
Chapter 5

5.1 Double integrals over rectangles
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R

Volumes
 Consider a nonnegative function f defined on R = [a, b] 

× [c, d] = {(x,y) | a < x < b, c < y < d}
 Let S be the solid that lies above xy plane

S = {(x, y, z) | 0 < z < f(x,y), (x,y)∈R}.

S
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Volume over rectangles

 Divide R into subrectangles.
R

ij
 = [x

i-1
,x

i
]×[y

j-1
,y

j
] = {(x, y) | x

i-1
 < x < x

i
, y

i-1
 < y < y

i
}

 Each with area ∆A = ∆x×∆y
 Choose a sample point (xij

*,yij
*) in each Rij, we can 

approximate the volume by

 As m, n are getting larger the volume becomes 

V≈∑
i=1

m

∑
j=1

n

f xi j
∗ , y i j

∗
 A

V= lim
m ,n∞

∑
i=1

m

∑
j=1

n

f xi j
∗ , y i j

∗  A
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Definition

 The double integral of f over the rectangle R is

    if this limit exists.

 Note that (xij
*,yij

*) can be chosen arbitrary in each Rij.

∬
R

f x , ydA= lim
m ,n∞

∑
i=1

m

∑
j=1

n

f xi j
∗ , y i j

∗  A

∬
R

f x , ydA= lim
m ,n∞

∑
i=1

m

∑
j=1

n

f xi j , y i j A
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Double Riemann sum

 For nonnegative f, the volume V of the solid lies above 
the rectangle R and below the surface f(x, y) is

 The sum is called a double Riemann sum

V=∬
R

f x , ydA

∑
i=1

m

∑
j=1

n

f x i j
∗ , yi j

∗  A
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Student note

1. Evaluate                        on [-1, 1]×[-1, 1].∬
R

 1− y2 dA
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Properties of double integral

 Given that the double integral of f and g exists on R

 If f(x,y) > g(x,y) for (x,y) ∈ R.

∬
R

 f x , yg x , y  dA=∬
R

f x , y dA∬
R

g x , y dA

∬
R

c f x , ydA=c∬
R

f x , ydA

∬
R

f x , ydA≥∬
R

gx , ydA
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Student note

1. Evaluate the double integral by first identifying it as the 
volume of a solid.

∬
R

3dA={x , y∣−2≤x≤2,1≤ y≤6}

∬
S

4−2 ydA ,S=[0,1]×[0,1]
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Student note

2. If f is a constant function, f(x,y) = k and R = [a,b]×[c,d] 
show that 

∬
R

k dA=k b−a d−c.
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Chapter 5

5.2 Iterated integrals
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Iterated integral

 Suppose f is a continuous function of two variables on 

R = [a, b]×[c, d].

 The notation                       mean x is held fixed and  

f(x, y) is integrated with respect to y. This defines a 

function of x,

 Now integrate A with respect to x from a to b we have

 This is called an iterated integral.

∫
c

d

f x , ydy

Ax=∫
c

d

f x , y dy .

∫
a

b

∫
c

d

f x , ydy dx=∫
a

b

∫
c

d

f  x , y dy dx
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Student note

1. Evaluate the iterated integrals

∫
0

1

∫
1

2

x y3 dy dx

∫
1

2

∫
0

1

x y3 dx dy
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Student note

2. Find the volume of the solid S that is bounded by the 
elliptic paraboloid x2 + 2y2 + z = 16, the planes x = 2 and 
y = 2 on the first quadrant.
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Fubini’s Theorem

 If f  is continuous on the rectangle R 

R = {(x, y) | a < x < b, c < y < d}

    then

    More generally, this is true if we assume that f is 

bounded on R, f is discontinuous only on a finite 

number of smooth curves, and the iterated integrals 

exist.

∬
R

f x , ydA=∫
a

b

∫
c

d

f x , ydy dx=∫
c

d

∫
a

b

f x , ydx dy
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Iterated integral of product

 If f(x, y) can be factored as the product of a function of 

x only and a function of y only, the double integral of f 

can be written in a particularly simple form.

 Suppose f(x, y) = g(x) h(y) on R = [a, b]×[c, d],

    

∬
R

g xh  ydA=∫
a

b

g xdx∫
c

d

h  ydy
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Student note

1, Evaluate the double integral of f(x,y) = x – 2y3 where   
R = {(x,y) | 0 < x < 2, 1 < y < 2}. 
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Student note

2. Evaluate the double integral of f(x,y) = x sin(xy) where  
R = [0, π]×[1, 2].
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Student note

3. What is the double integral 

where R = [0, π/2]×[0, π/2]?

∬
R

sinx cosy dA
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Student note

4. Find the volume of the solid that lies under the plane   
3x + 2y + z = 12 and above the rectangle    R = {(x,y) | 
0 < x < 1, -2 < y < 3}. 
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Student note

5. Find the volume of the solid in the first octant bounded 
by the cylinder z = 6 - xy and the plane x = 2.
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Chapter 5

5.3 Double integrals over general regions
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Double integral over general region
 Let f be a nonnegative on D which is enclosed in a 

rectangular region R.
 We define a new function F on R as

 Then
the double integral of f over D.

D D

R

F x , y={ f x , y if x , y∈D
0 if x , y∈R−D}

∬
D

f x , ydA=∬
R

F x , ydA
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Double integral of type I

 A plane region D is said to be of type I if it lies 
between the graphs of two continuous functions of x, 
that is

D = {(x, y) | a < x < b, g
1
(x) < y < g

2
(x)}

    Then

D

y = g1(x)

y = g2(x)

∬
D

f x , ydA=∫
a

b

∫
g1 x

g2 x

f x , ydy dx
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Double integral of type II

 A plane region D is said to be of type II if it lies 
between the graphs of two continuous functions of y, 
that is

D = {(x, y) | c < y < d, h
1
(y) < x < h

2
(y)}

    Then

D

x = h1(y)

x = h2(y)

∬
D

f x , ydA=∫
c

d

∫
h1  y

h2  y

f  x , ydx dy
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Student note

1. Evaluate the double integral of f on the given domain 
D1 is bounded by the parabola y = 2x2  and y = 1 + x2.

∬
D1

2 x ydA
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Student note

2. Evaluate the double integral of f on the given domain 
D2 is bounded by the line y = x - 1 and y2 = 2x + 6.

∬
D2

x y dA
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Student note

3. Find the volume of the tetrahedron bounded by the 
planes x + 2y + z = 2, x = 2y, x = 0 and z = 0.
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Student note

4. Evaluate ∫
0

1

∫
x

1

sin  y2dy dx .
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Properties of double integral

 Given double integrals of f and g exist over region D.

 If f(x,y) > g(x,y) for (x,y) ∈D,

 The area of the region D is

∬
D

 f x , yg x , y  dA=∬
D

f x , y dA∬
D

g x , y dA

∬
D

c f x , ydA=c∬
D

f x , ydA

∬
D

f x , y dA≥∬
D

g x , y dA.

∬
D

1 dA=AD.
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Properties of double integral

 If D = D
1
 ∪ D

2
 where D

1
 and D

2
 don't overlap except 

perhaps on their boundaries, then

 If m < f(x,y) < M for all (x,y) ∈D,

     where

∬
D

f x , ydA=∬
D1

f x , ydA∬
D2

f x , ydA

m AD≤∬
D

f x , ydA≤M AD .

∬
D

1 dA=AD.
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Student note

1. Evaluate the double integral of f(x,y) = 2x – 3y2 on the 
domain D bounded by y = |x| + 1, y = 3.
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Student note

2. Evaluate ∫
0

4

∫
 y

2

e x2

dx dy.
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Student note

3. Find the area enclosed between the parabolas y = x2 - 4 
and y = -x2 + 2x.
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Student note

4. Find the volume bounded by the surface z = 4 - x2 – y2 
and the plane x + y = 1.
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Student note

5. Verify that the volume of the sphere of radius r is 
4
3
 r3 .
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Chapter 5

5.4 Double integrals in polar coordinates
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Polar coordinates

 A cotem represents a point in the plane by an ordered 
pair of numbers, called Cartesian coordinates.

 Newton suggested another coordinate system, called 
the polar coordinate system, which is more 
convenient for many purposes.

 A point in the plane that is called the pole (or origin) 
and is labeled O.

 We draw a ray (half-line) starting at O called the polar 
axis. This axis usually drawn horizontally to the right 
and corresponds to the positive x-axis in Cartesian 
coordinates.
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Polar coordinates

 If P is any other point in the plane, let r be the distance 
from O to P and let θ be the angle between the polar 
axis and the line OP.

 Then the point P is represented by the ordered pair (r, 
θ) and r, θ are called polar coordinates of P.

 If P = O, then r = 0 and we agree that (0, θ) represents 
the pole for any value of θ.

O

P(r,θ)
r

θ
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Student note

1. Plot the points whose polar coordinates are given: P(1, 
5π/4), Q(2, 3π), R(2, -2π/3), S(-3, 3π/4).
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Polar coordinates conversion

 The connection between polar and Cartesian 
coordinates can be seen from figure.

 We have x = r cos θ and y = r sin θ.
 Moreover, r2 = x2 + y2, tan θ = y/x.

O

P(r,θ) = P(x, y)
r

θ

y

x
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Student note

2. Convert the point (2, π/3) from polar to Cartesian 
coordinate and represent (-1, 1) in terms of polar 
coordinates.
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Polar curves

 The graph of a polar equation r = f(θ), or more 
generally, F(r, θ) = 0, consists of all points P that have 
at least one polar representation (r, θ) whose 
coordinates satisfy the equation.

3. Determine the curve C
1
 for the polar equation r = 2 and 

C
2
 for θ = 2. 
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Student note

4. Sketch the curve with polar equation r = 2 cos θ.
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Student note

5. Sketch the curve with polar equation r = cos 2θ.
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Double integrals in Polar 
coordinates

 If the double integral                       to evaluate on R
i
 as

R
1
={(r, θ)| 0 < r < 1, 0 < θ < 2π} R

2
={(r, θ)| 1 < r < 2, 0 < θ < π}

∬
D

f x , ydA

x2 + y2 = 1

0
R

1

x2 + y2 = 4

x2 + y2 = 1

0

R
2
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Polar coordinates

 Note that the polar coordinates (r, θ) of a point are 
related to the rectangular coordinates (x, y) by the 
equations.

r2 = x2 + y2,        x = r cos θ, y = r sin θ

 The regions in R
1
 is a special case of a polar rectangle

R = {(r, θ) | a < r < b, α < θ < β}
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Double integral over polar 
rectangle
 Divide the interval [a, b] into m subintervals [r

i-1
, r

i
] of 

equal width ∆r=(b – a)/m

 and divide the interval [α, β] into n subintervals [θ
j-1

, 
θ

j
] of equal width ∆θ=(β – α)/n

 The circles r = r
i
 and the rays θ = θ

j
 divide the polar 

rectangle R into the small polar rectangles

R

r = b

r=a θ=β

θ=α
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Double integral over polar 
rectangle

 The “center” of the polar subrectangle
R

ij
 = {(r, θ) | r

i-1
 < r < r

i
, θ

j-1
 < θ < θ

j
}

 has the polar coordinates

 The area of a sector of a circle with radius r and central 
angle θ is

 Then the area of R
ij
 is

r i
∗
=

1
2
ri−1r i , j

∗
=

1
2
 j−1 j .

1
2

r2
 .

 Ai=
1
2

ri
2 −

1
2

ri−1
2  =

1
2
ri

2−ri−1
2  

=
1
2
riri−1ri−ri−1 =ri

∗
 r 



2301108 Calculus II for ISE Chapter 5:Double integrals 49

Double integral over polar 
rectangle

 For continuous function f, 

 Let g(r, θ) = r f(r cos θ, r sin θ) then

    which is a Riemann sum for the double integral

 Therefore, 

∑
i=1

m

∑
j=1

n

f r i
∗ cos j

∗ , r i
∗ sin j

∗ Ai=∑
i=1

m

∑
j=1

n

f r i
∗ cos j

∗ , r i
∗ sin j

∗ r i
∗ r

∑
i=1

m

∑
j=1

n

g ri
∗ , j

∗  r 

∫




∫
a

b

g r ,d r d  .

∬
R

f x , yd A=∫




∫
a

b

f r ,r d r d  .
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Change to polar coordinates

 If f is continuous on a polar rectangle R given by 0 < a 
< r < b, α < θ < β, where 0 < β – α < 2π, then

 If f is continuous on a polar region of the form

D = {(r, θ) | α < θ < β, h
1
(θ) < r < h

2
(θ)}

    Then

∬
R

f x , ydA=∫




∫
a

b

f r cos , r sinr d r d 

∬
R

f x , ydA=∫




∫
h1 

h2 

f r cos , r sin r d r d 
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Student note

1. Evaluate the double integral of f(x,y) = 3x + 4y2 on the 
domain D is the upper half-plane bounded by the 
circles x2 + y2 = 1 and x2 + y2 = 4.
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Student note

2. Find the volume of the solid bounded by the plane z = 0 
and the paraboloid z = 1 – x2 – y2. 
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Student note

3. Use a double integral to find the area enclosed by one 
loop of the four-leaved rose r = cos 2θ.
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Student note

4. Verify that the volume of the sphere of radius r is           
using a double integral in polar coordinates.

4
3
 r3 .
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Student note

5. Evaluate ∫
0

1

∫
0

 1− x2

e x2 y2

dy dx.
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Chapter 5

5.5 Applications of Double integrals
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Density and mass

 A single integrals can be used to compute moments 
and the center of mass of a thin plate or lamina with 
constant density.

 The double integrals could be used to determine a 
lamina with variable density.

 Suppose the lamina occupies a region D of the xy-
plane and its density at a point (x, y) in D is given by 
ρ(x, y).

 Let m be the total mass of the lamina.

x , y= lim
 A0

 m
 A

m= lim
k , l∞

∑
i=1

k

∑
j=1

l

xi j
∗ , y i j

∗
 A=∬

D

x , yd A.
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Student note

1. Charge is distributed over the triangular region D so 
that the charge density at (x, y) is σ(x, y) = xy, 
measured in coulombs per square meter (C/m3). Find 
the total charge.
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Moments and centers of mass

 Consider the center of mass of a lamina with variable 
density.

 Suppose the lamina occupies a region D and has 
density function ρ(x, y).

 Define the moment of a particle about an axis as the 
product of its mass and its directed distance from the 
axis.

 Divide D into small rectanges. The the mass of R
ij
 is 

approximately ρ(x
ij
*, y

ij
*)∆A. The moment of R

ij
 with 

respect to the x-axis is x i j
∗ , yi j

∗  A yi j
∗
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Moments and centers of mass

 The moment of the entire lamina about the x-axis is

 Similarly, the moment about y-axis is

Define the center of mass          so that                 

M x= lim
m, n∞

∑
i=1

m

∑
j=1

n

yi j
∗
xi j

∗ , y i j
∗
 A=∬

D

yx , ydA

M y= lim
m ,n∞

∑
i=1

m

∑
j=1

n

xi j
∗ x i j

∗ , yi j
∗  A=∬

D

xx , ydA

x ,y mx=M y , my=M x .
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Moments and centers of mass

 The coordinates          of the center of mass of a lamina 
occupying the region D and having density function 
ρ(x, y) are

   where the mass m is given by

x=
M y

m
=

1
m∬D

xx , ydA , y=
M x

m
=

1
m∬D

y x , ydA ,

m=∬
D

x x , ydA.

x ,y
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Student note

2. Find the mass and center of mass of a triangular lamina 
with vertices (0, 0), (1, 0), and (0, 2) if the density 
function is ρ(x, y) = 1 + 3x + y.
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Student note

3. The density at any point on a semicircular lamina is 
proportional to the distance from the center of the 
circle. Find the center of mass of the lamina.
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Moments of inertia

 The moment of inertia (also called the second moment) 
of a particle of mass m about an axis is defined to be 
mr2, where r is the distance from the particle to the 
axis.

 We extend this concept to a lamina with density 
function ρ(x, y) and occupying a region D as

 Similarly, the moment of inertia about the y-axis is

I x= lim
m ,n∞

∑
i=1

m

∑
j=1

n

 yi j
∗ 2x i j

∗ , yi j
∗  A y i j

∗=∬
D

y2x , ydA

I y= lim
m , n∞

∑
i=1

m

∑
j=1

n

x i j
∗

2
x i j

∗ , yi j
∗
 A yi j

∗
=∬

D

x2
x , ydA
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Moment of inertia

 The moment of inertia about the origin also called the 

polar moment of inertia is

 Note that I
0
 = I

x
 + I

y
.

M 0= lim
m ,n∞

∑
i=1

m

∑
j=1

n

 xi j
∗ 2 y i j

∗ 2 xi j
∗ , y i j

∗  A

=∬
D

x2 y2x , ydA



2301108 Calculus II for ISE Chapter 5:Double integrals 66

Student note

4. Find the moments of inertia I
x
, I

y
 and I

0
 of a 

homogeneous disk D with density ρ(x, y) = ρ, center 
the origin and radius a.
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Moment of inertia

 The radius of gyration of a lamina about an axis is the 
number R such that

mR2 = I
    where m is the mass of the lamina and I is the moment 

of inertia about the given axis.
 In particular, the radius of gyration    with respect to 

the x-axis and the radius of gyration    with respect to 
the y-axis are given by the equations

y
x

m y
2
=I x ,m x

2
= I y
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Student note

5. Find the radius of gyration about the x-axis of the disk 
in Example 4.
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