_u(M-1) \\ R_u(-1) & R_u(0) & \cdots & R_u(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ R_u(1-M) & R_u(2-M) & \cdots & R_u(0) \end{bmatrix} \begin{bmatrix} h^*(0) \\ h^*(1) \\ \vdots \\ h^*(M-1) \end{bmatrix}$$

To solve the equation, the matrix $\mathbf{R}(M+1)$ must be nonsingular

Example 2: Estimating noisy linear models

Consider a least-squares problem of estimating a first-order model

$$y(t) = ay(t-1) + bu(t) + e(t)$$

where u(t) is an input signal, and e(t) is an i.i.d. noise of zero mean

We can show that

• If u(t) is a PRBS or step input, the consistent estimates are obtained, i.e.,

$$(\hat{a},\hat{b}) \to (a,b), \quad \text{as } N \to \infty$$

- ullet If u(t) is an impulse, $\hat{a} \to a$ but \hat{b} does not converge to b as N increases
- ullet In loose terms, the impulse input does not provide enough information on y(t) to estimate b

Properties of persistently exciting signals

Let u(t) be a multivariable ergodic process. Assume that $S_u(\omega)$ is positive definite in at least n distinct frequencies (within the interval $(-\pi,\pi)$)

We have the following two properties

Property 1 u(t) is persistently exciting of order n

Property 2 The filtered signal $y(t) = H(q^{-1})u(t)$ is persistently exciting of order n

where H(z) is an asymptotically stable linear filter and $\det H(z)$ has no zero on the unit circle

From above facts, we can imply

An ARMA process is persistently exciting of any finite order

Input signals

Examining the order of PRBS

Consider a PRBS of period M and magnitude a, -a

The matrix containing n-covariance sequenes (where $n \leq M$) is

$$\mathbf{R}(n) = \begin{bmatrix} a^2 & -a^2/M & \dots & -a^2/M \\ -a^2/M & a^2 & \dots & -a^2/M \\ \vdots & \vdots & \ddots & \vdots \\ -a^2/M & -a^2/M & \dots & a^2 \end{bmatrix}$$

Therefore, for any $x \in \mathbf{R}^n$,

$$x^{T}\mathbf{R}(n)x = x^{T}\left((a^{2} + \frac{a^{2}}{M})I - \frac{a^{2}}{M}\mathbf{1}\mathbf{1}^{T}\right)x$$

$$\geq a^{2}(1 + \frac{1}{M})x^{T}x - \frac{a^{2}}{M}x^{T}x\mathbf{1}^{T}\mathbf{1} = a^{2}||x||^{2}\left(1 + \frac{(1-n)}{M}\right) \geq 0$$

A PRBS with period M is persistently exciting of order M

Examining the order of sum of sinusoids

Consider the signal $u(t) = \sum_{k=1}^{m} a_k \sin(\omega_k t + \phi_k)$

where
$$0 \le \omega_1 < \omega_2 < \ldots < \omega_m \le \pi$$

The spectral density of u is given by

$$S(\omega) = \sum_{k=1}^{m} \frac{C_k}{2} [\delta(\omega - \omega_k) + \delta(\omega + \omega_k)]$$

Therefore $S(\omega)$ is nonzero (in the interval $(-\pi,\pi]$) in exactly n points where

$$n = \begin{cases} 2m, & 0 < \omega_1, \omega_m < \pi \\ 2m - 1, & 0 = \omega_1, \text{ or } \omega_m = \pi \\ 2m - 2, & 0 = \omega_1 \text{ and } \omega_m = \pi \end{cases}$$

It follows from Property 1 that u(t) is persistently exciting of order n

Summary

- The choice of input is imposed by the type of identification method
- The input signal should be persistently exciting of a certain order to ensure that the system can be identified
- Some often used signals include PRBS and ARMA processes

Input signals 6-30

References

Chapter 5 in

T. Söderström and P. Stoica, System Identification, Prentice Hall, 1989

Input signals 6-31