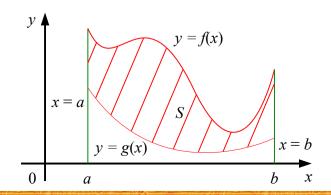
2301107 Calculus I7. Applications of the integrations

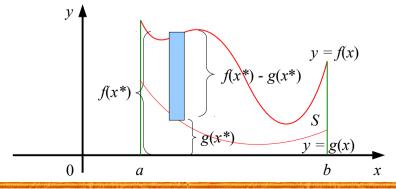
Outline


- 7.1. Area between curves
- 7.2. Volume of the solid by rotation
- 7.3. Volume by cylindrical shells

Chapter 7: Applications of the integrations

C07-2

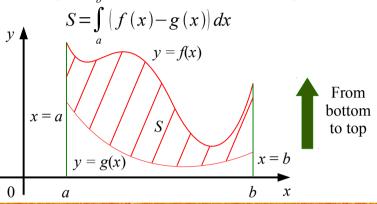
7.1. Areas between positive curves


• Find the area of the region *S* that lies between positive functions *f* and *g* from *a* to *b*.

Areas between curves

• Using Riemann sum on the range that $f(x) \ge g(x)$.

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} \left(f(x_i^*) - g(x_i^*) \right) \Delta x$$


Chapter 7: Applications of the integrations

C07-3

Chapter 7: Applications of the integrations

Areas between curves by x-axis

• The area S bounded by y = f(x), y = g(x), x=a, x=b where f and g are continuous and $f(x) \ge g(x)$.

Chapter 7: Applications of the integrations

C07-5

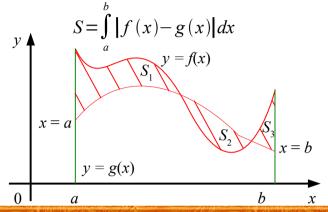
Student note

1. Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x and bounded on the sides by x = 0 and x = 1.

Chapter 7: Applications of the integrations

C07-6

Student note

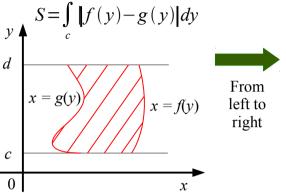

2. Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

Student note

3. Find the area of the whale-shaped region enclosed by the parabola $y = 2 - x^2$ and the line y = -x.

Areas between general curves

• The area between the curves y = f(x) and y = g(x) from x = a to x = b is



Chapter 7: Applications of the integrations

C07-9

Areas between curves by y-axis

• Some regions are best treated by regarding x as a function of y. The area between x=f(y) and x=g(y) is

Chapter 7: Applications of the integrations

C07-10

Student note

4. Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

Student note

5. Sketch the region bounded by $y = \frac{1}{x}$, $y = \frac{1}{x^2}$, x = 2 and find the area of the region.

6. Find the area enclosed by the given curves

6.1.
$$y = x$$
, $y = 9 - x^2$, $x = -1$, $x = 2$

6.2.
$$y = x$$
, $y = x^2$

Chapter 7: Applications of the integrations

C07-13

Student note

7. Find the area enclosed by the given curves

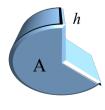
7.1.
$$y = x$$
, $y = |x^3|$

7.2.
$$y = |x|, y = x^2 - 2$$

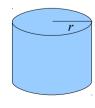
Chapter 7: Applications of the integrations

C07-14

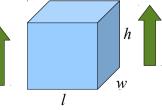
Student note


8. Evaluate the integral and interpret it as the area of a region.

Volumes

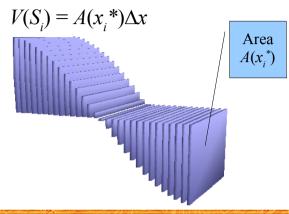

• Cylinder is the type of solid that can be generated from the base and the direction of its height. Hence, the volume of the cylinder is

$$V = Ah$$


where *A* is the area of the base and *h* is the height of the cylinder.

V = Ah

 $V = \pi r^2 h$


V = lwh

Solid

• A volume of the non-cylindrical solid *S* can be approximated using the cylinder of the cross-section of *S*. Each slice has the volume

Therefore,

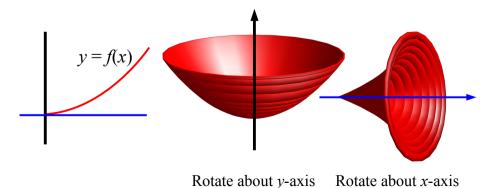
$$V = \sum_{i=1}^{n} A(x_i^*) \Delta x$$

Chapter 7: Applications of the integrations

C07-17

Definition of Volume

• <u>Definition</u>: Let S be a solid that lies between a and b. If the cross-sectional area of S in the plane P_x , through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the **volume** of S is


$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_{a}^{b} A(x) dx$$

Chapter 7: Applications of the integrations

C07-18

7.2. Solid of revolution

• The solid can be formed by rotating the curve around a given axis called solid of revolution.

Student note

9. Show that the volume of a sphere of radius *r* is $V = \frac{4}{3} \pi r^3$

10. Find the volume of the solid obtained by rotating about the *x*-axis the region under $y = \sqrt{x}$ on [0, 1].

Student note

11. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8 and x = 0 about the *y*-axis.

Chapter 7: Applications of the integrations

C07-21

Chapter 7: Applications of the integrations

C07-22

Student note

12. Find the volume of the solid that formed by rotating the enclosed region about *x*-axis of the curves y = x and $y = x^2$.

Student note

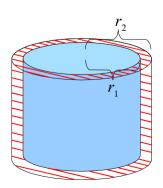
13. Find the volume of the solid that formed by rotating the enclosed region about y = 2 of the curves y = x and $y = x^2$.

14. Find the volume of the solid that formed by rotating the enclosed region about x = -1 of the curves y = x and $y = x^2$.

Chapter 7: Applications of the integrations

C07-25

Student note


15. Find the volume of a pyramid whose base is a square with side *L* and whose height is *h*.

Chapter 7: Applications of the integrations

C07-26

7.3. Volume by Cylindrical Shells

• The method of cylindrical shells computes the volume by considered the difference of inner cylinder and outer cylinder.

$$V = V_1 - V_2 = \pi r_2^2 h - \pi r_1^2 h$$

$$= \pi (r_2 + r_1)(r_2 - r_1) h$$


$$= 2\pi (r_2 + r_1)/2 h(r_2 - r_1)$$

$$V = 2\pi r h \Delta x$$

$$r = \frac{r_2 + r_1}{2}$$

Volume of the solid

• The volume of the solid obtained by rotating about the y-axis the region under y = f(x) from a to b is

16. Find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

Student note

17. Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$.

Chapter 7: Applications of the integrations

C07-29

Chapter 7: Applications of the integrations

C07-30

Student note

18. Use cylindrical shells to find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.