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17. Subspace methods

• Main idea

• Algorithm outline

• Numerical example
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Introduction

• A method of estimating state-space models using LS techniques

• Any linear system can always be represented in state-space form as

x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) +Du(t) + ν(t)

• Assume that x, y, u can be measured, we can form a linear regression:

Y (t) = ΘH(t) + η(t)

to estimate Θ where

Y (t) =

[

x(t+ 1)
y(t)

]

, Θ =

[

A B
C D

]

H(t) =

[

x(t)
u(t)

]

, η(t) =

[

w(t)
ν(t)

]
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Main idea

• How to obtain the state vector sequence x ?

• Let a system be given by the impulse response representation

y(t) =

∞
∑

j=0

[g(j)u(t− j) + h(j)e(t− j)]

• Define the k-step ahead predictors by

ŷ(t|t− k) =

∞
∑

j=k

[g(j)u(t− j) + h(j)e(t− j)]

and define

Ŷr(t) =





ŷ(t|t− 1)
...

ŷ(t+ r − 1|t− 1)



 , Ŷ =
[

Ŷr(1) . . . Ŷr(N)
]
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Then the following is true for N → ∞

1. The linear system has an nth order minimal state space description iff

rank(Ŷ) = n, ∀r ≥ n

2. The state vector of any minimal realization can be chosen as linear
combinations of Ŷr(t), i.e.,

x(t) = LŶr(t)

where L is such that LŶ spans Ŷ

The facts above allow us to find a state vector from the data

The only remaining problem is to estimate the k-step ahead predictors
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Estimating the k-step ahead predictor

• Use the fact that the innovation e(j) can be written as a linear
combination of past input-output data

• The predictor is approximated so that it only depends on s1 past
outputs and the s2 past inputs

ŷ(t+ k − 1|t− 1) = θTkHs(t) + γT
k Ul(t) + ε(t+ k − 1)

where

Hs(t) =
[

yT (t− 1) . . . yT (t− s1) uT (t− 1) . . . uT (t− s2)
]T

Ul(t) =
[

uT (t) . . . uT (t+ l − 1)
]

• s1, s2 are up to the user and l typically equals to r
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• The term Ul should be included in the least-squares estimation since
u(t+ 1), . . . u(t+ k) affects y(t+ k − 1)

• However, by the definition of the k-step ahead predictor, the influence
of Ul should be ignore

• The k-step predictors are then given by

Ŷr(t) = Θ̂Hs(t)

where we throw out the term Ul and Θ =
[

θ1 . . . θr
]T
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Basic subspace algorithm

1. Choose s1, s2, r, l and form Ŷr(t) and Y

2. Estimate the rank n of Y and determine L so that x(t) corresponds to
a well-conditioned basis for it

3. Estimate A,B,C,D and the noise covariance matrices by applying the
LS method

• This is called subspace projection approach to estimating the
state-space model

• The approach is suited well for multivariable systems

• There are several variants of this algorithm to do step 3
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Example: DC motor

Time response of the second-order DC motor system

ẋ(t) =

[

0 1
0 1/τ

]

x(t) +

[

0
β/τ

]

u(t) +

[

0
γ/τ

]

Tl(t)

y(t) =
[

1 0
]

x(t)

where τ, β, γ are parameters to be estimated
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Use n4sid command in MATLAB

z = iddata(y,u,0.1);

m1 = n4sid(z,[1:10],’ssp’,’free’,’ts’,0);
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Select model order in command window

The software let the user choose the model order
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Select n = 2 and the result from free parametrization is

A =

[

0.010476 −0.056076
0.76664 −4.0871

]

, B =

[

0.0015657
−0.040694

]

C =

[

116.37 4.6234
4.766 −24.799

]

, D = 0

The structure of A,B,C,D matrices can be specified

As = [0 1; 0 NaN]; Bs = [0; NaN];

Cs = [1 0; 0 1]; Ds = [0; 0];

Ks = [0 0;0 0]; X0s = [0;0];

where NaN is free parameter and we assign this structure to ms model

A = [0 1; 0 -1]; B = [0; 0.28];

C = eye(2); D = zeros(2,1);

ms = idss(A,B,C,D); % nominal model (or initial guess)

setstruc(ms,As,Bs,Cs,Ds,Ks,X0s);

set(ms,’Ts’,0); % Continuous model
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The structured parametrization can be used with pem command

m2 = pem(z,ms,’display’,’on’);

The estimate now has a desired structure

A =

[

0 1
0 −4.0131

]

, B =

[

0
1.0023

]

C =

[

1 0
0 1

]

, D = 0

Choosing model order is included in pem command as well

m3 = pem(z,’nx’,1:5,’ssp’,’free’);

pem use the n4sid estimate as an initial guess
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Compare the fitting from the two models

compare(z,m1,m2);
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