EE531 (Semester II, 2010)

5. Spectral analysis

e Power spectral density
e Periodogram analysis

e \Window functions
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Power Spectral density

Wiener-Khinchin theorem:

If a process is wide-sense stationary, the autocorrelation function and the
power spectral density form a Fourier transform pair:

Continuous

Discrete

= —iwk 1 " iwk
Sw= 3 Rk)e ™ = R(k) = — / S(w)e“h du

k=—o0

(Under a condition for the existence of the Fourier transform, e.g., R(t) is
absolutely integrable or R(k) is absolutely summable)
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Properties of PSD

o S(w) is self-adjoint, i.e., S(w) = S*(w), Vw

e S(w) =0 for all w

o [ S(w)dw=R(0)=Ezt)z(t)* =0 (average power)

e For real processes, S(—w) = S(w)?

e For discrete-time processes, S(w) is a periodic function of period 27
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Cross-power spectral density

The cross-power spectrum of x(t) and y(t) is the Fourier transform of the
cross correlation R, (7):

Continuous

Say(w) :/ e TRy (T)dT <= Rgy(t) = —/ Sy (w)e“dw

Discrete
ki:OO 1 s
) = 3 R = Rolk) = o | Safw)eta
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LTI systems with random inputs

u Y
H

If u(t) is wide-sense stationary, y(t) is also wide-sense stationary

Z his) Eu(t —s) = py Z h(s)

S§=—00 S§=—00

The mean is constant for all ¢

J(t1,12) = S‘ S‘fz u(ts — s)u(ts — v)*]h* (v)

S&=E—0 V=—0CC

S‘ S‘fz Ru(t1 —ta +v — s)h*(v)

S=F— 0 vV=—0

R,(t1,t2) depends only on the time shift ¢; — ¢,
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LTI systems with random inputs

The input-output cross correlation is

Ryu(ti,ta) = E Z h(k)u(ty — k)u(ts)*

k=—o00

Z h(k)Ry(th — to — k)

k=—o0
Thus y(t),u(t) are jointly wide-sense stationary with
> ME)Ru(r — k)
k=—o00
It also follows that
> h(k)Ryy(T — k)
k=—o00
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Spectral relations for LTI systems

Using the convolution property of the Fourier transform of R, (7), R,(7),
we have the relations:

Syul(w) = H@)Su(w),  Sy(w) = H(w)Suy(w)

With Sy, (w) = Sy, (w), we have

where H(2)* = H(z)! and we should be aware that z = €' in the analysis
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Example 1

Suppose the covariance function of a staionary process is given by

R(k)=d*, o <1

The spectral density can be obtained via z-transform

Z CL|I<| —k _ Z &—k —k_i_iakz—k

k=—o0 k=—o0 k=0

az z 1 — a2

:1—a2+z—a:(1—az)(1—az_1)

Substituting z = e'¥ gives

2 2

1l —a 1l —a

S(w) =

(1 —aevw)(l —ae~w) " 1+ a2 — 2acosw
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Example 2

A recursion equation
y(t) = ay(t — 1) +e(?)
where e(t) is a white noise with variance \?

The transfer function is given by

1
H —
(2) 1 —az1
The spectral density of y is therefore
\? \?

Sy(w) =

(1 —ae™'«)(1 — aev) " 1+ aZ— 2acosw
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Spectral analysis

Use the same model as in correlation analysis:

Ryu(1) = > h(k)Ru(T — k)

k=0

Taking DFT gives the spectral representation
Syulw) = H(w)S,(w)

If Syu(w) = 0 for all w, then we can estimate

A A

H(w) = Syu(w)Sy(w) ™,

where SAyu, Su can be computed via DFT
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Periodogram analysis

Suppose an infinite-length discrete-time signal y(t¢) is windowed by a
length-N window w(t), 1 <t < N

The periodogram, an estimate of S, (w), is obtained by

A 1

Sy(w) Y (w)]%,

where C' = +- Zi\il lw(t)|? is a normalization factor
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Periodogram analysis

S, (w) is called periodogram when w(t) is rectangular, and modified
periodogram for other types of windows, e.g., Hamming, Barlett, etc.

In practice, the periodogram is evaluated at a finite number of frequencies
wp=2rk/R, 0<EkE<R-1

by replacing S, (w) with the length-R DFT Y[k] of the length-N
sequences y|k|:

A

Sy(wr) = Sy[k] %]

1
=——|Y
CN‘

e Usually R > N to provide a finer resolution of the periodogram

e C=(1/N) 21];\;1 lw(t)|? is a normalization factor
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Window functions

Suppose we use a rectangular window of length NV

— Z Ry(k)e_iWk

=—N+1

e The periodogram is the Fourier transform of R, (k)

o A few samples of y(n) is used in estimating R, (k) when k is large,

yielding a poor estimate of R, (k)
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Window functions

Use the window functions that vanish for |7| > M to weight out the
estimated correlation for large 7

e Rectangular
w(r) =1, |7[<M

e Barlett
w(t)=1—|7[/M, |7|<M

e Hamming

2T
2M + 1

w(T) = 0.54 + 0.46 cos ( ) , T <M

M should be small compared to N to reduce the fluctuations of the
periodogram
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Window functions

Window length = 301
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e y(t) = cos(4007t) + v(t), with N = 301
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Window functions

Window length = 256
10 ‘ ‘

Window length = 64
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