
EE531 (Semester II, 2010)

8. Variations on least-squares

• ℓ2 regularization

• ℓ1 regularization

• Robust least-squares

• Least-squares with constraints
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ℓ2-regularized least-squares

minimize
x

‖Ax− y‖2
2
+ γ‖x‖2

2

• provides an approximate solution of Ax ≈ y with minimum-norm x

• also called Tikhonov regularized least-squares

• γ > 0 controls the trade off between the fitting error and the size of x

• has the analytical solution for any γ > 0:

x = (A∗A+ γI)−1A∗y

(no restrictions on shape, rank of A)

• interpreted as a MAP estimation with the log-prior of the Gaussian
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ℓ1-regularized least-squares

Idea: adding |x| to a minimization problem introduces a sparse solution

Consider a scalar problem:

minimize
x

1

2
(x− a)2 + γ|x|

The optimal solution is

x∗ =

{

(|a| − γ) sign(a), |a| > γ

0, |a| ≤ γ

If γ is large enough, x∗ will be zero
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For x ∈ Rn, recall

‖x‖1 = |x1|+ |x2|+ . . .+ |xn|

Extend this idea by adding the ℓ1-norm penalty to the least-square problem

minimize
x

‖Ax− y‖2
2
+ γ‖x‖1

• a convex heuristic method for finding a sparse x that gives Ax ≈ y

• also called Lasso or basis pursuit

• no analytical solution, but can be solved efficiently

• interpreted as a MAP estimation with the log-prior of the Laplacian
distribution
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Example A ∈ Rm×n, b ∈ Rm with m = 100, n = 500, γ = 0.2
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ℓ2 regularization
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ℓ1 regularization

• The solution of ℓ2 regularization is more widely spread

• The solution of ℓ1 regularization is concentrated at zero
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Robust least-squares

minimize
x

‖Ax− b‖

but A may have variation or some uncertainty

Worst-case robust least-squares

Describe the uncertainty by a set of possible values for A:

A ∈ A ⊆ Rm×n

The problem is to minimize the worst-case error:

minimize
x

sup
A

{‖Ax− y‖ | A ∈ A}

• always a convex problem

• its tractablity depends on the norm used and the description of A
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Stochastic robust least-squares

When A is a random variable, so we can describe A as

A = Ā+ U,

where Ā is the average value of A and U is a random matrix

Use the expected value of ‖Ax− y‖ as the objective:

minimize
x

E ‖Ax− y‖2
2

Expanding the objective gives

E ‖Ax− y‖2
2
= (Āx− y)∗(Āx− y) +Ex∗U∗Ux

= ‖Āx− y‖2
2
+ x∗Px

where P = EU∗U
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This problem is equivalent to

minimize
x

‖Āx− y‖2
2
+ ‖P 1/2x‖2

2

with solution
x = (Ā∗A+ P )−1Ā∗y

• a form of a regularized least-squares

• balance making Āx− b small with the desire for a small x
(so that the variation in Ax is small)

• Tikhonov regularization is a special case of robust least-squares:

when U has zero mean and uncorrelated variables, i.e., EU∗U = δI
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Least-squares with constraints

minimize ‖Ax− y‖
subject to x ∈ C

C is a convex set

• used to rule out certain unacceptable approximations of y

• arise as prior knowledge of the vector x to be estimated

• same as determining the projection of y on a set more complicated than
a subspace

• form a convex optimization problem with no analytical solution
(typically)
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Nonnegativity constraints on variables

C = { x | x � 0 }

• parameter x known to be nonnegative, e.g., powers, rates, etc.

• finding the projection of y onto the cone generated by the columns of A

Variable bounds

C = { x | l � x � u }

• vector x known to lie in an interval [l, u]

• finding the projection of y onto the image of a box under the linear
mapping induced by A
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Probability distribution

C = { x | x � 0, 1Tx = 1 }

• arise in estimation of proportions which are nonnegative and sum to one

• approximating y by a convex combination of the columns of A

Norm ball constraint

C = { x | ‖x− x0‖ ≤ d }

where x0 and d are problem parameters

• x0 is a prior guess of what x should be

• d is the maximum plausible deviation from our prior guess

• the constraints ‖x− x0‖ ≤ d can denote a trust region. (The linear
relation y = Ax is an approximation and only valid when x is near x0)
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