Chapter 4

4.1 Functions of several variables

Function of two variables

- A function of two variables is a rule that assigns (x, y) in a set D to a unique real number denoted by $f(x, y)$.
- D is called the domain of f.
- Its range is $\{f(x, y) \mid(x, y) \in D\}$.
- We often write $z=f(x, y)$ to represent a function
- x, y are independent variables.
- z is the dependent variable.
- For a given formula, f, its domain is understood to be a set of all pairs (x, y) that f is defined.

Visualization of $f(x, y)$

Student note

1. Find the domains of the following functions

$$
\begin{array}{l|l}
(a) f(x, y)=y \ln (x-y) & (b) h(x, y)=\sqrt{\left(\frac{x-1}{x}\right)^{2}+\left(\frac{y-1}{y}\right)}
\end{array}
$$

Student note

2. Find the domains of the following functions

$$
(a) f(x, y)=\sqrt{\frac{x-y}{x+y}} \quad(b) g(x, y)=\left|\frac{x y}{x-1}\right|
$$

Student note

3. Find the domain and range of $g(x, y)=\sqrt{16-x^{2}-y^{2}}$.

Graph

- If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in threedimensional space such that $z=f(x, y)$.

1. Sketch the graph of the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$.

Sketch the graph of

$$
f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}
$$

$$
g(x, y)=4 x^{2}+y^{2}
$$

Sketch the graph of

$$
f(x, y)=\sin x+\sin y \quad g(x, y)=\frac{\sin x \sin y}{x y}
$$

Level curves

- The level curves of a function f of two variables are the curves with equation $f(x, y)=k$ where k is a constant. (in the range of f)

Level curves

Functions of three or more variables

- A function of three variables, f, is a rule that assigns (x, y, z) in a domain, D, to a unique real number denoted by $f(x, y, z)$.

1. Find the domain of f if $f(x, y, z)=\ln (y+x)+x y \cos y$.

Student note

2. Find the level surfaces of the function

$$
f(x, y, z)=x^{2}+y^{2}+z^{2} .
$$

Student note

3. Find the domain and range of $f(x, y, z)=e^{\sqrt{z-x^{2}-y^{2}}}$.

Student note

4. Find and sketch the domain of the functions:

$$
f(x, y)=\sqrt{x}+\sqrt{y} \quad \mid f(x, y)=\sqrt{y-x} \ln (y+x)
$$

Student note

5. Match the function with its graph.
(a) $f(x, y)=|x|+|y|$
(b) $f(x, y)=(x-y)^{2}$
(c) $f(x, y)=|x y|$
(d) $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$
(e) $f(x, y)=(x-y)^{3}$
(f) $f(x, y)=\left(x^{2}-y^{2}\right)^{3}$

Chapter 4

4.2 Limits and Continuity

Limit

- Let f be a function of two variables whose domain D includes point arbitrarily close to (a, b). The limit of $f(x, y)$ as (x, y) approach (a, b) is L is written as

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

means for $\varepsilon>0$, there is a corresponding $\delta>0$,

$$
|f(x, y)-L|<\varepsilon \text { whenever }(x, y) \text { in } D \text { and }
$$

$$
0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta
$$

Limit concept

Non-existence of limit at a point

- If $f(x, y) \rightarrow L_{1}$ as $(x, y) \rightarrow(a, b)$ along a path C_{1} and $f(x, y) \rightarrow \mathrm{L}_{2}$ as $(x, y) \rightarrow(a, b)$ along a path C_{2}, where $L_{1} \neq L_{2}$ then the limit does not exists.

1. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exists.

Student note

2. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exists.

Student note

Theorem

- Theorem: Given a function f, g of two variables, if there exists M and δ such that

$$
|f(x, y)| \leq M, \text { for }(x, y) \in D_{f} \cap \mathrm{~B}^{\prime}\left(\left(x_{0}, y_{0}\right), \delta\right)
$$

and $\lim g(x, y)=0$

$$
(x, y) \rightarrow\left(x_{0}, y_{0}\right)
$$

- Then
$\lim _{y,(x, y)} f(x, y) g(x, y)=0$
where $\mathrm{B}^{\prime}\left(\left(x_{0}, y_{0}\right), \delta\right)=\left\{(x, y) \mid 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta\right\}$

Student note

1. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0$.

Theorem

- Given functions f and g of two variables,
- If $f(x, y)=c$ and c is a constant then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=c
$$

- If $f(x, y)=x$ then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=x_{0}
$$

- If $f(x, y)=y$ then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=y_{0}
$$

Limit properties

- Theorem: If $\lim f(x, y)=A$ and $\lim g(x, y)=B$
(1) $\lim _{(x, y) \rightarrow(x, y)}(f(x, y)+g(x, y))=A+B$
(2) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y)-g(x, y))=A-B$
(3) $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)}{g(x, y)}=\frac{A}{B}$ if $B \neq 0$
(4) $\lim |f(x, y)|=|A|$
(5) $\lim \sqrt{f(x, y)}=\sqrt{A}$ when $A \geq 0$

Student note

1. Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$.

Student note

2. Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$.

Student note

3. Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{\sqrt{x^{2}+y^{2}}}$.

Definition

- A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

- We say f is continuous on D if f is continuous at every point (x, y) in D.

Student note

1. Determine the continuity of $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.

Student note

2. Determine the continuity of $\arctan \left(\frac{y}{x}\right)$.

Student note

3. Determine the continuity of $f(x, y)$ when

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{3 x^{2} y}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array}\right.
$$

Continuity of functions

- The continuity of the functions of more than two variables can be extended easily. For $\varepsilon>0$, there exists $\delta>0$ such that

$$
\left|f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-L\right|<\varepsilon
$$

whenever $0<\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right\|<\delta$.
○ where $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the point to determine the limit.

$$
\lim _{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right)} f\left(x_{1}, x_{2, \ldots,} x_{n}\right)=L
$$

$\circ f$ is continuous at $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ if

Student note

1. Find $h(x, y)=g(f(x, y))$ and the set on which h is continuous.

$$
\begin{aligned}
& \text { (1) } g(t)=t^{3}-\sqrt{t}, f(x, y)=x+y-1 \\
& \text { (2) } g(t)=\frac{\sqrt{t}+1}{\sqrt{t}-1}, f(x, y)=y^{2}-x
\end{aligned}
$$

Student note

2. Determine the set of points at which the function is

$$
\begin{aligned}
& \text { continuous: } \\
& f(x, y)=\frac{\cos (x y)}{e^{x}-x y}
\end{aligned} \quad f(x, y)=\frac{x-y}{1+x^{2}+y^{2}}
$$

Student note

3. Determine the continuity of

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x^{2} y^{3}}{2 x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
1 & \text { if } & (x, y)=(0,0)
\end{array}\right.
$$

Student note

4. Determine the continuity of

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x y}{x^{2}+x y+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
1 & \text { if } & (x, y)=(0,0)
\end{array}\right.
$$

Chapter 4

4.3 Partial derivatives

Definition

- A function $f(x, y)$ can be considered as a function with one variable x if y is fixed, say $y=b$ then $g(x)=f(x, b)$.
- The derivative of g at a is called the partial derivative of f with respect to x at (a, b) denoted by $f_{x}(a, b)$.

$$
f_{x}(a, b)=g^{\prime}(a) \text { where } g(x)=f(x, b)
$$

- By the definition of derivative,

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

Definition

- A function $f(x, y)$ can be considered as a function with one variable y if x is fixed, say $x=a$ then $h(y)=f(a, y)$.
- The derivative of h at b is called the partial derivative of f with respect to y at (a, b) denoted by $f_{y}(a, b)$.

$$
f_{y}(a, b)=h^{\prime}(b) \text { where } h(y)=f(a, y)
$$

- By the definition of derivative,

$$
f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

Notations for partial derivatives

- If $z=f(x, y)$, we write

$$
\begin{aligned}
& f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f \\
& f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\frac{\partial z}{\partial y}=f_{2}=D_{2} f=D_{y} f
\end{aligned}
$$

- Rule for finding partial derivatives, $z=f(x, y)$
- To find f_{x} regard y as a constant and differentiate $f(x, y)$ with respect to x.
- To find f_{y} regard x as a constant and differentiate $f(x, y)$ with respect to y.

Student note

1. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ of the following
(1) $z=f(x)+g(y)$
(2) $z=f(x+y)$
(3) $z=f(x) g(y)$
(4) $z=f(x y)$

Student note

2. Use the implicit differentiation to find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$
(1) $x^{2}+y^{2}+z^{2}=3 x y z$
(2) $x-y=\arctan (y z)$
(3) $\sin (x, y, z)=x+2 y+3 z$
(4) $y z=\ln (x+z)$

Interpretations of partial derivatives

Student note

1. Calculate $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ for $f(x, y)=\cos \left(\frac{x}{x+y}\right)$.

Functions of more than two variables

○ If $w=f(x, y, z)$, then the partial derivative with respect to x is

$$
f_{x}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h}
$$

\circ In general, if $u=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the partial derivative with respect to x_{i} is

$$
f_{x_{i}}\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2,}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)}{h}
$$

Student note

1. Find f_{x}, f_{y}, f_{z} if $f(x, y, z)=e^{x y} \ln z$.

Higher derivatives

- If f is a function of two variables, then its partial derivatives f_{x} and f_{y} is also functions of two variables, so there will be the second partial derivatives of f.

$$
\begin{aligned}
& \left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
& \left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
& \left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
& \left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

Clairaut's theorem

- Theorem: Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

1. Find the second partial derivatives of

$$
f(x, y)=x^{2}-x y+y^{3}
$$

Student note

1. Calculate $f_{y x z x}$ for $f(x, y, z)=\cos (x-y+y z)$.

Student note

- Use the definition to show that
- $D_{1} f(0, y)=-y$
- $D_{2} f(x, 0)=x$
- $D_{12} f(0,0) \neq D_{21} f(0,0)$

Chapter 4

4.4 Tangent Planes and Linear Approximations

Tangent planes

- Suppose a surface S has equation $z=f(x, y)$ and a point $P\left(x_{0}, y_{0}, z_{0}\right)$ is on a surface S.
- Let C_{1} and C_{2} be the curves formed by the intersection of the vertical planes $y=y_{0}$ and $x=x_{0}$ with the surface S.
- Note that the point P lies on both C_{1} and C_{2}.
- Let the tangent lines of C_{1} and C_{2} are T_{1} and T_{2}, the tangent plane to the surface S at the point P is defined as the plane that contains both tangents.

Tangent plane

Lemma

- Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $\mathrm{P}\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

1. Find the tangent plane to the elliptic paraboloid at the point $(1,-1,4)$ where $z=x^{2}+3 y^{2}$.

Linear approximations

- Given $z=f(x, y)$, the linear approximation of $z=f(x, y)$ at (a, b) is

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) .
$$

\circ The linear function whose graph is this tangent plane,

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) .
$$

- We call $L(x, y)$ the linearization of f at (a, b).

Definition

- If $z=f(x, y)$ then f is differentiable at (a, b) if Δz can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

- Note that a differentiable function is one for which the linear approximation is a good approximation when (x, y) is closed to (a, b).

Theorem

- Theorem: If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

1. Show that $f(x, y)=y e^{x y}$ is differentiable at $(1,0)$ and find its linearization to approximate $f(1,-0.1)$.

Differentials

- If $z=f(x, y)$, we define the differentials $d x$ and $d y$ to be independent variables, then the total differential $d z$ is defined by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

- The linear approximation can be written as

$$
\begin{aligned}
f(x, y) & \approx f(a, b)+d z \\
& \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

Student note

1. The base radius and height of a right circular cone are measured as 10 cm . and 25 cm ., respectively, with a possible error in measurement of as much as 0.1 cm . in each. Use differentials to estimate the maximum error in the calculated volume of the cone.

Differentials

Functions of three or more variables

- If $w=f(x, y, z)$, then the linear approximation is

$$
\begin{aligned}
& f(x, y, z) \approx f(a, b, c)+f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+ \\
& \quad f_{z}(a, b, c)(z-c)
\end{aligned}
$$

O The differential $d w$ is defined as

$$
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y++\frac{\partial w}{\partial z} d z
$$

Student note

1. The dimensions of a rectangular box are measured to be 25 cm ., 30 cm . and 20 cm ., and each measurement is correct to within 0.2 cm . Use differentials to estimate the largest possible error when the volume of the box is calculated from these measurements.

Chapter 4

4.5 The Chain rule

The chain rule (1)

- Case 1: Suppose that $z=f(x, y)$ is a differentiable function of x and y where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t, then z is differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

1. If $z=2 x^{2} y+y^{2}$ where $x=\sin (t), y=\cos (3 t)$ find $d z / d t$ when $t=0$.

The chain rule (2)

- Case 2: Suppose that $z=f(x, y)$ is a differentiable function of x and y where $x=g(s, t)$ and $y=h(s, t)$ are both differentiable functions of s and t,

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

1. If $z=\ln \left(x y+x^{2}\right)$ where $x=s t, y=s+t$ find $\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}$.

The chain rule (3)

- General version: Suppose that u is a differentiable function of n variables and each x_{i} are differentiable function of m variables, then u is a function of m variables,

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}
$$

1. If $u=x y+z x^{2}$ where $x=r s e^{t}, y=r^{2} s t, z=s \cos (t)$ find $\frac{\partial u}{\partial s}$.

Implicit differentiation

- Suppose $F(x, y)=0$ is given where y is implicitly defined by x and F is differentiable,

$$
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

○ Assume that $\frac{\partial F}{\partial y}$ is not zero,

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_{x}}{F_{y}}
$$

Implicit differentiation

- Suppose $F(x, y, z)=0$ is given where z is implicitly defined by x, y and F is differentiable,

$$
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}+\frac{\partial F}{\partial z} \frac{d z}{d x}=0
$$

○ Assume that $\frac{\partial F}{\partial z}$ is not zero,

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}, \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}
$$

Student note

1. Determine $\frac{d y}{d x}$ of $x^{4}+y^{4}=8 x y$.

Student note

2. Determine $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^{3}+y^{3}+z^{3}=4 x z-4 y z+1$.

Student note

3. Determine the formula for $\frac{\partial^{2} z}{\partial s \partial t}$ for $z=f(x, y)$ and $x=$
$g(s, t)$ and $y=h(s, t)$.

Student note

$$
\text { 4. If } z=f(x-y), \text { show that } \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0
$$

Chapter 4

4.6 Directional Derivatives and the Gradient Vector

Directional derivatives

- Definition: The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\boldsymbol{u}=\langle a, b\rangle$ is

$$
D_{\vec{u}} f\left(x_{0,} y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0,} y_{0}\right)}{h}
$$

if this limit exists.

- Theorem: If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\boldsymbol{u}=<a, b>$ and

$$
D_{u} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

Student note

1. Find the directional derivative $D_{t} f(x, y)$ if

$$
f(x, y)=x^{3}-3 x y+4 y^{2}
$$

and \boldsymbol{u} is the unit vector given by angle $\theta=\pi / 6$.
What is $D_{u} f(1,2)$?

The gradient vector

- Definition: If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}
$$

1. If $f(x, y)=\sin x+e^{x y}$, what is $\nabla f(x, y)$?

Directional derivatives

- Definition: The directional derivative of f at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of a unit vector $\boldsymbol{u}=\langle a, b, c>$ is

$$
D_{\vec{u}} f\left(x_{0,} y_{0,} z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b, z_{0}+h c\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h}
$$

if this limit exists.

- The vector notation for the directional derivative is

$$
D_{\vec{u}} f\left(\vec{x}_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(\vec{x}_{0}+h \vec{u}\right)-f\left(\vec{x}_{0}\right)}{h}
$$

○ We write $\nabla f(x, y, z)=<f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)>$

$$
\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k}
$$

Maximizing the directional derivative

- Theorem: Suppose f is differentiable function of two or three variables. The maximum value of the directional derivative $D_{u} f(\boldsymbol{x})$ is $|\nabla f(\boldsymbol{x})|$ and it occurs when u has the same direction as the gradient vector $\nabla f(x)$.

1. If $f(x, y)=x e^{y}$, find the rate of change of f at the point $\mathrm{P}(2,0)$ in the direction from P to $Q(1 / 2,2)$. In what direction does f have the maximum rate of change? What is this maximum rate of change?

Tangent planes to level surfaces

- Suppose S is a surface with (the level surface) equation $F(x, y, z)=k$.
- Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S and let $C, \boldsymbol{r}(t)=<x(t)$, $y(t), z(t)>$, be any curve that lies on the surface S and passes through the point P at $t_{0}, \mathbf{r}\left(t_{0}\right)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$.

$$
F(x(t), y(t), z(t))=k
$$

- Using the chain rule, we have

$$
\frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}+\frac{\partial F}{\partial z} \frac{d z}{d t}=0
$$

○ Written as

$$
\nabla F \bullet r^{\prime}(t)=0 .
$$

Tangent planes to level surfaces

○ When $t=t_{0}$, we have $\boldsymbol{r}\left(t_{0}\right)=<x_{0}, y_{0}, z_{0}>$, so

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot r^{\prime}\left(t_{0}\right)=0
$$

- The gradient vector at $P, \nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is perpendicular to the tangent vector $\boldsymbol{r}^{\prime}\left(t_{0}\right)$ to any curve C on S that passes through P.
○ The tangent plane to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ has the equation
$F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.
○ The normal line to S at P is the line passing through P and perpendicular to the tangent plane.

Student note

1. Find the equations of the tangent plane and normal line at the point $(-2,1,-3)$ to the ellipsoid

$$
\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3
$$

Student note

2. Find the directional derivative of f at the given point in the direction indicated by the angle θ.
$2.1 f(x, y)=x^{2} y^{3}-y^{4},(2,1), \theta=\pi / 4$.
$2.2 f(x, y)=x \sin (x y),(2,0), \theta=\pi / 3$.

Student note

3. Find the gradient of f and the rate of change of f at P in the direction of the vector \boldsymbol{u}.

$$
\begin{aligned}
& 3.1 f(x, y)=5 x y^{2}-4 x^{3} y, P(1,2), \boldsymbol{u}=<5 / 13,12 / 13> \\
& 3.2 f(x, y)=y \ln (x), P(1,-3), \boldsymbol{u}=<-4 / 5,3 / 5>
\end{aligned}
$$

Student note

4. Find the maximum rate of change of f at the given point and the direction in which it occurs.

$$
\begin{aligned}
& 4.1 f(p, q)=q e^{-p}+p e^{-q},(2,4) \\
& 4.2 f(x, y, z)=x^{2} y^{3} z^{4},(1,1,1)
\end{aligned}
$$

Chapter 4

4.7 Maximum and Minimum Values

Local maximum \& minimum

- Definition: A function of two variables has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ when (x, y) is near $(a, b), "(x, y)$ in some disk with center (a, b) ". The number $f(a, b)$ is called a local maximum value.
O Definition: A function of two variables has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$ when (x, y) is near (a, b). The number $f(a, b)$ is called a local minimum value.
O If the inequalities hold for all points (x, y) in the domain of f, then f has an absolute maximum (absolute minimum) at (a, b).

Theorem

- Theorem: If f has a local maximum or minimum at (a, b) and the first-order derivatives of f exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.
- A point (a, b) is called a critical point (or stationary point) of f if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, or one of these partial derivatives does not exist.

Student note

1. Find the extreme values of $f(x, y)=y^{2}-x^{2}$.

Second Derivatives Test

- Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. Let

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}
$$

- If $D>0$ and $f_{x x}(a, b)>0$ then $f(a, b)$ is a local minimum.
- If $\mathrm{D}>0$ and $f_{x x}(a, b)<0$ then $f(a, b)$ is a local maximum.
- If $D<0$, then $f(a, b)$ is not a local maximum or minimum. In this case, the point (a, b) is called a saddle point of f.

Student note

1. Find the local maximum and minimum values and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

Student note

2. Find and classify the critical points of the function

$$
f(x, y)=10 x^{2} y-5 x^{2}-4 y^{2}-x^{4}-2 y^{4} .
$$

Student note

3. A rectangular box without a lid is to be made from 12 m^{2} of cardboard. Find the maximum value of such a box.

Closed set

- A boundary point of D is a point (a, b) such that every disk with center (a, b) contains points in D and also points not in D.
O A closed set in \mathbf{R}^{2} is a set that contains all its boundary points.
○ For example, the disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ which consists of all points on and inside the circle $x^{2}+y^{2}=$ 1 , is a closed set.
○ A bounded set in \mathbb{R}^{2} is one that is contained within some disk.

Extreme value theorem

- If f is continuous on a closed, bounded set D in R^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D.
- To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D :
- Find the values of f at the critical points of f in D.
- Find the extreme values of f on the boundary of D.
- The largest of the values from previous steps is the absolute maximum value; the smallest of these values is the absolute minimum value.

Student note

1. Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $D=$ $\{(x, y) \mid 0 \leq x \leq 3,0 \leq y \leq 2\}$.

Student note

2. Find the local maximum and minimum values and saddle point(s) of the function $f(x, y)=x^{3} y+12 x^{2}-8 y$.

Student note

3. Find the absolute maximum and minimum values on the set $D=\left\{(x, y)| | x|<1,|y|<1\}\right.$ where $f(x, y)=x^{2}$ $+y^{2}+x^{2} y+4$.

Student note

4. Find the points on the surface $x^{2} y^{2} z=1$ that are closest to the origin.

Student note

5. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

Student note

6. Find three positive numbers, x, y, z whose sum is 100 such that $x^{a} y^{b} z^{c}$ is a maximum.

Student note

7. Find the dimensions of the rectangular box with largest volume if the total surface area is given as $64 \mathrm{~cm}^{2}$.

Student note

8. Find an equation of the plane that passes through the point $(1,2,3)$ and cuts off the smallest volume in the first octant.
