
Nov ช่อ9 e 7:55-9:55 ol. 12

Naunดlink ขกายภ1の, 18 ก.ब. 62 7!5s-9:55\} 45%

Novesor of

1. ขั०รนึกต
2. ปกกm, ดิเก่อ, ฮางกข, ไม้ ขรรกัด

xizz (Double integral) 7:55-9:55.

3. $\iiint_{D} f d A$ Torn $D \subseteq \mathbb{R}^{2}$
4.

$$
\begin{aligned}
& D \\
& D=\left\{(x, y) \in \mathbb{R}^{2} \mid g_{g}(x) \leq y \leq g_{2}(x), a \leq x \leq b\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid h_{1}(y) \leq x \leq h_{2}(y) \quad c \leq y \leq d\right\} \\
& \int_{a}^{b} \int_{g(x)}^{g_{2}(x)} f(x, y) d y d x=\int_{2} \int_{2} f(x, y) d x d y
\end{aligned}
$$

D

 in va $(x, y) \in D, \rho(x, y)=x y$

$$
\begin{aligned}
& \text { (0,2) } \uparrow{ }_{2} y=-x+2 \quad \text { Tot Total Changes } \quad \text { Total changes }=\iint_{D} x y d A \\
& \begin{array}{l}
\text { Total cages }=\iint_{D} x y d A \\
D=\{(x, y) \mid 0 \leq y \leq-x+2,0 \leq x \leq 2\}
\end{array} \\
& \iint_{D} x y d A=\int_{0}^{(2,0)} \int_{0}^{2} x y d y d x=\left.\int_{0}^{2} x y^{2} \frac{2}{2}\right|_{y=0} ^{y=2-x} d x=\frac{1}{2} \int_{0}^{2} x\left(4-4 x+x^{2}\right) d x \\
& =\frac{1}{2}\left(\left.\frac{4 x^{2}}{2}\right|_{x=0} ^{x=2}-\left.4 \frac{x}{3}\right|_{x=0} ^{x=2}+\left.\frac{x^{4}}{4}\right|_{x=0} ^{x=2}\right)=\frac{1}{2}\left(8-\frac{32}{3}+4\right)^{0}=\frac{1}{6}(36-32)=\frac{2}{3}
\end{aligned}
$$

R\& $\vee \cap(x, y) \in D, \eta \rho(x, y)=x y$

$$
M_{y}=\iint_{D} x \rho(x, y) d A
$$

$$
m \bar{x}=M_{y} \quad \text { } 1 N_{i} \quad m \bar{Y}=M_{x}
$$

Find the mass and center of mass of a triangular lamina $\quad(\bar{x}, \bar{y})$
with vertices $(0,0),(1,0)$, and $(0,2)$ if the density
with vertices $(0,0),(1,0)$, and $(0,2)$ if the density
function is $\rho(x, y)=1+3 x+y$.
名 $D=\{(x, y) \mid 0 \leq y \leq-2 x+2,0 \leq x \leq 1\}$

$$
\begin{aligned}
m=\iint_{D} \rho(x, y) d A & =\int_{0}^{1} \int_{0}^{-2 x+2} 1+3 x+y d y d x \quad 0=-2+c-C=2 \\
-2 x-6 x^{2} & =\left.\int_{0}^{0} y\right|_{y=0} ^{y=2-2 x}+\left.3 x y\right|_{i y=0} ^{y=2-2 x}+\left.\frac{y^{2}}{3}\right|_{y=0} ^{y=2-2 x} d x \\
-4 x x^{2} & =\int_{0}^{1} 2-2 x+3 x(2-2 x)+\frac{1}{2}\left(4-8 x+4 x^{2}\right) d x \\
& =\left.4 x\right|_{x=0} ^{x=1}-\left.4 \frac{x^{3}}{3}\right|_{x=0} ^{x=1}=4-\frac{4}{3}=\frac{8}{3}
\end{aligned}
$$

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& M_{x}=\iint_{D} y \rho(x, y) d A=\int_{0}^{1} \int_{0}^{2-2 x} y+3 x y+y^{2} d y d x \quad 3(2)(-2 x) \\
& =\left.\int_{0}^{1} \frac{y}{2}^{2}\right|_{y=0} ^{y=2-2 x}+\left.3 x \frac{y^{2}}{2}\right|_{y=0} ^{y=2-2 x}+\left.\frac{y^{3}}{3}\right|_{y=0} ^{y=2-2 x} d x \quad 2+\frac{8}{3} \\
& =\int_{0}^{1} \frac{1}{2}\left(4-8 x+4 x^{2}\right)+\frac{3 x}{2}\left(4-8 x+4 x^{2}\right)+\frac{1}{3}\left(8-24 x+24+x^{2}-8 x^{3}\right) d x \\
& =\int_{0}^{0} \frac{14}{3}+2 x-10 x^{2}+\frac{10}{3} x^{3} d x=\left.\frac{14}{3} x\right|_{x=0} ^{x=1}+\left.\frac{2 x^{2}}{2}\right|_{x=0} ^{x=1}-\left.10 \frac{x^{3}}{3}\right|_{x=0} ^{x=1}+\left.\frac{10 x^{4}}{3}\right|_{x_{0} 0} ^{4|x|} \\
& =\frac{14}{3}+1-\frac{10}{3}+\frac{10}{12}=\frac{16+12+10}{12}=\frac{38}{12}=\frac{19}{6} \\
& M_{y}=\iint_{D} x \rho(x, y) d A=\int_{0}^{1} \int_{0}^{2-2 x} x+3 x^{2}+x y d y d x \quad-2 x \quad 6 x^{2}-4 x^{2} \\
& =\left.\int_{0}^{1} x y\right|_{y=0} ^{y=2-2 x}+\left.3 x^{2} y\right|_{y=0} ^{y=2-2 x}+\left.\left.x y^{2}\right|_{2} ^{2}\right|_{y=2} ^{y-2 x x} d x \quad B-6 x^{3}+2 x^{3} \\
& =\int_{0}^{1} 2-2 x+3 x^{2}(2-2 x)+\frac{x}{2}\left(4-8 x+4 x^{2}\right) d x \\
& =\int_{0}^{0} 2+2 x^{2}-4 x^{3} d x=\left.2 x\right|_{x=0} ^{x=1}+\left.2 \frac{2 x^{3}}{3}\right|_{x=0} ^{x=1}-\left.\frac{4 x^{4}}{4}\right|_{x=0} ^{x=1}=2+\frac{2}{3}-1=\frac{5}{3} \\
& (\bar{x}, \bar{y})=\left(\frac{5}{3} \times \frac{3}{8}, \frac{19 \times 3}{2} \frac{19}{6 \times 8}\right)=\left(\frac{5}{8}, \frac{19}{16}\right) \\
& I_{x}=\iint_{D} y^{2} \rho(x, y) d A, \quad I_{y}=\iint_{D} x^{2} \rho(x, y) d A
\end{aligned}
$$

