
EE531 (Semester II, 2010)

6. Input signals

• Common input signals in system identification

– step function

– sum of sinusoids

– ARMA sequences

– Pseudo random binary sequence

• Spectral characteristics

• Persistent excitation
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Step function

A step function is given by

u(t) =

{

0, t < 0

u0, t ≥ 0

where the amplitude u0 is arbitrarily chosen

The step response can be related to rise time, overshoots, static gain, etc.

It is useful for systems with a large signal-to-noise ratio
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Sum of sinusoids

The input signal u(t) is given by

u(t) =
m
∑

k=1

ak sin(ωkt+ φk)

where the angular frequencies {ωk} are distinct,

0 ≤ ω1 < ω2 < . . . < ωm ≤ π

and the amplitudes and phases ak, φk are chosen by the user
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Characterization of sinusoids

Let SN be the average of a sinusoid over N points

SN =
1

N

N
∑

t=1

a sin(ωt+ φ)

Let µ be the mean of the sinusoidal function

µ = lim
N→∞

SN =

{

a sinφ, ω = 2nπ, n = 0,±1,±2, . . .

0, otherwise

Therefore, u(t) =
∑m

k=1 ak sin(ωkt+ φk) has zero mean if ω1 > 0

Otherwise, we can always subtract the mean from u(t)

WLOG, assume zero mean for u(t)
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Spectrum of sinusoidal inputs

The autocorrelation function can be computed by

R(τ) = lim
N→∞

1

N

N
∑

t=1

u(t+ τ)u(t)

=
m
∑

k=1

Ck cos(ωkτ)

with Ck = a2k/2 for k = 1, 2, . . . ,m

If ωm = π, the coefficient Cm should be modified by

Cm = a2m sin2 φm

Therefore, the spectrum is

S(ω) =
m
∑

k=1

(Ck/2) [δ(ω − ωk) + δ(ω + ωk)]
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Autoregressive Moving Average sequence

Let e(t) be a pseudorandom sequence similar to white noise in the sense
that

1

N

N
∑

t=1

e(t)e(t+ τ) → 0, as N → ∞

A general input u(t) can be obtained by linear filtering

u(t) + c1u(t− 1) + . . . cpu(t− p) = e(t) + d1e(t− 1) + . . .+ dqe(t− p)

• u(t) is called ARMA (autoregressive moving average) process

• When all ci = 0 it is called MA (moving average) process

• When all di = 0 it is called AR (autoregressive) process

• The user gets to choose ci, di and the random generator of e(t)
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ARMA sequence (cont.)

The transfer function from e(t) to u(t) can be written as

U(z) =
D(z)

C(z)
E(z)

where

C(z) = 1 + c1z
−1 + c2z

−2 + . . . cpz
−p

D(z) = 1 + d1z
−1 + d2z

−2 + . . . dqz
−q

• The distribution of e(t) is often chosen to be Gaussian

• ci, di are chosen such that C(z),D(z) have zeros outside the unit circle

• Different choices of ci, di lead to inputs with various spectral
characteristics
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Spectrum of ARMA process

Let e(t) be a white noise with variance λ2

The spectral density of ARMA process is

S(ω) = λ2
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Pseudorandom binary sequence (PRBS)

State State State

Clock

1 2 n

y(t)

a1 a2 an−1 an

x(t+ 1) =









a1 a2 . . . an
1 0 . . . 0
... . . . ...
0 . . . 1 0









x(t)

y(t) =
[

0 . . . 0 1
]

x(t)
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PRBS (cont.)

• Every initial state is allowed except the all-zero state

• The feedback coefficients a1, a2, . . . , an are either 0 or 1

• All additions is modulo-two operation

• The sequences are two-state signals (binary)

• There are possible 2n − 1 different state vectors x (all-zero state is
excluded)

• A PRBS of period equal to M = 2n − 1 is called a maximum length
PRBS (ML PRBS)

• For maximum length PRBS, its characteristic resembles white random
noise (pseudorandom)

Input signals 6-10



Influence of the feedback path on the period

Let n = 3 and initialize x with x(0) = (1, 0, 0)

• With a = (1, 1, 0), the state vectors x(k), k = 1, 2, . . . are





1
0
0









1
1
0









0
1
1









1
0
1









1
1
0





The sequence has period equal to 3

• With a = (1, 0, 1), the state vectors x(k), k = 1, 2, . . . are





1
0
0









1
1
0









1
1
1









0
1
1









1
0
1









0
1
0









0
0
1









1
0
0





The sequence has period equal to 7 (the maximum period, 23 − 1)
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Maximum length PRBS

Denote q−1 the unit delay operator and let

A(q−1) = 1⊕ a1q
−1 ⊕ a2q

−2 ⊕ . . .⊕ anq
−n

The PRBS y(t) satisfies the homogeneous equation:

A(q−1)y(t) = 0

This equation has only solutions of period M = 2n − 1 if and only if

1. The binary polynomial A(q−1) is irreducible, i.e., there do not exist any
two polynomial A1(q

−1) and A2(q
−1) such that

A(q−1) = A1(q
−1)A2(q

−1)

2. A(q−1) is a factor of 1⊕ q−M but is not a factor of 1⊕ q−p for any
p < M
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Generating Maximum length PRBS

Examples of polynomials A(z) satisfying the previous two conditions

n A(z)

3 1⊕ z ⊕ z3 1⊕ z2 ⊕ z3

4 1⊕ z ⊕ z4 1⊕ z3 ⊕ z4

5 1⊕ z2 ⊕ z5 1⊕ z3 ⊕ z5

6 1⊕ z ⊕ z6 1⊕ z5 ⊕ z6

7 1⊕ z ⊕ z7 1⊕ z3 ⊕ z7

8 1⊕ z ⊕ z2 ⊕ z7 ⊕ z8 1⊕ z ⊕ z6 ⊕ z7 ⊕ z8

9 1⊕ z4 ⊕ z9 1⊕ z5 ⊕ z9

10 1⊕ z3 ⊕ z10 1⊕ z7 ⊕ z10
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Properties of maximum length PRBS

Let y(t) be an ML PRBS of period M = 2n − 1

• Within one period y(t) contains (M + 1)/2 = 2n−1 ones and
(M − 1)/2 = 2n−1 − 1 zeros

• For k = 1, 2, . . . ,M − 1,

y(t)⊕ y(t− k) = y(t− l)

for some l ∈ [1,M − 1] that depends on k

Moreover, for any binary variables x, y,

xy =
1

2
(x+ y − (x⊕ y))

These properties will be used to compute the covariance function of
maximum length PRBS
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Covariance function of maximum length PRBS

The mean is given by counting the number of outcome 1 in y(t):

m =
1

M

M
∑

t=1

y(t) =
1

M

(

M + 1

2

)

=
1

2
+

1

2M

The mean is slightly greater than 0.5

Using y2(t) = y(t), we have the covariance function at lag zero as

C(0) =
1

M

M
∑

t=1

y2(t)−m2 = m−m2 =
M2 − 1

4M2

The variance is therefore slightly less than 1/4
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Covariance function of maximum length PRBS

For τ = 1, 2, . . .,

C(τ) = (1/M)
M
∑

t=1

y(t+ τ)y(t)−m2

=
1

2M

M
∑

t=1

[y(t+ τ) + y(t)− (y(t+ τ)⊕ y(t))]−m2

= m−
1

2M

M
∑

t=1

y(t+ τ − l)−m2 = m/2−m2

= −
M + 1

4M2
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Asymptotic behavior of the covariance function of PRBS

Define ỹ(t) = −1 + 2y(t) so that its outcome is either −1 or 1

m̃ = −1 + 2m = 1/M ≈ 0

C̃(0) = 4C(0) = 1− 1/M2 ≈ 1

C̃(τ) = 4C(τ) = −1/M − 1/M2 ≈ −1/M, τ = 1, 2, . . . ,M − 1

When M is large, the covariance function of PRBS has similar properties
to a white noise

However, their spectral density matrices can be drastically different
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Spectral density of PRBS

The output of PRBS sequence is shifted to values −a and a with period M

The autocorrelation function is also periodic and given by

R(τ) =

{

a2, τ = 0,±M,±2M, . . .

−a2

M , otherwise

Since R(τ) is periodic with period M , it has a Fourier representation:

R(τ) =
M−1
∑

k=0

Cke
i2πτk/M , with Fourier coefficients Ck

Therefore, the spectrum of PRBS is an impulse train:

S(ω) =

M−1
∑

k=0

Ckδ(ω −
2πk

M
)
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Spectral density of PRBS

Hence, the Fourier coefficients

Ck =
1

M

M−1
∑

τ=0

R(τ)e−i2πτk/M

are also the spectral coefficients of S(ω)

Using the expression of R(τ), we have

C0 =
a2

M2
, Ck =

a2

M2
(M + 1), k = 1, 2, . . .

Therefore,

S(ω) =
a2

M2

[

δ(ω) + (M + 1)

M−1
∑

k=1

δ(ω − 2πk/M)

]

It does not resemble spectral characteristic of a white noise (flat spectrum)
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Comparison of the covariances between filtered inputs

Define y1(t) as the output of a filter:

y1(t)− ay1(t− 1) = u1(t),

with white noise u(t) of zero mean and variance λ2

Let y2(t) be the output of the same filter:

y2(t)− ay2(t− 1) = u2(t),

where u2(t) is a PRBS of period M and amplitude λ

What can we say about the covariances of y1(t) and y2(t) ?
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Comparison of the correlations between filtered inputs

The correlation function of y1(t) is given by

R1(τ) =
λ2

1− a2
aτ , τ ≥ 0

The correlation function of y2(t) can be calculated as

R2(τ) =

∫ π

−π

Sy2(ω)e
iωτdω

=

∫ π

−π

Su2(ω)

∣

∣

∣

∣

1

1− aeiω

∣

∣

∣

∣

2

eiτωdω

=
λ2

M

[

1

(1− a)2
+ (M + 1)

M−1
∑

k=1

cos(2πτk/M)

1 + a2 − 2a cos(2πk/M)

]
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Plots of the correlation functions
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• The filter parameter is a = 0.8

• R(τ) of white noise and PRBS inputs are very close when M is large
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Persistent excitation

A signal u(t) is persistently exciting of order n if

1. The following limit exists:

R(τ) = lim
N→∞

1

N

N
∑

t=1

u(t+ τ)u(t)∗

2. The following matrix is positive definite

R(n) =









R(0) R(1) . . . R(n− 1)
R(−1) R(0) . . . R(n− 2)

... ... . . . ...
R(1− n) R(2− n) . . . R(0)









(if u(t) is from an ergodic stochastic process, then R(n) is the usual
covariance matrix (assume zero mean))
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Examining the order of persistent excitation

• White noise input of zero mean and variance λ2

R(τ) = λ2δ(τ), R(n) = λ2In

Thus, white noise is persistently exciting of all orders

• Step input of magnitude λ

R(τ) = λ2, ∀τ, R(n) = λ2
1n

A step function is persistently exciting of order 1

• Impulse input: u(t) = 1 for t = 0 and 0 otherwise

R(τ) = 0, ∀τ, R(n) = 0

An impulse is not persistently exciting of any order
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Example 1: FIR models

Recall the problem of estimating an FIR model where

h(k) = 0, k ≥ M

The coefficients h(k) are the solution to the following equation









R∗

yu(0)
R∗

yu(1)
...

R∗

yu(M − 1)









=









Ru(0) Ru(1) · · · Ru(M − 1)
Ru(−1) Ru(0) · · · Ru(M − 2)

... ... . . . ...
Ru(1−M) Ru(2−M) · · · Ru(0)

















h∗(0)
h∗(1)

...
h∗(M − 1)









To solve the equation, the matrix R(M + 1) must be nonsingular
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Example 2: Estimating noisy linear models

Consider a least-squares problem of estimating a first-order model

y(t) = ay(t− 1) + bu(t) + e(t)

where u(t) is an input signal, and e(t) is an i.i.d. noise of zero mean

We can show that

• If u(t) is a PRBS or step input, the consistent estimates are obtained,
i.e.,

(â, b̂) → (a, b), as N → ∞

• If u(t) is an impulse, â → a but b̂ does not converge to b as N increases

• In loose terms, the impulse input does not provide enough information
on y(t) to estimate b
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Properties of persistently exciting signals

Let u(t) be a multivariable ergodic process. Assume that Su(ω) is positive
definite in at least n distinct frequencies (within the interval (−π, π))

We have the following two properties

Property 1 u(t) is persistently exciting of order n

Property 2 The filtered signal y(t) = H(q−1)u(t) is persistently exciting
of order n

where H(z) is an asymptotically stable linear filter and detH(z) has no
zero on the unit circle

From above facts, we can imply

An ARMA process is persistently exciting of any finite order

Input signals 6-27



Examining the order of PRBS

Consider a PRBS of period M and magnitude a,−a

The matrix containing n-covariance sequenes (where n ≤ M) is

R(n) =









a2 −a2/M . . . −a2/M
−a2/M a2 . . . −a2/M

... ... . . . ...
−a2/M −a2/M . . . a2









Therefore, for any x ∈ Rn,

xT
R(n)x = xT

(

(a2 +
a2

M
)I −

a2

M
11

T

)

x

≥ a2(1 +
1

M
)xTx−

a2

M
xTx1T

1 = a2‖x‖2
(

1 +
(1− n)

M

)

≥ 0

A PRBS with period M is persistently exciting of order M
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Examining the order of sum of sinusoids

Consider the signal u(t) =
∑m

k=1 ak sin(ωkt+ φk)

where 0 ≤ ω1 < ω2 < . . . < ωm ≤ π

The spectral density of u is given by

S(ω) =
m
∑

k=1

Ck

2
[δ(ω − ωk) + δ(ω + ωk)]

Therefore S(ω) is nonzero (in the interval (−π, π]) in exactly n points
where

n =











2m, 0 < ω1, ωm < π

2m− 1, 0 = ω1, or ωm = π

2m− 2, 0 = ω1 and ωm = π

It follows from Property 1 that u(t) is persistently exciting of order n
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Summary

• The choice of input is imposed by the type of identification method

• The input signal should be persistently exciting of a certain order to
ensure that the system can be identified

• Some often used signals include PRBS and ARMA processes

Input signals 6-30



References

Chapter 5 in
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