
2301520 FUNDAMENTALS OF
AMCS

Lecture 4: Data Structure
Lectured by Dr. Krung Sinapiromsaran,

Krung.S@chula.ac.th

Excerpted from Dr. William Smith,
wsmith@cs.york.ac.uk

 2

Outline

• Relationship between algorithms and data structures

• Physical memory

• Concrete versus Abstract data structure

• Contiguous versus Linked

• Dynamic arrays – amortized analysis

• Abstract Data Type (ADT)

• Linear abstract data types: lists, stacks, queues,
deques

• Dictionaries

• Linear implementations of dictionaries

 3

Objective

• Explain the relationship between algorithm
and data structures

• Distinguish between concrete data structure
and abstract data structure

• Analyze and explain contiguous and linked
structure to implement ADT such as Stack,
Queue, Deque

• Analyze the dictionary operations based on
different implementation

 4

Relationship between algorithm and
data structure (1)

• Our algorithms will operate on data

• We need a way to store this data

• We want to be able to perform abstract operations on this data:

– adding a student to an enrollment database

– searching for a student with a certain name

– listing all students taking a certain module

• Data structures are like the building blocks of algorithms

• Using abstract structures such as sets, lists, dictionaries, trees,
graphs etc. let us think algorithmically at a more abstract level

• But, using a poor choice of data structure or a poor choice of
implementation of a data structure can make your algorithm
asymptotically worse

 5

Relationship between algorithm and
data structure (2)

• Implementations of abstract data structures are now included
in standard libraries of almost every programming language

• So you may well think:

“I’m never going to have to implement any of these concepts,
why should I care about data structures?”

 6

Relationship between algorithm and
data structure (3)

• Implementations of abstract data structures are now included
in standard libraries of almost every programming language

• So you may well think:

“I’m never going to have to implement any of these concepts,
why should I care about data structures?”

Answer part 1: This is good. Reinventing the wheel is pointless,
such libraries will save you time.

 7

Relationship between algorithm and
data structure (4)

• Implementations of abstract data structures are now included
in standard libraries of almost every programming language

• So you may well think:

“I’m never going to have to implement any of these concepts,
why should I care about data structures?”

Answer part 1: This is good. Reinventing the wheel is pointless,
such libraries will save you time.

Answer part 2: If you don’t know how the data structure is
implemented, you won’t know the efficiency of different
operations – this can drastically affect the running time of your
algorithms

• Understanding the mechanics of data structures is crucial to
understanding algorithm efficiency and becoming a good
designer of new algorithms

 8

Physical memory (1)
• Fact: we have to store our data structures in the memory of our

computer

• What does the memory of our computer look like?

 9

Physical memory (2)
• Fact: we have to store our data structures in the memory of our

computer

• What does the memory of our computer look like?

 10

Physical memory (3)
• Fact: we have to store our data structures in the memory of our

computer

• What does the memory of our computer look like?

• Organised into banks, rows, columns etc.

• We supply a bank number, row number etc (= an address),
memory returns us the contents

• Address → contents

 11

Physical memory (4)
• Schematically:

503 504 505 506 507 508 509
10110010 10001011 01011110 10000110 00010001 10011010 00110011

Address

Contents
……

 12

Physical memory (5)
• Schematically:

• In use, might look something like this:

503 504 505 506 507 508 509
10110010 10001011 01011110 10000110 00010001 10011010 00110011

Address

Contents
……

……

Not allocated

Text of an emailA photo I'm viewing

A random WindowsTM process

 13

Concrete versus Abstract data structure
• We therefore have two levels of thinking about data structures:

Concrete: concerned with addresses in physical memory

Abstract: concerned only with abstract operations supported

Example:

Concrete: arrays, linked lists

Abstract: sets, lists, dictionaries, trees, graphs

• But our implementations of abstractions must be in terms of
the concrete structures with which our computer operates

 14

Contiguous versus Linked
• We can subdivide concrete data structures into two classes:

• Contiguous: Composed of a single block of memory

• Linked: Composed of multiple distinct chunks of memory
together by pointers

 15

Contiguous data structures – Arrays
and Records (1)

• Array: Structure of fixed-sized data records

Example:

38 39 40 41 42 43 44 45 46 47 48 49Address

Contents
… …

 16

Contiguous data structures – Arrays
and Records (2)

• Array: Structure of fixed-sized data records

Example:

38 39 40 41 42 43 44 45 46 47 48 49Address

Contents
… …
…

Start address (s):

 17

Contiguous data structures – Arrays
and Records (3)

• Array: Structure of fixed-sized data records

Example:

38 39 40 41 42 43 44 45 46 47 48 49Address

Contents
… …
…

Start address (s):

1Array index(i): 2 3 4

Width of record (w) = 3

 18

Contiguous data structures – Arrays
and Records (4)

• Array: Structure of fixed-sized data records

Example:

Location of elements of the array can be calculated directly:

Address of A[i] = s+wi (for base index = 0, i.e. first element is A[0])

Address of A[i] = s+w(i-1) (for base index = 1, i.e. first element is A[1])

38 39 40 41 42 43 44 45 46 47 48 49Address

Contents
… …
…

Start address (s):

1Array index(i): 2 3 4

Width of record (w) = 3

 19

Contiguous data structures – Arrays
and Records (5)

Benefits of using contiguous array structures:

• We can retrieve an array element from its index in constant
time, O(1), meaning it costs us asymptotically nothing to look
up a record – this is a really big deal

• Consist solely of data, no space wasted on links

• Physical continuity/memory locality: if we look up element i,
there is a high probability we will look up element i+1 next –
this is exploited by cache memory in modern computer
architectures

 20

Contiguous data structures – Arrays
and Records (6)

Drawbacks of using contiguous array structures:

• Inflexible: we have to decide in advance how much space we
want when the array is allocated

• Once the block of memory for the array has been allocated,
that’s it – we’re stuck with the size we’ve got

• If we try to write past the end of the array (overflow), we’ll be
intruding on memory allocated for something else causing a
segmentation fault

• We can compensate by always allocating arrays larger than we
think we’ll need, but this wastes a lot of space

• Inflexible: think about removing or inserting sequences of
records in the middle of an array

 21

Contiguous data structures – Dynamic
Arrays (1)

A potential way around the problem of having to decide array
size in advance: dynamic arrays

• We could start with an array of size 1

• Each time we run out of space (i.e. want to write to index m+1
in an array of size m) we find a block of free memory, allocate
a new array increasing the array size from m to 2m and copy
all the contents across

Q: If we currently have n items in our dynamic array, how many
doubling operations will we have executed so far?

 22

Contiguous data structures – Dynamic
Arrays (2)

A potential way around the problem of having to decide array
size in advance: dynamic arrays

• We could start with an array of size 1

• Each time we run out of space (i.e. want to write to index m+1
in an array of size m) we find a block of free memory, allocate
a new array increasing the array size from m to 2m and copy
all the contents across

Q: If we currently have n items in our dynamic array, how many
doubling operations will we have executed so far?

A: ⌈log
2
n⌉

 23

Contiguous data structures – Dynamic
Arrays (3)

A potential way around the problem of having to decide array
size in advance: dynamic arrays

• We could start with an array of size 1

• Each time we run out of space (i.e. want to write to index m+1
in an array of size m) we find a block of free memory, allocate
a new array increasing the array size from m to 2m and copy
all the contents across

Q: If we currently have n items in our dynamic array, how many
doubling operations will we have executed so far?
A: ⌈log

2
n⌉

The expensive part is copying every element into the new larger
array when we have to resize
 Q: How expensive is this?

 24

Contiguous data structures – Dynamic
Arrays (4)

A potential way around the problem of having to decide array
size in advance: dynamic arrays

• We could start with an array of size 1

• Each time we run out of space (i.e. want to write to index m+1
in an array of size m) we find a block of free memory, allocate
a new array increasing the array size from m to 2m and copy
all the contents across

Q: If we currently have n items in our dynamic array, how many
doubling operations will we have executed so far?
A: ⌈log

2
n⌉

The expensive part is copying every element into the new larger
array when we have to resize
Q: How expensive is this?
A: Linear: O(n)

 25

Contiguous data structures – Dynamic
Arrays (5)

The trickier question to answer is this:

Q: What is the worst case complexity of inserting into a dynamic
array?

A: It depends on whether we’ve filled up the array or not:

Not full: Just insert the element = O(1)

Full: Allocate new array, copy everything across, add new
element = O(n)

We can’t give a definitive answer on the worst case complexity –
it depends!

 26

Contiguous data structures – Dynamic
Arrays (6)

Let's imagine we've just copied our data to a larger array:

n copied elements empty

 27

Contiguous data structures – Dynamic
Arrays (7)

Let's imagine we've just copied our data to a larger array:

• We can now make n insertions at cost O(1) before we have to
do anymore copying

• The n+1th insertion will cost us 2n = O(n)

• Total work for n insertions is 3n.

• n insertions into a dynamic array is complexity O(n)

• n insertions into our standard array is also complexity O(n)…

n copied elements empty

 28

Amortized analysis
• This sort of analysis is called amortized analysis

• Meaning: average cost of an operation over a sequence of
operations

• Different to average-case analysis (which is averaging over
probability distribution of possible inputs)

• Key idea of dynamic arrays: insertions will “usually” be fast,
accessing elements will always be O(1)

• In Big Oh terms, a dynamic array is no more inefficient than a
standard array

 29

Linked Structures (1)
• Alternative to contiguous structures are linked structures

• E.g. a linked list:

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

45 32 N
ullSome data Some data Some data

 30

Linked Structures (2)
• Alternative to contiguous structures are linked structures

• E.g. a linked list:

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

45 32 N
ullSome data Some data Some data

Width of record

Head = 38

 31

Linked Structures (3)
• Alternative to contiguous structures are linked structures

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

45 32 N
ullSome data Some data Some data

Width of record

Head = 38

 32

Linked Structures (4)
• Alternative to contiguous structures are linked structures

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

45 32 N
ullSome data Some data Some data

Width of record

This is a pointer
Head = 38

 33

Linked Structures (5)
• Schematic representation:

Head Data Data Data Data

 34

Linked Structures (6)
• Schematic representation:

• Alternative: keep a pointer to the item before as well as after

Doubly linked list:

Conga line versus can-can line

Head Data Data Data Data

Head Data Data Data

NextPrevious

 35

Linked Structures (7)
Benefits of using linked list structures:

• We don’t need to worry about allocating space in advance, can
use any free blocks of space in memory

• We only run out of space when the whole memory is actually
full

• Very flexible: think about adding sublists or deleting items

• More efficient for moving large records (leave data in same
place in memory, just change some pointers)

 36

Linked Structures (8)
Drawbacks of using linked list structures:

• Wasted space: we’re storing both pointers and data

• To find the pth item, we must start at the beginning and follow
pointers until we get there

• In the worst case, if there are n items in a list and we want the
last one, we have to do n lookups

• So retrieving an element from its position in the list is O(n)

• This is a real problem.

 37

Abstract Data Type (1)
We’ve seen concrete data structures which dealt with arranging
data in memory

Abstract Data Types offer a higher level view of our interactions
with data

Comprised of:

• Data

• Operations that allow us to interact with this data

We describe the behaviour of our data structures in terms of
abstract operations

We can therefore use them without thinking:

“Add this item to this list, I don’t care how you do it or how you
are storing the list”

 38

Abstract Data Type (2)
• However, the way these operations are implemented will

affect efficiency.

• There are different implementations of the same abstract
operations.

• We want the ones we will use most commonly to be the most
efficient.

• We will look briefly at 3 ADTs today: stacks, queues and
dictionaries

 39

Stacks (Last-In First-Out:LIFO)
Abstract Data Type: Stack

Operations:

IsEmpty(S) – Return true if stack is empty

Push(S,x) – Add x to top of stack

Pop(S) – Remove top item from stack

• Stacks crop up in recursive algorithms

 40

Queues (First-In First-Out:FIFO)

Front of the queue is
served next

When you arrive, join the
back of the queue

 41

Queues (Last-in First-out)
Abstract Data Type: Queue

Operations:

EnQueue(Q,x) – Add x to the queue

DeQueue(Q) – Remove item from front of queue

• Queues crop up when we want to process items in the order
they arrived.

• Later we will see that adding nodes of a tree to a stack or
queue and then retrieving them results in different tree
traversal strategies.

 42

Deques
Abstract Data Type: Deque

Operations:

PushFront(D,x) – Add x to the front of the queue

PopFront(D) – Remove item from front of queue (same as
DeQueue)

PushBack(D,x) – Add x to the back of the queue (same as
EnQueue)

PopBack(D) – Remove item from back of queue

• More versatile variant of a queue

• Short for double-ended queue, pronounced “deck”

 43

Stacks and Queues Implemented as
Arrays

Stacks as Arrays

• We only need to keep track of length

Pop(S)- Returns S[length] and reduces length by 1

Push(S,x)- Increments length by 1 and sets S[length]=x

IsEmpty(S)- Tests length=0

Queues as Arrays

• We keep track of front and back index

DeQueue(Q) – Returns Q[front] and increments front by 1, if
front is greater than length of array, wrap back round to 1

Enqueue(Q,x) – Increment Q[back] by 1, if back is greater than
length of array, wrap back round to 1, set Q[back]=x

• Exercise: think up similar instructions for list implementations

 44

Stacks and Queues
• All operations on stacks and queues are O(1), implemented as

either arrays or linked lists

• Poping an empty stack or dequeueing an empty queue is called
underflow

• Trying to add an item when the memory limit of the chosen
implementation has been reached is called overflow

 45

Dictionaries
Abstract Data Type: Dictionary

• Perhaps the most important ADT is the dictionary

• An element in a dictionary contains two parts:

– A key – used to address an item

– A datum – associated with the key

• Keys are unique, the dictionary is a function from keys to data

• Think of our standard notion of a dictionary: key = word,
datum = definition

• Dictionaries are of huge practical importance

• Google search is effectively a dictionary which pairs keywords
with websites

 46

Dictionary Operations (1)
Some common operations:

Lookup(D,k) – Retrieve the entry with key k

Insert(D,v) – Insert a new entry with datum v

Delete(D,k) – Remove the entry with key k

IsPresent(D,k) – Return true if an entry exists with key k

• Others might include size(D), modify(D,k,v),
IsEmpty(D) and so on

• Implementing dictionaries such that the above operations are
efficient requires careful choice of ADT implementation

 47

Dictionary Operations (2)
Some common operations:

Lookup(D,k) – Retrieve the entry with key k

Insert(D,v) – Insert a new entry with datum v

Delete(D,k) – Remove the entry with key k

IsPresent(D,k) – Return true if an entry exists with key k

• Others might include size(D), modify(D,k,v),
IsEmpty(D) and so on

• Implementing dictionaries such that the above operations are
efficient requires careful choice of ADT implementation

• Q: What will the complexity of there operations be if we
implement them with an array or a linked list? Will the data
being sorted make a difference?

 48

Dictionary Operations (3)
Complexity of dictionary operations implemented with an array
for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k)

Insert(D, k)

Delete(D, k)

IsPresent(D, k)

 49

Dictionary Operations (4)
Complexity of dictionary operations implemented with an array
for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(log n)

Insert(D, k)

Delete(D, k)

IsPresent(D, k)

 50

Dictionary Operations (5)
Complexity of dictionary operations implemented with an array
for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(log n)

Insert(D, k) O(1) O(n)

Delete(D, k) O(n)

IsPresent(D, k)

 51

Dictionary Operations (6)
Complexity of dictionary operations implemented with an array
for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(log n)

Insert(D, k) O(1) O(n)

Delete(D, k) O(n) O(n)

IsPresent(D, k)

 52

Dictionary Operations (7)
Complexity of dictionary operations implemented with an array
for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(log n)

Insert(D, k) O(1) O(n)

Delete(D, k) O(n) O(n)

IsPresent(D, k) O(n) O(log n)

 53

Dictionary Operations (8)
Complexity of dictionary operations implemented with an array
for an n entry dictionary:

• For a sorted array, we can use binary search to find an item

Q: Can you explain the difference in cost for insert and delete?

A: We have a higher cost maintaining the sorted list, when we
insert or delete we have to shuffle up items above. In worst case
this would be every entry

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(log n)

Insert(D, k) O(1) O(n)

Delete(D, k) O(n) O(n)

IsPresent(D, k) O(n) O(log n)

 54

Dictionary Operations (9)
Complexity of dictionary operations implemented with a linked
list for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k)

Insert(D, k)

Delete(D, k)

IsPresent(D, k)

 55

Dictionary Operations (10)
Complexity of dictionary operations implemented with a linked
list for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(n)

Insert(D, k)

Delete(D, k)

IsPresent(D, k)

 56

Dictionary Operations (11)
Complexity of dictionary operations implemented with a linked
list for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(n)

Insert(D, k) O(1) O(n)

Delete(D, k)

IsPresent(D, k)

 57

Dictionary Operations (12)
Complexity of dictionary operations implemented with a linked
list for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(n)

Insert(D, k) O(1) O(n)

Delete(D, k) O(n) O(n)

IsPresent(D, k)

 58

Dictionary Operations (13)
Complexity of dictionary operations implemented with a linked
list for an n entry dictionary:

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(n)

Insert(D, k) O(1) O(n)

Delete(D, k) O(n) O(n)

IsPresent(D, k) O(n) O(n)

 59

Dictionary Operations (14)
Complexity of dictionary operations implemented with a linked
list for an n entry dictionary:

• We can no longer use binary search to locate an item in the
sorted case

• So we trade off the flexibility of a linked structure against
reduced efficiency for lookup operations

Dictionary Operations Unsorted array Sorted array

Lookup(D, k) O(n) O(n)

Insert(D, k) O(1) O(n)

Delete(D, k) O(n) O(n)

IsPresent(D, k) O(n) O(log n)

 60

Conclusion
• We’ve seen the difference between concrete and abstract,

linked and contiguous

• We’ve seen some important examples of ADTs

• Linear implementations of dictionaries aren’t very efficient

• Using a sorted array makes dictionary lookups fast

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

