Course Syllabus 2301107 Calculus I

Course Number: 2301107 2. **Course Credit:** 3 credits **Course Title:** Calculus I

Faculty of Science: Department of Mathematics

Semester: First 6. Academic Year: 2009

1. Krung Sinapiromsaran, Ph. D., Chem II 213, 202-218-5225 **Instructors:**

2. Chotiros Surapholchai, Chem II 203, 202-218-5218

3. Tuangrat Chaichana, Ph. D., Math 409.01, \$\alpha\$02-218-5162

Condition

8.1. Prerequisite: 2301011 or Consent of Faculty

8.2. Corequisite: 8.3. Concurrent:

Status: Required

International Program in Engineering 10. Curriculum:

11. Degree: Bachelor of Engineering (International Program)

12. Hours/Week: 3

13. Course Description:

Limits; continuity; differentiation; applications of differentiation; integration; applications of the definite integrals; transcendental functions; techniques of integration; improper integrals.

14. Course Outline

14.1. Behavioral objectives: After finishing this course, students should be able to

- find limits and verify continuity of given functions;
- find derivatives of given functions using formulas and the chain rule;
- find higher-order derivatives;
- 4. find derivatives of implicit functions;
- use differentials to estimate values of functions;
- find extrema of functions and solve extrema problems;
- sketch graphs of functions using first- and second-order derivatives;
- solve related rate problems;
- 9. find indefinite and definite integrals of given functions;
- 10. calculate areas between curves:
- 11. volumes of solid objects;
- 12. calculate length of 2-D curves;
- 13. area of surfaces of revolution;
- 14. apply various techniques of integration to compute indefinite and definite integrals;
- 15. verify the convergence of given improper integrals;
- 16. find the limit of functions in the indeterminate forms.

14.2.Learning Contents:

1. Limits and continuity (2.1-2.5)

3 hours

1.1. Limits

1.2. Continuity

2. Derivatives (3.1-3.10)

9 hours

2.1. The derivatives

2.2. Differentiation formulas

2.3. Rates of change

2.4. Derivatives of transcendental functions and inverse trigonometric function Hyperbolic function (self-study)

2.5. The chain rule

2.6. Implicit differentiation

2.7. Higher derivatives

2.8. Related rates

2.9. Linear approximations and differentials

3. Applications of differentiation (4.1-4.10, 7.7)

9 hours

3.1. Maximum and minimum values

3.2. The Mean Value theorem

3.3. How derivatives affect the shape of a graph

3.4. Limits at infinity

3.5. Curve sketching

3.6. Optimization problems

3.7. Newton's method (Self-study)

3.8. Antiderivatives

3.9. L'Hopital's rule

9 hours

4. Integrals (5.1-5.5)

4.1. Areas and distances **4.2.** The definite integrals

4.3. The Fundamental theorem of calculus

4.4. Indefinite integrals

4.5. The substitution rule

4.6. Integral of transcendental functions

4 hours

5. Applications of the integration (6.1-6.3) **5.1.** Area between curves

5.2. Volumes

5.3. Volumes by cylindrical shells

6. Techniques of integration (8.1-8.8)

7 hours

6.1. Integration by parts

6.2. Trigonometric integrals

6.3. Trigonometric substitution

6.4. Integration of rational functions by partial fractions

6.5. Improper integrals

7. Applications of the integrations (9.1 - 9.3)

4 hours

7.1. Length of 2-D curves

7.2. Areas of surfaces of revolution

14.3.Method:

Lecture 3 hours/week

Section 1: Tuesday 10:30–12:00, Thursday 13:00–14:30 ENG2 302 (Krung)

Section 2: Monday 10:00–11:30, Thursday 13:00–14:30 ENG2 304/2 (Chotiros)

Section 3: Monday 8:30–10:00 ENG2 304/2, Tuesday 8:00-9:30 ENG2 303/2

(Tuangrat)

14.4.Media: Black board, transparencies and opaque sheets, presentation files and computer with LCD

14.5.Assignment through Network System Via Blackboard system at http://blackboard.it.chula.ac.th/

14.6.Evaluation

14.6.1. Assessment of academic knowledge

10% Assignment due on Monday at noon

45% Midterm on Monday 28 September 2009, 8:30 – 11:30

45% Final on Monday 30 November 2009, 8:30 – 11:30

14.6.2. Assessment of work or classroom activities -

14.6.3. Assessment of the assigned tasks -

15. Reading List

15.1.Required Text: James Stewart, Calculus 5e, Brooks/Cole Thomson Learning 2003.

15.2. Supplementary Texts:

- David Dwyer and Mark Gruenwald, Precalculus, Thomson Learning inc.,
 2004
- Howard Anton, et al., Calculus with Analytic Geometry, 7nd edition, John Wiley & Sons, 2002
- Henry Edwards and David penney, Calculus with Analytic Geometry, 6th edition, Prentice Hall 2002.
- Thomas and Finney, Calculus and Analytic Geometry, 9th edition, Addition-Wesley, 1996.

15.3. Research Articles / Academic Articles

15.4. Electronic Media or Websites

All related websites

http://blackboard.it.chula.ac.th

http://pioneer.netserv.chula.ac.th/~skrung

16. Teacher Evaluation

Week	Date	Content
1	10 – 14 August 2009	Limits and continuity
2	17 – 21 August 2009	The derivatives, differentiation formulas, rates of change Homework 1: Due at noon on Monday 24 August 2009
3	24 – 28 August 2009	Derivatives of transcendental function and inverse trigonometric function, the chain rule, implicit differentiation, higher derivatives,
4	31 August – 4 September 2009	Related rates, linear approximations and differentials Homework 2: Due at noon on Monday 7 September 2009
5	7 – 11 September 2009	Maximum and minimum values, the Mean Value theorem
6	14 – 18 September 2009	Limits at infinity, curve sketching, optimization problems Homework 3: Due at noon on Monday 21 September 2009
7	21 – 25 September 2009	Antiderivatives and L' Hopital's Rule
8	28 September – 2 October 2009	Midterm exam: Monday 28 September 2009, 8:30 – 11:30 am.
9	5 – 9 October 2009	Areas and distances, the definite integrals
10	12 – 16 October 2009	Fundamental theorem of Calculus and indefinite integrals Homework 4: Due at noon on Monday 19 October 2009
11	19 – 22 October 2009	Substitution rule and integral of transcendental functions
12	26 – 30 October 2009	Area between curves, Volumes, Volumes by cylindrical shells Homework 5: Due at noon on Monday 2 November 2009
13	2 – 6 November 2009	Integration by parts, trigonometric integrals
14	9 – 13 November 2009	Trigonometric substitution, integration of rational functions by partial fractions Homework 6: Due at noon on Monday 16 November 2009
15	16 – 20 November 2009	Improper integrals, length of 2-D curves
16	23 – 27 November 2009	Length of 2-D curves (cont.) and areas of surfaces of revolution
17	30 November – 4 December 2009	Final exam: Monday 30 November 2009, 8:30 – 11:30 am.