Chapter 6

6[Extra] Modeling with Differential Equations

Models of population growth

- Modeling physical law based on evidence $=$

Formulating a mathematical model.

- It takes the form of a differential equation, an equation that contains an unknown function and its derivatives.
- Model for the growth of a population based on the assumption that the population grows at a rate proportional to the size of the population. (The ideal conditions for growth of bacteria, etc.)

Models of population growth

- Let t be the independent variable time and P be the number of individuals in the population.
- The rate of growth of the population is $\frac{d P}{d t}$.
- By the assumption,

$$
\frac{d P}{d t}=k P
$$

where k is the proportionality constant.
O This is a differential equation because it contains an unknown function P and its derivative $\frac{d P}{d t}$.

Definition

- A differential equation is an equation that contains an unknown function and some of its derivatives.
- The order of a differential equation is the order of the highest derivative that occurs in the equation.

$$
\begin{aligned}
& \circ \frac{d y}{d x}=2 x^{3} y+1 \\
& \circ \frac{d^{3} y}{d t^{3}}-t \frac{d y}{d t}+\left(t^{2}-1\right) y=e^{t} \quad \circ y^{\prime}=x y \\
& \circ\left(\frac{d^{2} y}{d x^{2}}\right)^{3}-8 x\left(\frac{d y}{d x}\right)^{4}+3 x y=x-1
\end{aligned}
$$

Solution of the population growth model

- What is a solution of the population growth model?
- Same as "What function has its derivative equal to a constant multiple by itself?". Exponential function.

○ If we let $P(t)=C e^{k t}$, then

$$
P^{\prime}(t)=C\left(k e^{k t}\right)=k C e^{k t}=k P(t)
$$

○ Thus, any $P(t)=C e^{k t}$ is a solution of the population growth model.

- Varying C, we get the family of solutions $P(t)=C e^{k t}$.

Solution of a differential equation

- A function f is called a solution of a differential equation if the equation is satisfied when $y=f(x)$ and its derivatives are substituted into the equation.
- If f is a solution of $y^{\prime}=x y$, then $\forall x \in I$,

$$
f^{\prime}(x)=x f(x) .
$$

- To solve a differential equation means finding all possible solutions of the equation.

$$
\text { The solution of } y^{\prime}=x \text { is } y=\frac{x^{2}}{2}+C \text {. }
$$

Student note

1. Show that every member of the family of functions
$y=\frac{1+c e^{x}}{1-c e^{x}}$
is a solution of the differential equation $y^{\prime}=\frac{y^{2}-1}{2}$.

Initial condition

- Usually, we are not interested in a family of solutions (general solution). We want to find a particular solution that satisfies some additional requirement.
- For example, it must satisfy a condition $y\left(t_{0}\right)=y_{0}$.
\circ This is called an initial condition and the problem of finding a solution of this is called an initial-value problem.

Student note

2. Find a solution of the differential equation $y^{\prime}=\frac{y^{2}-1}{2}$ that satisfies the initial condition $y(0)=2$.

General and specific solution

- Consider

$$
\frac{d y}{d x}-y=e^{2 x}
$$

then $y=e^{2 x}$ is a solution of this differential equation.

- In addition, $y=e^{x}+e^{2 x}$ is also one of the solution of this differential equation.
- $y=C e^{x}+e^{2 x}$ where C is a real number is a general solution of the differential equation.
- $y=e^{x}+e^{2 x}$ is a specific solution for the differential equation.

Student note

3. Show that $y=x-x^{-1}$ is a solution of the differential equation $x y^{\prime}+y=2 x$.

Student note

4. For what values of r does the function $y=e^{-r t}$ satisfy the differential $y^{\prime \prime}+y^{\prime}+6 y=0$.

Student note

5. A function $y(t)$ satisfies the differential equation

$$
\frac{d y}{d t}=y^{4}-6 y^{3}+5 y^{2}
$$

5.1 What are the constant solutions of the equation?
5.2 For what values of y is y increasing?
5.3 For what values of y is y decreasing?

Chapter 6

6.1. Separable equations

Separable equations

- A separable equation is a first-order differential equation in which the expression y^{\prime} can be factored as a function of x times the function of y. That means

$$
\frac{d y}{d x}=g(x) f(y)
$$

- We rewrite $h(y)=\frac{1}{f(y)}$. It becomes

$$
h(y) d y=g(x) d x
$$

- So that all y 's are on one side of the equation and all x 's are on the other side

$$
\int h(y) d y=\int g(x) d x
$$

Verification

- We can verify that $\int h(y) d y=\int g(x) d x$ is the solution of

$$
\frac{d y}{d x}=g(x) f(y)
$$

- By using the Chain rule,

$$
\begin{gathered}
\frac{d}{d x}\left(\int h(y) d y\right)=\frac{d}{d x}\left(\int g(x) d x\right) \\
\frac{d}{d y}\left(\int h(y) d y\right) \frac{d y}{d x}=g(x) \\
h(y) \frac{d y}{d x}=g(x)
\end{gathered}
$$

Student note

1. Solve the differential equation $\frac{d y}{d x}=\frac{x}{y^{2}}$ and find the solution with the initial condition $y(0)=1$.

Student note

2. Solve the differential equation $\frac{d y}{d x}=\frac{e^{2 x}}{4 y^{3}}$.

Student note

3. Solve the differential equation $\frac{d y}{d x}=\frac{3 x^{3}}{y-\sin y}$.

Student note

4. Solve the equation $y^{\prime}=x y$.

Chapter 6

6.1[Extra] Exponential growth and decay

Exponential growth and decay

- The assumption that the population grows at a rate proportional to the size of the population:
- If $P=100$ and growing rate $P^{\prime}=30$.
- Another bacterial of the same type with 100 more would have growing rate 60 .
- The same assumption applies to
- (nuclear physics) the mass of a radioactive substance decays at a rate proportional to the mass.
- (chemistry) the rate of a unimolecular first-order reaction is proportional to the concentration of the substance.

Law of natural growth/decay

- In general, if $y(t)$ is the value of a quantity y at time t and if the rate of change of y with respect to t is proportional to its size $y(t)$, then

$$
\frac{d y}{d t}=k y
$$

where k is a constant. This is called the law of natural growth for $k>0$ or the law of natural decay for $k<0$.

- Hence,

$$
\begin{gathered}
\int \frac{1}{y} \frac{d y}{d t}=\int k d t \\
\ln |y|=k t+C \\
y=A e^{k t}
\end{gathered}
$$

$$
\text { For } t=0, y(0)=A e^{k 0}=A \text {. }
$$

Population growth

- The solution of the initial-value problem

$$
\frac{d y}{d t}=k y, \quad y(0)=y_{0}
$$

is

$$
y(t)=y_{0} e^{k t}
$$

- The quantity $\frac{1}{P} \frac{d P}{d t}$ is called the relative growth rate.
- Hence, "the growth rate is proportional to population size" is the same as "the relative growth rate is constant."

Student note

1. A bacteria culture grows with constant relative growth rate. After 2 hours there are 600 bacteria and after 8 hours the count is 75,000 .
1.1 Find the initial population.
1.2 Find an expression for the population.
1.3 Find the number of cells after 5 hours.
1.4 Find the rate of growth after 5 hours.
1.5 When will the population reach 200,000 ?

Radioactive decay

- Radioactive substances decay by spontaneously emitting radiation. If $m(t)$ is the mass remaining from an initial mass m_{0} of the substance at after time t,

$$
-\frac{1}{m} \frac{d m}{d t}
$$

○ Hence, $\frac{d m}{d t}=k m \equiv m(t)=m_{0} e^{k t}$.

- Physicists express the rate of decay in terms of halflife, the time required for half of any given quantity.

Student note

2. The half-life of radium- $226\left({ }_{88}^{226} R a\right)$ is 1590 years. 2.1 A sample of radium-226 has a mass of 100 mg . Find a formula for the mass of ${ }_{88}^{226} R a$ that remains after t years.
2.2 Find the mass after 1000 years correct to the nearest milligram.
2.3 When will the mass be reduced to 30 mg ?

Newton's law of cooling

- The rate of cooling of an object is proportional to the temperature difference between the object and its surroundings, provided that this difference is not too large. Let $T(t)$ be the temperature of the object at time t and T_{s} be the temperature of the surroundings,

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

Student note

4. A bottle of soda pop at room temperature $\left(72^{\circ} \mathrm{F}\right)$ is placed in a refrigerator where the temperature is $44^{\circ} \mathrm{F}$. After half an hour the soda pop has cooled to $61^{\circ} \mathrm{F}$.
4.1 What is the temperature of the soda pop after another half hour?
4.2 How long does it take for the soda pop to cool to $50^{\circ} \mathrm{F}$?

Continuously compounded interest

- If $\$ 1000$ is invested at 6% interest, compounded annually,
- after 1 year the investment is worth $\$ 1000(1.06)=\$ 1060$
- after 2 years it's worth $\$ 1060 \times \$ 1000(1.06)=\$ 1123.60$
- after t year it's worth $\$ 1000(1.06)^{t}$.
- In general, if A_{0} is an initial investment and r is an interest rate, then after t years it's worth

$$
A_{0}(1+r)^{t}
$$

- Usually, interest is compounded more frequently, n times a year,
- Or continuously, $A_{0} \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}$

Student note

5. If $\$ 500$ is borrowed at 14% interest, find the amounts due at the end of 2 years if the interest is compounded.
5.1 annually
5.2 quarterly
5.3 monthly
5.4 daily
5.5 hourly
5.6 continuously

Chapter 6

6.2 Homogeneous differential equations

Homogeneous function

\bigcirc A function of two variables, x and y is called the homogeneous function of degree n if for any $t>0$,

$$
f(t x, t y)=t^{n} f(x, y)
$$

- The first order homogeneous differential equation is of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

where $M(x, y), N(x, y)$ are homogeneous function of the same degree.

Homogeneous equations

- Given $M(x, y), N(x, y)$ as the homogeneous function of degree n,

$$
M(t x, t y)=t^{n} M(x, y), N(t x, t y)=t^{n} N(x, y)
$$

○ We can transform $M(x, y) d x+N(x, y) d y=0$ using $v=y / x$, where $t=1 / x$ for positive value of x,

$$
\begin{gathered}
x^{n} M(1, v) d x+x^{n} N(1, v) d y=0 \\
M(1, v) d x+N(1, v)(v d x+x d v)=0 \\
(M(1, v)+v N(1, v)) d x+x N(1, v) d v=0
\end{gathered}
$$

O This differential equation is just a separable differential equation

$$
\frac{1}{x} d x+\frac{N(1, v)}{M(1, v)+v N(1, v)} d v=0
$$

Student note

1. Find the general solution of $(x-y) d x=(x+y) d y$.

Student note

2. Find the general solution of $\left(x^{3}+x y^{2}\right) d y=2 y^{3} d x$.

Student note

3. Find the general solution of $\left(x e^{y / x}+y\right) d x-x d y=0$.

Student note

4. Find the specific solution of $\frac{d y}{d x}=\frac{y}{x}+\cos \left(\frac{y-x}{x}\right)$ when $y(2)=2$.

Student note

5. Find the specific solution for $y(2)=\pi$

$$
\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right) d x+x \cos \left(\frac{y}{x}\right) d y=0
$$

Chapter 6

6.3 Exact differential equations

Exact differential equation

- The differential equation $M(x, y) d x+N(x, y) d y=0$ is the exact differential equation if there exists $f(x, y)$ that

$$
d f(x, y)=M(x, y) d x+N(x, y) d y
$$

- Then the general solution is $f(x, y)=c$.

O It is possible to determine exactness and find the function f by mere inspection, for example

$$
y d x+x d y=0
$$

Student note

1. Determine the solution of $2 x y d x+x^{2} d y=0$.

Student note

2. Determine the solution of $\left(y^{3}-2 x\right) d x+\left(3 x y^{2}-1\right) d y=0$.

Student note

3. Determine the solution of $\frac{d y}{d x}=-\frac{a x+b y}{b x+c y}$.

Theorem for exact equation

- Theorem: If $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ is continuous on a rectangle R then $M(x, y) d x+N(x, y) d y=0$ is the exact differential equation if and only if

$$
\frac{\partial M}{\partial y}(x, y)=\frac{\partial N}{\partial x}(x, y)
$$

- Note that

$$
\begin{gathered}
d F(x, y)=M(x, y) d x+N(x, y) d y \\
\frac{\partial F}{\partial x}(x, y)+\frac{\partial F}{\partial y}|x, y|=M(x, y) d x+N(x, y) d y
\end{gathered}
$$

Solution of the exact equation

- Then

$$
\begin{aligned}
& F(x, y)=\int \frac{\partial F}{\partial x}(x, y) d x=\int M(x, y) d x=g(x, y)+k(y) \\
& \frac{\partial F}{\partial y}(x, y)=N(x, y)
\end{aligned}
$$

- Hence,

$$
\begin{aligned}
& N(x, y)=\frac{\partial}{\partial y} g(x, y)+k^{\prime}(y) \\
& k(y)=\int(N(x, y)-g(x, y)) d y
\end{aligned}
$$

Student note

1. Determine the general solution of $\left(y^{3}-2 x\right) d x+\left(3 x y^{2}-1\right) d y$ $=0$.

Student note

2. Determine the general solution of $\left(x^{2}+y^{2}\right) d x+(2 x y+\cos y)$ $d y=0$.

Student note

3. Determine the general solution of $y \cos x y d x+x \cos x y$ $d y=0$.

Student note

4. Find the general solution of $\left(2 x e^{y}+e^{x}\right) d x+\left(x^{2}+1\right) e^{y} d y=0$.

Student note

5. Determine the general solution of

$$
\left(e^{x}+\ln y+\frac{y}{x}\right) d x+\left(\frac{x}{y}+\ln x+\sin y\right) d y=0
$$

Chapter 6

6.4 Integrating factor

Integrating factors

- Consider the equation

$$
y d x+\left(x^{2} y-x\right) d y=0
$$

is easily seen to be nonexact, since $\frac{\partial M}{\partial y}=1, \frac{\partial N}{\partial x}=2 x y-1$.

- However, if we multiply through by the factor $1 / x^{2}$

$$
\frac{y}{x^{2}} d x+\left(y-\frac{1}{x}\right) d y=0
$$

which is exact.

- Under what conditions can a function $\mu(x, y)$ be found with the property that $\mu(M d x+N d y)=0\left({ }^{* *}\right)$ is exact.

Integrating factors

- Assume that $\left({ }^{* *}\right)$ has a general solution

$$
f(x, y)=c
$$

by differentiating

Hence,

So

$$
\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y}=0
$$

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{M}{N}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \\
\frac{\partial f}{\frac{\partial x}{M}}=\frac{\partial f}{N}
\end{gathered}
$$

Integrating factors

O Denote the common ratio by $\mu(x, y)$ then

$$
\frac{\partial f}{\partial x}=\mu M, \frac{\partial f}{\partial y}=\mu N
$$

○ From $M(x, y) d x+N(x, y) d y=0$, multiply by $\mu(x, y)$

$$
\mu M(x, y) d x+\mu N(x, y) d y=0
$$

So

$$
\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=0
$$

is exact.

- From Clairaut's theorem, we assume continuity of both $f_{x y}$ and $f_{y x}$, then $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$

Integrating factors

- That means we need

$$
\begin{aligned}
& \frac{\partial \mu M}{\partial y}=\frac{\partial \mu N}{\partial x} \\
& \mu \frac{\partial M}{\partial y}+M \frac{\partial \mu}{\partial y}=\mu \frac{\partial N}{\partial x}+N \frac{\partial \mu}{\partial x} \\
& \frac{1}{\mu}\left(N \frac{\partial \mu}{\partial x}-M \frac{\partial \mu}{\partial y}\right)=\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}
\end{aligned}
$$

\bigcirc If μ is a function of x alone, then

$$
\frac{1}{\mu} \frac{d \mu}{d x}=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}
$$

Theorem

○ Given $M(x, y) d x+N(x, y) d y=0$, a differential equation has the integrating factor, $I(x, y)$

- if $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)$ is just a function of x. This case has the integrating factor as

$$
I(x, y)=e^{\int f(x) d x}
$$

- if $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=g(y)$ is just a function of y. This case has the integrating factor as

$$
I(x, y)=e^{\int g(y) d y}
$$

Student note

1. Solve the differential equation $y^{\prime}+2 y=e^{3 x}$.

Student note

2. Solve the differential equation $y^{\prime}+y \tan x=2 \sin x$.

Student note

3. Find the solution of $\left(x^{2} y^{2}+y\right) d x-x d y=0$ when $y(2)=$ -1 .

Student note

$$
\text { 4. Find the solution of } \frac{d y}{d x}=\frac{2 x y+y^{2}}{y-2 x y-x^{2}} \text {. }
$$

Student note

5. Solve the differential equation $\frac{2 x-y}{x^{2}+y^{2}} d x+\frac{x+2 y}{x^{2}+y^{2}} d y=0$.

Chapter 6

6.5 Linear differential equations

A first order linear differential equation

- A first order linear differential equation is one that can be put into the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where P and Q are continuous functions on I.

- Consider the first order linear differential equation

$$
x y^{\prime}+y=2 x
$$

- LHS: $x y^{\prime}+y=(x y)^{\prime} \quad$ RHS: $\int 2 x d x=2 \frac{x^{2}}{2}+C$
- Therefore, $\quad x y=x^{2}+C$.

Student note

1. Find the general solution of $y^{\prime}+\frac{1}{x} y=3$.

Integrating factor

- To solve the first order linear differential equation, we multiply the suitable integrating factor, $I(x)$.
to get

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

$$
I(x)\left(\frac{d y}{d x}+P(x) y\right)=I(x) Q(x)
$$

- If we can find such a function $I(x)$,

$$
(I(x) y)^{\prime}=I(x) Q(x)
$$

o Hence,

$$
I(x) y=\int I(x) Q(x) d x+C
$$

Integrating factor

- The property of $I(x)$ is

$$
I(x) P(x)=I^{\prime}(x) .
$$

- This is a separable differential equation,

$$
\begin{aligned}
& \int \frac{1}{I(x)} d I(x)=\int P(x) d x \\
& \ln |I(x)|+C=\int P(x) d x
\end{aligned}
$$

- Hence,

$$
I(x)=A e^{\int P(x) d x}
$$

Student note

1. Solve the differential equation $\frac{d y}{d x}+3 x^{2} y=6 x^{2}$.

Student note

2. Find the solution of the initial-value problem

$$
x^{2} y^{\prime}+x y=1, x>0 \text { and } y(1)=2 .
$$

Student note

3. Solve $y^{\prime}+2 x y=1$.

Student note

4. Solve the initial-value problem $y^{\prime}-y=2 x e^{2 x}, y(0)=1$.

Student note

5. Solve the initial-value problem $x y^{\prime}+2 y=\sin x$ and

$$
y\left(\frac{\pi}{2}\right)=1
$$

Bernoulli differential equation

- A Bernoulli differential equation is of the form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

if $n=0$ or $n=1$, the Bernoulli differential equation is just linear.

- We can easily transform this differential equation to linear by $u=y^{1-n}$ then

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) Q(x)
$$

Student note

1. Solve the differential equation $y^{\prime}+\frac{y}{x}=y^{3}$.

Student note

2. Solve the differential equation $2 \frac{d y}{d x}+x y=x^{3} y^{2}$.

Student note

3. Find the solution of the initial-value problem

$$
\frac{d y}{d x}-y \cot x=y^{2} \sec ^{2} x \quad \text { and } \quad y\left(\frac{\pi}{4}\right)=-1
$$

