
Chapter 6

6[Extra] Modeling with Differential 
Equations
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Models of population growth

 Modeling physical law based on evidence = 

Formulating a mathematical model.

 It takes the form of a differential equation, an equation 

that contains an unknown function and its derivatives.

 Model for the growth of a population based on the 

assumption that the population grows at a rate 

proportional to the size of the population. (The ideal 

conditions for growth of bacteria, etc.)
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Models of population growth

 Let t be the independent variable time 
    and P be the number of individuals in the population.
 The rate of growth of the population is
 By the assumption,

    where k is the proportionality constant.

 This is a differential equation because it contains an 

unknown function P and its derivative

d P
d t

.

d P
d t

=k P

d P
d t

.
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Definition

 A differential equation is an equation that contains an 
unknown function and some of its derivatives.

 The order of a differential equation is the order of the 
highest derivative that occurs in the equation.

◦ y' = xy

 ◦ y''x – xy = 2

°
d y
d x

=2 x3 y1

°
d 3 y

d t3
−t

d y
d t

t 2−1 y=e t

°  d 2 y

d x2 
3

−8 x d y
d x 

4

3 x y=x−1
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Solution of the population growth 
model

 What is a solution of the population growth model?

 Same as “What function has its derivative equal to a 

constant multiple by itself?”. Exponential function.

 If we let P(t) = Cekt, then

 Thus, any P(t) = Cekt is a solution of the population 

growth model.

 Varying C, we get the family of solutions P(t) = Cekt.

P ' t =C k ek t=k C ek t=k P t 
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Solution of a differential equation

 A function f is called a solution of a differential 

equation if the equation is satisfied when y = f(x) and 

its derivatives are substituted into the equation.

 If f is a solution of y' = xy, then ∀x ∈ I,

f'(x) = xf(x).

 To solve a differential equation means finding all 

possible solutions of the equation.

The solution of y' = x is                y=
x2

2
C.
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Student note

1. Show that every member of the family of functions

    is a solution of the differential equation 

y=
1cex

1−cex

y '=
y2−1

2
.
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Initial condition

 Usually, we are not interested in a family of solutions 

(general solution). We want to find a particular solution 

that satisfies some additional requirement.

 For example, it must satisfy a condition y(t
0
) = y

0
.

 This is called an initial condition and the problem of 

finding a solution of this is called an initial-value 

problem.
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Student note

2. Find a solution of the differential equation 

       that satisfies the initial condition y(0) = 2.

y '=
y2

−1
2
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General and specific solution

 Consider

then y = e2x is a solution of this differential equation.
 In addition, y = ex + e2x

 is also one of the solution of 
this differential equation.
 y = Cex + e2x where C is a real number is a general 

solution of the differential equation.
 y = ex + e2x

 is a specific solution for the differential 
equation.

d y
d x

− y=e2 x
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Student note

3. Show that y = x – x-1 is a solution of the differential 
equation xy' + y = 2x.
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Student note

4. For what values of r does the function y = e-rt satisfy the 
differential y'' + y' + 6y = 0.
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Student note

5. A function y(t) satisfies the differential equation

5.1 What are the constant solutions of the equation?
5.2 For what values of y is y increasing?
5.3 For what values of y is y decreasing?

d y
d t

= y4
−6 y3

5 y2
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Chapter 6

6.1. Separable equations
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Separable equations

 A separable equation is a first-order differential 
equation in which the expression y' can be factored as a 
function of x times the function of y. That means

 We rewrite                      . It becomes

h(y) dy = g(x) dx
 So that all y’s are on one side of the equation and all x’s 

are on the other side

d y
d x

=g x f  y

h  y=
1

f  y

∫h  ydy=∫ g xdx
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Verification

 We can verify that                                     is the solution 

of

 By using the Chain rule,

d y
d x

=g x f  y

∫h  ydy=∫ g xdx

d
d x

∫ h  ydy = d
d x

∫ g xdx 
d

d y
∫ h ydy  d y

d x
=g x

h  y
d y
d x

=g x
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Student note

1. Solve the differential equation                 and find the 

solution with the initial condition y(0) = 1.

d y
d x

=
x

y2
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Student note

2. Solve the differential equation d y
d x

=
e2 x

4 y3 .
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Student note

3. Solve the differential equation d y
d x

=
3 x3

y−sin y
.
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Student note

4. Solve the equation y' = xy.
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Chapter 6

6.1[Extra] Exponential growth and decay
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Exponential growth and decay

 The assumption that the population grows at a rate 
proportional to the size of the population:
 If P = 100 and growing rate P' = 30.
 Another bacterial of the same type with 100 more 

would have growing rate 60.
 The same assumption applies to

 (nuclear physics) the mass of a radioactive 
substance decays at a rate proportional to the mass.

 (chemistry) the rate of a unimolecular first-order 
reaction is proportional to the concentration of the 
substance.
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Law of natural growth/decay

 In general, if y(t) is the value of a quantity y at time t 
and if the rate of change of y with respect to t is 
proportional to its size y(t), then

    where k is a constant. This is called the law of natural 
growth for k > 0 or the law of natural decay for k < 0.

 Hence,

                                              For t = 0, y(0) = Aek0 = A.

d y
d t

=k y

∫ 1
y

d y
d t

=∫ k d t

ln∣y∣=k tC
y=Aek t
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Population growth

 The solution of the initial-value problem

    is

 The quantity            is called the relative growth rate.

 Hence, “the growth rate is proportional to population 

size” is the same as “the relative growth rate is 

constant.”

d y
d t

=k y , y 0= y0

y t = y0 ek t

1
P

d P
d t



2301118 Calculus II for ISE Chapter 6:Differential equations 25

Student note

1. A bacteria culture grows with constant relative growth 
rate. After 2 hours there are 600 bacteria and after 8 
hours the count is 75,000.
1.1 Find the initial population.
1.2 Find an expression for the population.
1.3 Find the number of cells after 5 hours.
1.4 Find the rate of growth after 5 hours.
1.5 When will the population reach 200,000?



2301118 Calculus II for ISE Chapter 6:Differential equations 26

Radioactive decay

 Radioactive substances decay by spontaneously 

emitting radiation. If m(t) is the mass remaining from 

an initial mass m
0
 of the substance at after time t,

    

 Hence, 

 Physicists express the rate of decay in terms of half-

life, the time required for half of any given quantity.

d m
d t

=k m≡mt =m0 ek t .

−
1
m

d m
d t
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Student note

2. The half-life of radium-226                  is 1590 years.
2.1 A sample of radium-226 has a mass of 100 mg. 

Find a formula for the mass of             that remains 
after t years.

2.2 Find the mass after 1000 years correct to the 
nearest milligram.

2.3 When will the mass be reduced to 30 mg?

226
88

Ra

226
88

Ra
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Newton's law of cooling

 The rate of cooling of an object is proportional to the 

temperature difference between the object and its 

surroundings, provided that this difference is not too 

large. Let T(t) be the temperature of the object at time 

t and T
s
 be the temperature of the surroundings,

    
d T
d t

=k T−T s
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Student note

4. A bottle of soda pop at room temperature (72ºF) is 
placed in a refrigerator where the temperature is 44ºF. 
After half an hour the soda pop has cooled to 61ºF.
4.1 What is the temperature of the soda pop after 

another half hour?
4.2 How long does it take for the soda pop to cool to 

50ºF?
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Continuously compounded interest

 If $1000 is invested at 6% interest, compounded annually,
 after 1 year the investment is worth $1000(1.06)=$1060
 after 2 years it's worth $1060×$1000(1.06)=$1123.60
 after t year it's worth $1000(1.06)t.

 In general, if A
0
 is an initial investment and r is an interest 

rate, then after t years it's worth

A
0
(1 + r)t

 Usually, interest is compounded more frequently, n times a 
year,

 Or continuously,

A01
r
n 

n t

A0 lim
n∞

1
r
n 

n t
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Student note

5. If $500 is borrowed at 14% interest, find the amounts 
due at the end of 2 years if the interest is compounded.
5.1 annually
5.2 quarterly
5.3 monthly
5.4 daily
5.5 hourly
5.6 continuously
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Chapter 6

6.2 Homogeneous differential equations
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Homogeneous function

 A function of two variables, x and y is called the 

homogeneous function of degree n if for any t > 0,

f(tx, ty) = tnf(x, y)

 The first order homogeneous differential equation is of 

the form

M(x,y)dx + N(x,y)dy = 0

    where M(x,y), N(x,y) are homogeneous function of the 

same degree.
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Homogeneous equations

 Given M(x,y), N(x,y) as the homogeneous function of 
degree n, 

M(tx,ty) = tn M(x,y), N(tx, ty) = tn N(x,y),
 We can transform M(x,y)dx + N(x,y)dy = 0 using v=y/x, 

where t = 1/x for positive value of x,
xnM(1,v)dx + xnN(1,v)dy = 0
M(1,v)dx + N(1,v)(vdx+xdv) = 0

(M(1,v) + vN(1,v))dx + xN(1,v)dv = 0
 This differential equation is just a separable differential 

equation 1
x

dx
N 1, v

M 1, vv N 1,v
dv=0.
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Student note

1. Find the general solution of (x – y)dx = (x + y)dy.
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Student note

2. Find the general solution of (x3+xy2)dy = 2y3dx.
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Student note

3. Find the general solution of (xey/x+y)dx – xdy = 0.
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Student note

4. Find the specific solution of
    when y(2) = 2.

d y
d x

=
y
x

cos y−x
x 
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Student note

5. Find the specific solution for y(2) = π

 x sin y
x − y cos y

x  dxx cos y
x  dy=0.
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Chapter 6

6.3 Exact differential equations
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Exact differential equation

 The differential equation M(x,y)dx + N(x,y)dy = 0 is the 

exact differential equation if there exists f(x,y) that 

df(x,y) = M(x,y)dx + N(x,y)dy

 Then the general solution is f(x,y) = c.

 It is possible to determine exactness and find the 

function f by mere inspection, for example

y dx + x dy = 0



2301118 Calculus II for ISE Chapter 6:Differential equations 42

Student note

1. Determine the solution of 2xy dx + x2dy = 0.



2301118 Calculus II for ISE Chapter 6:Differential equations 43

Student note

2. Determine the solution of (y3 – 2x)dx+(3xy2 – 1)dy = 0.
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Student note

3. Determine the solution of 
d y
d x

=−
a xb y
b xc y

.
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Theorem for exact equation

 Theorem: If        and       is continuous on a rectangle R 

then M(x,y)dx + N(x,y)dy = 0 is the exact differential 

equation if and only if

 Note that

∂ M
∂ y

 x , y =∂ N
∂ x

 x , y 

dF x , y=M  x , ydxN x , ydy
∂ F
∂ x

 x , y ∂ F
∂ y

 x , y =M x , ydxN x , ydy

∂M
∂ y

∂ N
∂ x
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Solution of the exact equation

 Then

 Hence,
N x , y=

∂

∂ y
g x , yk '  y

k  y=∫  N x , y−g x , y dy

F x , y=∫∂ F
∂ x

 x , y  dx=∫M x , ydx=g x , yk  y

∂ F
∂ y

 x , y =N x , y
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Student note

1. Determine the general solution of (y3–2x)dx + (3xy2–1)dy 
= 0.
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Student note

2. Determine the general solution of (x2+y2)dx + (2xy+cos y) 
dy = 0.
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Student note

3. Determine the general solution of y cos xy dx + x cos xy 
dy = 0.
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Student note

4. Find the general solution of (2xey+ex)dx + (x2+1)eydy = 0.
 

 



2301118 Calculus II for ISE Chapter 6:Differential equations 51

Student note

5. Determine the general solution of

 e xln y
y
x  dx x

y
ln xsin y dy=0 .
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Chapter 6

6.4 Integrating factor
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Integrating factors

 Consider the equation

y dx + (x2y – x) dy = 0

    is easily seen to be nonexact, since 

 However, if we multiply through by the factor 1/x2

    which is exact.
 Under what conditions can a function μ(x, y) be found 

with the property that μ(M dx + N dy) = 0 (**) is exact.

∂ M
∂ y

=1,
∂ N
∂ x

=2 x y−1.

y
x2 dx y−

1
x  dy=0
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Integrating factors

 Assume that (**) has a general solution
f(x, y) = c

    by differentiating

    Hence, 

     So

∂ f
∂ x

dx
∂ f
∂ y

=0

d y
d x

=−
M
N

=−

∂ f
∂ x
∂ f
∂ y

∂ f
∂ x
M

=

∂ f
∂ y
N
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Integrating factors

 Denote the common ratio by μ(x, y) then

 From M(x, y) dx + N(x, y) dy = 0, multiply by μ(x, y)
μM(x, y) dx + μN(x, y) dy = 0,

     So

     is exact.
 From Clairaut's theorem, we assume continuity of both 

f
xy

 and f
yx

, then

∂ f
∂ x

= M ,
∂ f
∂ y

= N

∂2 f
∂ x∂ y

=
∂2 f

∂ y∂ x

∂ f
∂ x

dx
∂ f
∂ y

dy=0
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Integrating factors

 That means we need

 If μ is a function of x alone, then

∂ M
∂ y

=
∂ N
∂ x


∂ M
∂ y

M
∂

∂ y
=

∂ N
∂ x

N
∂

∂ x
1
  N

∂
∂ x

−M
∂
∂ y =∂ M

∂ y
−

∂ N
∂ x

1


d 

d x
=

∂ M
∂ y

−
∂ N
∂ x

N
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Theorem

 Given M(x,y)dx + N(x,y)dy = 0, a differential equation 
has the integrating factor, I(x,y)

 if                                   is just a function of x.
This case has the integrating factor as

 if                                   is just a function of y.
This case has the integrating factor as

1
N  ∂M

∂ y
−

∂ N
∂ x = f  x

I x , y=e∫
f  xdx

I x , y=e∫
g  ydy

1
M  ∂ N

∂ x
−

∂ M
∂ y =g  y
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Student note

1. Solve the differential equation y' + 2y = e3x.
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Student note

2. Solve the differential equation y' + y tan x = 2 sin x.
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Student note

3. Find the solution of (x2y2 + y) dx – x dy = 0 when y(2) = 
-1.
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Student note

4. Find the solution of d y
d x

=
2 xy y2

y−2 xy−x2 .
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Student note

5. Solve the differential equation 2 x− y

x2
 y2 d x

x2 y

x2
 y2 dy=0.
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Chapter 6

6.5 Linear differential equations
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A first order linear differential equation

 A first order linear differential equation is one that can 
be put into the form

where P and Q are continuous functions on I.
 Consider the first order linear differential equation

xy' + y = 2x
 LHS: xy' + y = (xy)' RHS: 
 Therefore, xy = x2 + C. 

d y
d x

P x y=Q x

∫2 x dx=2
x2

2
C
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Student note

1. Find the general solution of y '
1
x

y=3.
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Integrating factor

 To solve the first order linear differential equation, we 
multiply the suitable integrating factor, I(x).

to get

 If we can find such a function I(x),
(I(x)y)' = I(x)Q(x).

 Hence,

d y
d x

P x y=Q x

I x d y
d x

P x y= I xQ  x .

I x y=∫ I xQ xdxC.
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Integrating factor

 The property of I(x) is

I(x)P(x) = I'(x).

 This is a separable differential equation,

 Hence, 

∫ 1
I x

d I x=∫ P xdx

ln∣I x∣C=∫ P xdx

I x=Ae∫
P xdx

.
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Student note

1. Solve the differential equation d y
d x

3 x2 y=6 x2 .
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Student note

2. Find the solution of the initial-value problem
    x2y' + xy = 1, x > 0 and y(1) = 2.
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Student note

3. Solve y' + 2xy = 1.
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Student note

4. Solve the initial-value problem y'  – y = 2xe2x, y(0) = 1.
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Student note

5. Solve the initial-value problem xy'  + 2y = sin x and

y 

2 =1.
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Bernoulli differential equation

 A Bernoulli differential equation is of the form

if n = 0 or n = 1, the Bernoulli differential equation is 
just linear.

 We can easily transform this differential equation to 
linear by u = y1-n then  

d y
d x

P x y=Q x yn

d u
d x

1−n P xu=1−nQ x
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Student note

1. Solve the differential equation y '
y
x

= y3 .
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Student note

2. Solve the differential equation 2
d y
d x

xy=x3 y2 .
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Student note

3. Find the solution of the initial-value problem

 and
d y
d x

− y cot x= y2 sec2 x y4 =−1.
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