
2301520 FUNDAMENTALS OF
AMCS

Lecture 5: Sorting
Lectured by Dr. Krung Sinapiromsaran,

Krung.S@chula.ac.th

Excerpted from Dr. William Smith,
wsmith@cs.york.ac.uk

 3

Outline

• What is sorting and why is it important?
• Simple quadratic sorts (selection and insertion

sort)
• An O(n log n) sort using divide-and-conquer

(merge sort)
• Limits of sorting – comparison-based

algorithms
• Doing even better – non-comparison-based

 5

Objective

• Be able to explain the usage of sorting in
various problem

• Track the algorithm performance
• Analyze various sorting algorithms
• Compare sorting algorithms with respect to

asymptotic notation
• Explain the limitation of comparison-based

sorting algorithms
• Explain why some sorting algorithms can

achieve a better running time

 7

The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements

 9

The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements

We make the following assumptions:

– Each element has an associated key: k
i
 = key(e

i
)

– There is a linear order defined on the keys: <

– For ease of notation we write: e < e' ↔ key(e) < key(e')

 11

The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements

We make the following assumptions:

– Each element has an associated key: k
i
 = key(e

i
)

– There is a linear order defined on the keys: <

– For ease of notation we write: e < e' ↔ key(e) < key(e')

• Output:A sequence s' = ‹e'1, ..., e'n›

 where s' is a permutation of s and e'
1
 < ... < e'

n

 13

The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements

We make the following assumptions:

– Each element has an associated key: k
i
 = key(e

i
)

– There is a linear order defined on the keys: <

– For ease of notation we write: e < e' ↔ key(e) < key(e')

• Output:A sequence s' = ‹e'1, ..., e'n›

 where s' is a permutation of s and e'
1
 < ... < e'

n

• Sorting as a formal postcondition:

 For all i, j, 0 < i < j < n => s'[i] < s'[j] & bag(s) = bag(s')

 15

Aside:Bags or Multisets
• Two informal definitions of a bag or multiset:

– A bag is like a set, but a member of a bag can have more
than one membership

– A bag is like a sequence with the order thrown away

• Intuitive analogy: think of coins in your pocket

• An element is either in a set or it isn’t

• An element belongs to a bag zero or more times

• The number of times an element belongs to a bag is its
multiplicity

• The total number of elements in a bag, including repeated
memberships, is its cardinality

 17

Motivation
• Sorting is standard fodder for an introduction to algorithms course

• Good for teaching algorithm analysis, lots of alternative algorithms
to compare, different algorithmic concepts (divide-and-conquer,
randomised algorithms etc)

• This is all good, but beyond this, is sorting very important in the
real world?

• Answer: yes, definitely!

• According to Skiena, computers spend approx. 25% of their time
sorting, so doing this efficiently is hugely important

• New developments are still being made in this area (library sort in
2004)

• There are a huge number of applications of sorting – it makes lots
of other tasks possible or easier or more efficient

 19

Applications of Sorting
• Search preprocessing: we saw last time that sorting an array

reduces searching from O(n) to O(log n)

• Selection: what is the kth largest element in a sequence? If it’s
sorted, just pick element k.

• Convex hulls: what is the smallest polygon that encloses a set
of points? (useful in geometric algorithms – computer graphics
and vision). To solve, sort points by x-coordinate, add from left
to right, delete points when enclosed by polygon including new
point.

• Closest pair: given a set of numbers, find the pair with the
smallest difference between them. To solve: sort, then just do a
linear scan through the sequence, keeping track of smallest
distance so far.

• Interesting note: IBM was formed principally on being able to
sort US census data

 21

Hedgehog Diagram (1)
• A useful visualization of our data:

Position in sequence

Key Value

 23

Hedgehog Diagram (2)
• We can visualise the precondition and postcondition of the

sorting problem in terms of these diagrams:

 Precondition Postcondition

• It can also be helpful to visualise the intermediate states of
sorting algorithms using these diagrams – visualise the invariant
preserved

 25

Selection sort concept
• Our first sorting algorithm is selection sort.

• The idea is to maintain the following invariant:

– The partially sorted sequence consists of two parts:
• The first part, which is already sorted.
• The second part, which is unsorted.

– Moreover, all elements in the second part are larger than all
those in the first part

 27

Selection sort graph (1)

0 n

 29

Selection sort graph (2)

0 n0 ni

Still to be sortedSorted

 31

Selection sort graph (3)

0 n0 ni

Still to be sortedSorted

All elements still to be
sorted are greater than
the largest sorted
element

 33

Selection sort graph (4)

0 n0 ni

All elements still to be
sorted are greater than
the largest sorted
element

• Selection sort works by repeatedly selecting the smallest
element from the unsorted part and adding it to the top of the
sorted part

Still to be sortedSorted

 35

Selection sort algorithm (1)
 Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2. Invariant A[1] < … < A[i]

3. min := i

4. for j := i+1 to n do

5. if A[j] < A[min] then

6. min := j

7. endif

8. endfor

9. swap(A[i], A[min])

10. invariant max(A[1..i]) < A[i+1..n]

11. endfor

 37

Selection sort algorithm (2)
 Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2. Invariant A[1] < … < A[i]

3. min := i

4. for j := i+1 to n do

5. if A[j] < A[min] then

6. min := j

7. endif

8. endfor

9. swap(A[i], A[min])

10. invariant max(A[1..i]) < A[i+1..n]

11. endfor

Min stores the index of the
Minimum element found so

Far in A[i+1..n]

 39

Selection sort algorithm (3)
 Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2. Invariant A[1] < … < A[i]

3. min := i

4. for j := i+1 to n do

5. if A[j] < A[min] then

6. min := j

7. endif

8. endfor

9. swap(A[i], A[min])

10. invariant max(A[1..i]) < A[i+1..n]

11. endfor

Min stores the index of the
Minimum element found so

Far in A[i+1..n]

This loop finds the
Minimum element in A[i+1..n]

 41

Selection sort algorithm (4)
 Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2. Invariant A[1] < … < A[i]

3. min := i

4. for j := i+1 to n do

5. if A[j] < A[min] then

6. min := j

7. endif

8. endfor

9. swap(A[i], A[min])

10. invariant max(A[1..i]) < A[i+1..n]

11. endfor

Min stores the index of the
Minimum element found so

Far in A[i+1..n]

This loop finds the
Minimum element in A[i+1..n]

This puts the newly found
minimum into position i
restoring the invariant

 43

Selection sort animation

 45

Asymptotic analysis of the selection sort

• What is the complexity of selection sort?
• The main body consists of two nested loops
• We know how to analyze nested loops

 47

Selection sort analysis (1)
 Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2. Invariant A[1] < … < A[i]

3. min := i

4. for j := i+1 to n do

5. if A[j] < A[min] then

6. min := j

7. endif

8. endfor

9. swap(A[i], A[min])

10. invariant max(A[1..i]) < A[i+1..n]

11. endfor

Inside the inner loop we do O(1)
of work

Total work for loop:∑
j=i+1

n

1=n−(i+1)

 49

Selection sort analysis (2)
 Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2. Invariant A[1] < … < A[i]

3. min := i

4. for j := i+1 to n do

5. if A[j] < A[min] then

6. min := j

7. endif

8. endfor

9. swap(A[i], A[min])

10. invariant max(A[1..i]) < A[i+1..n]

11. endfor

Inside the outer loop we do
O(1) work plus the inner
loop:

∑
i=1

n−1

n−(i+1)=Θ(n2
)

 51

O(n2) Selection sort

• So selection sort is an O(n2) algorithm
• We know such algorithms are useable for up to

about a million items
• If we relax the invariant slightly, we obtain

another O(n2) algorithm

 53

Insertion sort concept
• The insertion sort algorithm also maintains

the invariant that the first part of the
sequence is sorted.

• But this time we insert the next unsorted
element rather than the smallest unsorted
element

 54

 55

Insertion sort graph (1)

0 n

 57

Insertion sort graph (2)

0 ni

Still to be sortedSorted

 59

Insertion sort graph (3)

0 ni

Still to be sortedSorted

Unsorted elements
may be smaller than
the sorted ones

 61

Insertion sort algorithm (1)
 Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2. Invariant A[1] < … < A[i-1]

3. value := A[i]

4. j := i - 1

5. while j > 0 and A[j] > value do

6. A[j + 1] := A[j]

7. j := j – 1

8. endwhile

9. A[j+1] = value

10. endfor

 63

Insertion sort algorithm (2)
 Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2. Invariant A[1] < … < A[i-1]

3. value := A[i]

4. j := i - 1

5. while j > 0 and A[j] > value do

6. A[j + 1] := A[j]

7. j := j – 1

8. endwhile

9. A[j+1] = value

10. endfor

value contains the value
of the element to insert

 65

Insertion sort algorithm (3)
 Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2. Invariant A[1] < … < A[i-1]

3. value := A[i]

4. j := i - 1

5. while j > 0 and A[j] > value do

6. A[j + 1] := A[j]

7. j := j – 1

8. endwhile

9. A[j+1] = value

10. endfor

value contains the value
of the element to insert

This loops down through the
sorted part of the sequence,
shuffling elements up and
stopping when we find an
element less than the element
to insert

 67

Insertion sort algorithm (4)
 Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2. Invariant A[1] < … < A[i-1]

3. value := A[i]

4. j := i - 1

5. while j > 0 and A[j] > value do

6. A[j + 1] := A[j]

7. j := j – 1

8. endwhile

9. A[j+1] = value

10. endfor

value contains the value
of the element to insert

This loops down through the
sorted part of the sequence,
shuffling elements up and
stopping when we find an
element less than the element
to insert

We can then insert the element
restoring the invariant

 69

Insertion sort example (1)
8 2 4 9 3 6

 71

Insertion sort example (2)
8 2 4 9 3 6

 73

Insertion sort example (3)
8 2 4 9 3 6

2 8 4 9 3 6

 75

Insertion sort example (4)
8 2 4 9 3 6

2 8 4 9 3 6

 77

Insertion sort example (5)
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

 79

Insertion sort example (6)
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

 81

Insertion sort example (7)
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

 83

Insertion sort example (8)
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

 85

Insertion sort example (9)
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

 87

Insertion sort example (10)
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

 89

Insertion sort example (11)
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 Done

 91

Insertion sort algorithm (5)
 Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2. Invariant A[1] < … < A[i-1]

3. value := A[i]

4. j := i - 1

5. while j > 0 and A[j] > value do

6. A[j + 1] := A[j]

7. j := j – 1

8. endwhile

9. A[j+1] = value

10. endfor

We don't know in advance
how many times this loop
will iterate
Q:In the worst case?
Q:What is happening in this
case?

 93

Insertion sort algorithm (6)
 Function InserionSort(A[1:n]:array of elements)
1. for i := 2 to n do
2. Invariant A[1] < … < A[i-1]
3. value := A[i]
4. j := i - 1
5. while j > 0 and A[j] > value do
6. A[j + 1] := A[j]
7. j := j – 1
8. endwhile
9. A[j+1] = value
10. endfor

We don't know in advance
how many times this loop
will iterate
Q:In the worst case?
Q:What is happening in
this case?

A:The worst case occurs when the element to be inserted is
smaller than all the elements sorted so far
In this case the loop will executed i-1 times: ∑

j=0

i−1

1=i−1

 95

Insertion sort algorithm (7)
 Function InserionSort(A[1:n]:array of elements)
1. for i := 2 to n do
2. Invariant A[1] < … < A[i-1]
3. value := A[i]
4. j := i - 1
5. while j > 0 and A[j] > value do
6. A[j + 1] := A[j]
7. j := j – 1
8. endwhile
9. A[j+1] = value
10. endfor

For the total complexity we
then substitute the worst
case for the inner loop into
the outer loop:

So in the worst case, insertion sort is also an n2 algorithm
Q:When does the worst case occur?
Q:When does the best case occur? What is the complexity in that
case?

∑
i=2

n

i−1=Θ(n2
)

 97

Insertion sort worst case
• Insertion sort's worst case occurs when given a reverse sorted

sequence

• In this case, each insertion requires shuffling all the way down
the sorted part of the sequence

• Insertion sort's best case occurs when given a sorted sequence

• In this case it is linear

• It is also good on a partially sorted sequence

• In practice it is more efficient than other simple quadratic
sorters (Selection sort)

• For small datasets, because of a small leading constant on the
running time, it is a good choice of sorting algorithm

• Nevertheless, we can do better

 99

Divide-and-conquer sorting (1)
• Q:Try to think about sorting in terms of divide-and-

conquer. Express sorting as a divide-and-conquer
algorithm in the way that seems most natural to you.

 101

Divide-and-conquer sorting (2)
• Q:Try to think about sorting in terms of divide-and-

conquer. Express sorting as a divide-and-conquer
algorithm in the way that seems most natural to you.

• A:Here's one answer which seems natural:

• Split the input sequence into two halves. Recursively
sort each of those halves and then merge the two sorted
halves into one.

• This is merge sort.

• An elegant idea which is easy to express, but is it
efficient?

 103

Merge sort algorithm
 Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2. return A
3. else
4. A1 = MergeSort(A[1..n/2])
5. A2 = MergeSort(A[n/2..n])
6. return merge(A1, A2)
7. endif

 105

Merge sort Example

 107

Merge sort analysis
 Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2. return A
3. else
4. A1 = MergeSort(A[1..n/2])
5. A2 = MergeSort(A[n/2..n])
6. return merge(A1, A2)
7. endif

To calculate the complexity of merge sort, we need to answer
two questions:
1. What is the complexity of the merge subroutine?
2. What is the solution to the recurrence relation resulting from
the recursive call?

 109

Merge 2 ordered lists (1)

20

13

7

2

12

11

9

1

2 ordered lists

 111

Merge 2 ordered lists (2)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

 113

Merge 2 ordered lists (3)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

 115

Merge 2 ordered lists (4)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

 117

Merge 2 ordered lists (5)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

 118

 119

Merge 2 ordered lists (6)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

 121

Merge 2 ordered lists (7)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

 123

Merge 2 ordered lists (8)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

 125

Merge 2 ordered lists (9)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

 127

Merge 2 ordered lists (10)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

 129

Merge 2 ordered lists (11)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

 130

 131

Merge 2 ordered lists (12)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

 133

Merge 2 ordered lists (13)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

 134

 135

Merge 2 ordered lists (15)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

Q: How many comparisons? Complexity of merging?

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

 137

Merge 2 ordered lists (16)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

n steps for n items = Θ(n)

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

 139

Merge sort asymptotic analysis (1)
 Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2. return A
3. else
4. A1 = MergeSort(A[1..n/2])
5. A2 = MergeSort(A[n/2..n])
6. return merge(A1, A2)
7. endif

So merging requires O(n) work
How about the recurrence relation?

 141

Merge sort asymptotic analysis (2)
 Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2. return A
3. else
4. A1 = MergeSort(A[1..n/2])
5. A2 = MergeSort(A[n/2..n])
6. return merge(A1, A2)
7. endif

Recursive case:
T(n/2)
T(n/2)
Θ(n)

Base case: Θ(1)

Recurrence relation:

As for Towers of Hanoi, we'll solve using a recursion tree

T (n)={ Θ(1) if n=1
2T (n /2)+Θ(n) if n>1

 143

Merge sort asymptotic analysis (3)
 Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2. return A
3. else
4. A1 = MergeSort(A[1..n/2])
5. A2 = MergeSort(A[n/2..n])
6. return merge(A1, A2)
7. endif

Recursive case:
T(n/2)
T(n/2)
Θ(n)

Base case: Θ(1)

Recurrence relation:

As for Towers of Hanoi, we'll solve using a recursion tree

T (n)={ Θ(1) if n=1
2T (n /2)+Θ(n) if n>1

 145

Merge sort asymptotic analysis (4)
 Solve: T(n) = 2 T(n/2) + cn

 T(n)

 147

Merge sort asymptotic analysis (5)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 T(n/2) T(n/2)

 149

Merge sort asymptotic analysis (6)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 T(n/4) T(n/4) T(n/4) T(n/4)

 151

Merge sort asymptotic analysis (7)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 c(n/4) c(n/4) c(n/4) c(n/4)

 Ɵ(1)

 153

Merge sort asymptotic analysis (8)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 c(n/4) c(n/4) c(n/4) c(n/4)

 Ɵ(1)

Depth

Total work per level?

 155

Merge sort asymptotic analysis (9)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 c(n/4) c(n/4) c(n/4) c(n/4)

 Ɵ(1)

Depth

= log
2
n

Total work per level?

 157

Merge sort asymptotic analysis (10)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 c(n/4) c(n/4) c(n/4) c(n/4)

 Ɵ(1)

Total work per level?

= cn

Depth

= log2n

 159

Merge sort asymptotic analysis (11)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 c(n/4) c(n/4) c(n/4) c(n/4)

 Ɵ(1)

Total work per level?

= cn

= cn

= cnDepth

= log2n

Number of leaves?

 161

Merge sort asymptotic analysis (12)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 c(n/4) c(n/4) c(n/4) c(n/4)

 Ɵ(1)

Total work per level?

= cn

= cn

= cnDepth

= log2n

Number of leaves? = n = Θ(n)

 163

Merge sort asymptotic analysis (13)
 Solve: T(n) = 2 T(n/2) + cn

 c(n)

 c(n/2) c(n/2)

 c(n/4) c(n/4) c(n/4) c(n/4)

 Ɵ(1)

Total work per level?

= cn

= cn

= cnDepth

= log2n

Number of leaves? = n = Θ(n)

So we have log n sets of Θ(n) work

T(n) = Θ(n log n)

 165

Merge sort versus Quadratic sort (1)
Conclusion: Merge sort is o(n2)

Merge sort asymptotically beats insertion sort or
selection sort

In practice, merge sort is more efficient than insertion
sort approx. when n > 30

 167

Merge sort versus Quadratic sort (2)

Conclusion: Merge sort is o(n2)

Merge sort asymptotically beats insertion sort or
selection sort

In practice, merge sort is more efficient than insertion
sort approx. when n > 30

Obvious question:can we do any better?

Is there a sorting algorithm that is o(n log n)?

 169

Limits of Comparison-based sorting
Think about the algorithms so far

The only way they learn anything
about the sequence is by
comparing elements

The number of comparisons
required to put a set of elements
in order is:

Ω(n log n)

So if our algorithm performs
comparisons we can do no better

Q: Do we have to perform
comparisons?

 171

Dutch National Flag (1)
• We're going to finish with a kind of thought

experiment

• Consider the following problem:

Input is a sequence of elements which can be one of three
colors:

Output is sorted according to the Dutch national flag:

 173

Dutch National Flag (2)
• The algorithm to solve this maintains the following

invariant:

Algorithm sketch for n element sequence:

1. Initialize r=1, w=1, b=n+1

2. Repeatedly perform the following until w=b:

 If A[w] = red, swap(A[r], A[w]) and increment r and w

 If A[w] = white, increment w

 If A[w] = blue, swap(A[w], A[b-1]), decrement b

Still to sort

r w b

 175

Dutch National Flag (3)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?

 177

Dutch National Flag (4)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?

For each iteration of the loop, we either increment w or
decrement b, bringing us one step closer to our
termination criteria: w=b

The algorithm is therefore linear in n

We appear to have just seen a Θ(n) sorting algorithm!

 179

Dutch National Flag (5)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?

For each iteration of the loop, we either increment w or
decrement b, bringing us one step closer to our
termination criteria: w=b

The algorithm is therefore linear in n

We appear to have just seen a Θ(n) sorting algorithm!

Q: Any explanation?

 181

Dutch National Flag (6)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?

For each iteration of the loop, we either increment w or decrement
b, bringing us one step closer to our termination criteria: w=b

The algorithm is therefore linear in n

We appear to have just seen a Θ(n) sorting algorithm!

Q: Any explanation?

A:If we know where to put elements by just looking at them, we
can sort them in linear time.

Similar idea can be used to any number of potential elements,
putting them into “buckets” according to their value

We must know the potential values beforehand

 183

Conclusion
• We've seen some important sorting algorithms:

– Selection sort and insertion sort (asymptotically
quadratic – with insertion sort being better in
practice)

– Merge sort – an elegant application of divide and
conquer giving us an O(n log n) sorting algorithm

– But we've seen when we know in advance what
values we might get, we can have linear
performance

