Chapter 5

5.1 Double integrals over rectangles

Volumes

○ Consider a nonnegative function f defined on $R=[a, b]$ $\times[c, d]=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$

- Let S be the solid that lies above $x y$ plane

$$
S=\{(x, y, z) \mid 0 \leq z \leq f(x, y),(x, y) \in R\} .
$$

Volume over rectangles

- Divide R into subrectangles.

$$
R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]=\left\{(x, y) \mid x_{i-1} \leq x \leq x_{i}, y_{i-1} \leq y \leq y_{i}\right\}
$$

\bigcirc Each with area $\Delta A=\Delta x \times \Delta y$

- Choose a sample point $\left(x_{i j}{ }^{*}, y_{i j}{ }^{*}\right)$ in each $R_{i j}$, we can approximate the volume by

$$
V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

- As m, n are getting larger the volume becomes

$$
V=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

Definition

- The double integral of f over the rectangle R is

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

if this limit exists.

- Note that $\left(x_{i j},{ }^{*}, y_{i j}{ }^{*}\right)$ can be chosen arbitrary in each $R_{i j}$

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}, y_{i j}\right) \Delta A
$$

Double Riemann sum

- For nonnegative f, the volume V of the solid lies above the rectangle R and below the surface $f(x, y)$ is

$$
V=\iint_{n} f(x, y) d A
$$

- The sum is called a dơuble Riemann sum

Student note

1. Evaluate $\iint_{R} \sqrt{1-y^{2}} d A$ on $[-1,1] \times[-1,1]$.

Properties of double integral

- Given that the double integral of f and g exists on R

$$
\begin{aligned}
& \iint_{R}(f(x, y)+g(x, y)) d A=\iint_{R} f(x, y) d A+\iint_{R} g(x, y) d A \\
& \iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A
\end{aligned}
$$

- If $f(x, y) \geq g(x, y)$ for $(x, y) \in R$.
$\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A$

Student note

1. Evaluate the double integral by first identifying it as the volume of a solid.

$$
\begin{aligned}
& \iint_{R} 3 d A=\{(x, y) \mid-2 \leq x \leq 2,1 \leq y \leq 6\} \\
& \iint_{S}(4-2 y) d A, S=[0,1] \times[0,1]
\end{aligned}
$$

Student note

2. If f is a constant function, $f(x, y)=k$ and $R=[a, b] \times[c, d]$ show that

$$
\iint_{R} k d A=k(b-a)(d-c) .
$$

Chapter 5

5.2 Iterated integrals

Iterated integral

- Suppose f is a continuous function of two variables on

$$
R=[a, b] \times[c, d] .
$$

- The notation $\int f(x, y) d y$ mean x is held fixed and $f(x, y)$ is integrated with respect to y. This defines a function of $x, A(x)=\int^{d} f(x, y) d y$.
- Now integrate A with respect to x from a to b we have

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

- This is called an iterated integral.

Student note

1. Evaluate the iterated integrals
$\int_{0}^{1} \int_{1}^{2} x y^{3} d y d x$
$\int_{1}^{2} \int_{0}^{1} x y^{3} d x d y$

Student note

2. Find the volume of the solid S that is bounded by the elliptic paraboloid $x^{2}+2 y^{2}+z=16$, the planes $x=2$ and $y=2$ on the first quadrant.

Fubini's Theorem

- If f is continuous on the rectangle R

$$
R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
$$

then
$\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$
More generally, this is true if we assume that f is
bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Iterated integral of product

- If $f(x, y)$ can be factored as the product of a function of x only and a function of y only, the double integral of f can be written in a particularly simple form.
- Suppose $f(x, y)=g(x) h(y)$ on $R=[a, b] \times[c, d]$,

$$
\iint_{R} g(x) h(y) d A=\int_{a}^{b} g(x) d x \int_{c}^{d} h(y) d y
$$

Student note

1, Evaluate the double integral of $f(x, y)=x-2 y^{3}$ where $R=\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq 2\}$.

Student note

2. Evaluate the double integral of $f(x, y)=x \sin (x y)$ where $R=[0, \pi] \times[1,2]$.

Student note

3. What is the double integral

$$
\iint_{R} \sin (x) \cos (y) d A
$$

where $R=[0, \pi / 2] \times[0, \pi / 2]$?

Student note

4. Find the volume of the solid that lies under the plane $3 x+2 y+z=12$ and above the rectangle $R=\{(x, y) \mid$ $0 \leq x \leq 1,-2 \leq y \leq 3\}$.

Student note

5. Find the volume of the solid in the first octant bounded by the cylinder $z=6-x y$ and the plane $x=2$.

Chapter 5

5.3 Double integrals over general regions

Double integral over general region

- Let f be a nonnegative on D which is enclosed in a rectangular region R.
- We define a new function F on R as

$$
F(x, y)=\left\{\begin{array}{lll}
f(x, y) & \text { if } & (x, y) \in D \\
0 & \text { if } & (x, y) \in R-D
\end{array}\right.
$$

- Then $\iint f(x, y) d A=\iint F(x, y) d A$ the double integral of f over D.

Double integral of type I

- A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

Then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Double integral of type II

- A plane region D is said to be of type $I I$ if it lies between the graphs of two continuous functions of y, that is

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

Then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Student note

1. Evaluate the double integral of f on the given domain D_{1} is bounded by the parabola $y=2 x^{2}$ and $y=1+x^{2}$.

$$
\iint_{D_{1}}(2 x+y) d A
$$

Student note

2. Evaluate the double integral of f on the given domain D_{2} is bounded by the line $y=x-1$ and $y^{2}=2 x+6$.

$$
\iint_{D_{2}} x y d A
$$

Student note

3. Find the volume of the tetrahedron bounded by the planes $x+2 y+z=2, x=2 y, x=0$ and $z=0$.

Student note

$$
\text { 4. Evaluate } \int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x
$$

Properties of double integral

- Given double integrals of f and g exist over region D.

$$
\iint_{D}(f(x, y)+g(x, y)) d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A
$$

$\iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A$
\bigcirc If $f(x, y) \geq g(x, y)$ for $(x, y) \in D$,

$$
\iint_{D} f(x, y) d A \geq \iint_{D} g(x, y) d A .
$$

○ The area of the region D is $\iint_{D} 1 d A=A(D)$.

Properties of double integral

- If $D=D_{1} \cup D_{2}$ where D_{1} and D_{2} don't overlap except perhaps on their boundaries, then

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

\bigcirc If $m \leq f(x, y) \leq M$ for all $(x, y) \in D$,

$$
m A(D) \leq \iint_{D} f(x, y) d A \leq M A(D)
$$

where $\iint_{D} 1 d A=A(D)$.

Student note

1. Evaluate the double integral of $f(x, y)=2 x-3 y^{2}$ on the domain D bounded by $y=|x|+1, y=3$.

Student note

$$
\text { 2. Evaluate } \int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{2}} d x d y
$$

Student note

3. Find the area enclosed between the parabolas $y=x^{2}-4$ and $y=-x^{2}+2 x$.

Student note

4. Find the volume bounded by the surface $z=4-x^{2}-y^{2}$ and the plane $x+y=1$.

Student note

5. Verify that the volume of the sphere of radius r is $\frac{4}{3} \pi r^{3}$.

Chapter 5

5.4 Double integrals in polar coordinates

Polar coordinates

- A cotem represents a point in the plane by an ordered pair of numbers, called Cartesian coordinates.
- Newton suggested another coordinate system, called the polar coordinate system, which is more convenient for many purposes.
- A point in the plane that is called the pole (or origin) and is labeled O.
- We draw a ray (half-line) starting at O called the polar axis. This axis usually drawn horizontally to the right and corresponds to the positive x -axis in Cartesian coordinates.

Polar coordinates

- If P is any other point in the plane, let r be the distance from O to P and let θ be the angle between the polar axis and the line $O P$.

- Then the point P is represented by the ordered pair (r, θ) and r, θ are called polar coordinates of P.
- If $P=O$, then $\mathrm{r}=0$ and we agree that $(0, \theta)$ represents the pole for any value of θ.

Student note

1. Plot the points whose polar coordinates are given: $\mathrm{P}(1$, $5 \pi / 4), \mathrm{Q}(2,3 \pi), \mathrm{R}(2,-2 \pi / 3), \mathrm{S}(-3,3 \pi / 4)$.

Polar coordinates conversion

- The connection between polar and Cartesian coordinates can be seen from figure.

- We have $x=r \cos \theta$ and $y=r \sin \theta$.

○ Moreover, $r^{2}=x^{2}+y^{2}, \tan \theta=y / x$.

Student note

2. Convert the point $(2, \pi / 3)$ from polar to Cartesian coordinate and represent $(-1,1)$ in terms of polar coordinates.

Polar curves

- The graph of a polar equation $r=f(\theta)$, or more generally, $F(r, \theta)=0$, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

3. Determine the curve C_{1} for the polar equation $r=2$ and C_{2} for $\theta=2$.

Student note

4. Sketch the curve with polar equation $r=2 \cos \theta$.

Student note

5. Sketch the curve with polar equation $r=\cos 2 \theta$.

Double integrals in Polar coordinates

○ If the double integral $\iint_{D} f(x, y) d A$ to evaluate on R_{i} as

$$
R_{1}=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\} \quad R_{2}=\{(r, \theta) \mid 1 \leq r \leq 2,0 \leq \theta \leq \pi\}
$$

Polar coordinates

- Note that the polar coordinates (r, θ) of a point are related to the rectangular coordinates (x, y) by the equations.

$$
r^{2}=x^{2}+y^{2}, \quad x=r \cos \theta, y=r \sin \theta
$$

- The regions in R_{1} is a special case of a polar rectangle

$$
R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}
$$

Double integral over polar rectangle

○ Divide the interval $[a, b]$ into m subintervals $\left[r_{i-1}, r_{i}\right]$ of equal width $\Delta r=(b-a) / m$
\circ and divide the interval $[\alpha, \beta]$ into n subintervals $\left[\theta_{j-1}\right.$, θ_{j}] of equal width $\Delta \theta=(\beta-\alpha) / n$

- The circles $r=r_{i}$ and the rays $\theta=\theta_{j}$ divide the polar rectangle R into the small polar rectangles

Double integral over polar rectangle

- The "center" of the polar subrectangle

$$
R_{i j}=\left\{(r, \theta) \mid r_{i-1} \leq r \leq r_{i}, \theta_{j-1} \leq \theta \leq \theta_{j}\right\}
$$

0 has the polar coordinates

$$
r_{i}^{*}=\frac{1}{2}\left(r_{i-1}+r_{i}\right), \theta_{j}^{*}=\frac{1}{2}\left(\theta_{j-1}+\theta_{j}\right)
$$

- The area of a sector of a circle with radius r and central angle θ is $\frac{1}{2} r^{2} \theta$.
○ Then the area of $R_{i j}$ is

$$
\begin{aligned}
\Delta A_{i} & =\frac{1}{2} r_{i}^{2} \Delta \theta-\frac{1}{2} r_{i-1}^{2} \Delta \theta=\frac{1}{2}\left(r_{i}^{2}-r_{i-1}^{2}\right) \Delta \theta \\
& =\frac{1}{2}\left(r_{i}+r_{i-1}\right)\left(r_{i}-r_{i-1}\right) \Delta \theta=r_{i}^{*} \Delta r \Delta \theta
\end{aligned}
$$

Double integral over polar rectangle

${ }_{m}{ }^{\circ}$ For continuous function f_{m}
$\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) \Delta A_{i}=\sum_{i=1}^{m^{p}} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{i}^{*} \Delta r \Delta \theta$
\bigcirc Let $g(r, \theta)=r f(r \cos \theta, r \sin \theta)$ then

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} g\left(r_{i}^{*}, \theta_{j}^{*}\right) \Delta r \Delta \theta
$$

which is a Riemann sum for the double integral

- Therefore,

$$
\int_{\alpha}^{\beta} \int_{a}^{b} g(r, \theta) d r d \theta .
$$

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta .
$$

Change to polar coordinates

- If f is continuous on a polar rectangle R given by $0 \leq a$ $\leq r \leq b, \alpha \leq \theta \leq \beta$, where $0 \leq \beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

- If f is continuous on a polar region of the form

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

Then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Student note

1. Evaluate the double integral of $f(x, y)=3 x+4 y^{2}$ on the domain D is the upper half-plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Student note

2. Find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

Student note

3. Use a double integral to find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$.

Student note

4. Verify that the volume of the sphere of radius r is $\frac{4}{3} \pi r^{3}$. using a double integral in polar coordinates.

Student note

$$
\text { 5. Evaluate } \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} d y d x
$$

Chapter 5

5.5 Applications of Double integrals

Density and mass

- A single integrals can be used to compute moments and the center of mass of a thin plate or lamina with constant density.
- The double integrals could be used to determine a lamina with variable density.
- Suppose the lamina occupies a region D of the $x y$ plane and its density at a point (x, y) in D is given by $\rho(x, y)$.

$$
\rho(x, y)=\lim _{\Delta A \rightarrow 0} \frac{\Delta m}{\Delta A}
$$

\circ Let m be the total mass of the lamina.

$$
m=\lim _{k, l \rightarrow \infty} \sum_{i=1}^{k} \sum_{j=1}^{l} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A=\iint_{D} \rho(x, y) d A
$$

Student note

1. Charge is distributed over the triangular region D so that the charge density at (x, y) is $\sigma(x, y)=x y$, measured in coulombs per square meter ($\mathrm{C} / \mathrm{m}^{3}$). Find the total charge.

Moments and centers of mass

- Consider the center of mass of a lamina with variable density.
- Suppose the lamina occupies a region D and has density function $\rho(x, y)$.
- Define the moment of a particle about an axis as the product of its mass and its directed distance from the axis.
- Divide D into small rectanges. The the mass of $R_{i j}$ is approximately $\rho\left(x_{i j}{ }^{*}, y_{i j}{ }^{*}\right) \Delta A$. The moment of $R_{i j}$ with respect to the x-axis is $\rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A y_{i j}^{*}$

Moments and centers of mass

- The moment of the entire lamina about the x-axis is

$$
M_{x}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} y_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A=\iint_{D} y \rho(x, y) d A
$$

○ Similarly, the moment about y-axis is

$$
M_{y}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A=\iint_{D} x \rho(x, y) d A
$$

Define the center of $\operatorname{mass}(\bar{x}, \bar{y})$ so that $m \bar{x}=M_{y}, m \bar{y}=M_{x}$.

Moments and centers of mass

- The coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are
$\bar{x}=\frac{M_{y}}{m}=\frac{1}{m} \iint_{D} x \rho(x, y) d A, \bar{y}=\frac{M_{x}}{m}=\frac{1}{m} \iint_{D} y \rho(x, y) d A$,
where the mass m is given by

$$
m=\iint_{D} x \rho(x, y) d A
$$

Student note

2. Find the mass and center of mass of a triangular lamina with vertices $(0,0),(1,0)$, and $(0,2)$ if the density function is $\rho(x, y)=1+3 x+y$.

Student note

3. The density at any point on a semicircular lamina is proportional to the distance from the center of the circle. Find the center of mass of the lamina.

Moments of inertia

- The moment of inertia (also called the second moment) of a particle of mass m about an axis is defined to be $m r^{2}$, where r is the distance from the particle to the axis.
- We extend this concept to a lamina with density function $\rho(x, y)$ and occupying a region D as
$I_{x}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(y_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A y_{i j}^{*}=\iint_{D} y^{2} \rho(x, y) d A$
- Similarly, the moment of inertia about the y-axis is

$$
I_{y}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A y_{i j}^{*}=\iint_{D} x^{2} \rho(x, y) d A
$$

Moment of inertia

- The moment of inertia about the origin also called the polar moment of inertia is

$$
\begin{aligned}
M_{0} & =\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\left(x_{i j}^{*}\right)^{2}+\left(y_{i j}^{*}\right)^{2}\right) \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \\
& =\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A
\end{aligned}
$$

\circ Note that $I_{0}=I_{x}+I_{y}$.

Student note

4. Find the moments of inertia I_{x}, I_{y} and I_{0} of a homogeneous disk D with density $\rho(x, y)=\rho$, center the origin and radius a.

Moment of inertia

- The radius of gyration of a lamina about an axis is the number R such that

$$
m R^{2}=I
$$

where m is the mass of the lamina and I is the moment of inertia about the given axis.

- In particular, the radius of gyration $\overline{\bar{y}}$ with respect to the x-axis and the radius of gyration $\overline{\bar{x}}$ with respect to the y-axis are given by the equations

$$
m \overline{\bar{y}}^{2}=I_{x}, m \overline{\bar{x}}^{2}=I_{y}
$$

Student note

5. Find the radius of gyration about the x-axis of the disk in Example 4.

