2301107 Calculus 1

7. Applications of the
integrations

Outline

7.1. Area between curves
7.2. Volume of the solid by rotation
7.3. Volume by cylindrical shells
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7.1. Areas between positive curves

* Find the area of the region S that lies between
positive functions fand g from a to b.

v A

y = g(x)
0 a b
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Areas between curves

* Using Riemann sum on the range that f(x) > g(x).

S=lim ) [ f(x])—g(x])| Ax

n—ow j=1
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Areas between curves by x-axis

e The area S bounded by y = f(x), y = g(x), x=a, x=b
where fand g are continuous and f(x) > g(x).

S= dx
Y ) f
From
x=a bottom
to top
y=gW) x=b
L
0 a b x
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Student note

1. Find the area of the region bounded above by y =
x>+ 1, bounded below by y = x and bounded on
the sides by x =0 and x = 1.
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Student note

2. Find the area of the region enclosed by the
parabolas y = x* and y = 2x — x°.
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Student note

3. Find the area of the whale-shaped region enclosed
by the parabola y = 2 — x* and the line y = —x.
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Areas between general curves

* The area between the curves y = f(x) and y = g(x)
fromx=atox=>bis

S=[1f(x)—g(x)|dx
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Areas between curves by y-axis

* Some regions are best treated by regarding x as a
function of y. The area between x=f(y) and x=g(y)

15 S=[ 1/ () —g(y)|dv
v A P
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Student note

4. Find the area enclosed by the line y = x - 1 and the
parabola y? = 2x + 6.
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Student note

5. Sketch the region bounded by y:L, y:L x=2
and find the area of the region. x

Chapter 7:Applications of the integrations C07-23

Chapter 7: Applications of the integrations

Chapter 7: Applications of the integrations

C07-22

C07-24



Student note

6. Find the area enclosed by the given curves
6.1.y=x,y=9-x3x=-1,x=2
6.2.y=x,y=x7
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7. Find the area enclosed by the given curves
71.y=x,y=|x|
72.y=|x]|,y=x*-2
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Student note

8. Evaluate the 1ntegral and interpret it as the area of

a region. “x ]
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Volumes

 Cylinder is the type of solid that can be generated
from the base and the direction of its height.
Hence, the volume of the cylinder is
V=Ah
where A4 is the area of the base and / 1s the height

of the cylinder

V=mnrh V= lwh
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Solid

* A volume of the non-cylindrical solid S can be
approximated using the cylinder of the cross-
section of S. Each slice has the volume

V(S) = A(x,*)Ax

Area
A(x,")

Therefore,

V:Z A(x)Ax
i=1
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Definition of Volume

 Definition: Let S be a solid that lies between a
and b. If the cross-sectional area of S in the plane
P, through x and perpendicular to the x-axis, is

A(x), where A4 is a continuous function, then the
volume of S is

V=lim Z A(x)Ax=] A(x)dx

n—o j=1
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7.2. Solid of revolution

» The solid can be formed by rotating the curve
around a given axis called solid of revolution.

y=flx)

Rotate about y-axis  Rotate about x-axis
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Student note

9. Show that the volume of a sphere of radius r is

4 3
V =—
3 ™r

Chapter 7:Applications of the integrations C07-39

Chapter 7: Applications of the integrations

Chapter 7: Applications of the integrations

C07-38

C07-40



Student note

10. Find the volume of the solid obtained by rotating

about the x-axis the region under y = \x on [0, 1].
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Student note

11. Find the volume of the solid obtained by rotating
the region bounded by y = x°, y = 8 and x = 0 about

the y-axis.
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Student note

12. Find the volume of the solid that formed by
rotating the enclosed region about x-axis of the
curves y =x and y = x2.
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Student note

13. Find the volume of the solid that formed by
rotating the enclosed region about y = 2 of the
curves y =x and y = x°
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Student note

14. Find the volume of the solid that formed by
rotating the enclosed region about x = -1 of the
curves y =x and y = x2.
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Student note

15. Find the volume of a pyramid whose base is a
square with side L and whose height is 4.
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7.3. Volume by Cylindrical Shells

* The method of cylindrical shells computes the
volume by considered the difference of inner
cylinder and outer cylinder.

V=V -V, =nrh—nr’h
=n(r,tr)r,—r)h
=2n(r, +r)2 h(r,—r)

V=21trhAx
rytr,
=
2
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Volume of the solid

* The volume of the solid obtained by rotating about
the y-axis the region under y = f(x) from a to b is

V:f 21tx f(x)dx

- | o=

—_— )\\

21X
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Student note

16. Find the volume of the solid obtained by rotating
about the y-axis the region bounded by y = 2x* - x°
and y = 0.
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Student note

17. Find the volume of the solid obtained by rotating
about the y-axis the region between y =x and y =

X2
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Student note

18. Use cylindrical shells to find the volume of the
solid obtained by rotating about the x-axis the
region under the curve y = \x from 0 to 1.
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