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Outline

• What is sorting and why is it important?
• Simple quadratic sorts (selection and insertion 

sort)
• An O(n log n) sort using divide-and-conquer 

(merge sort)
• Limits of sorting – comparison-based 

algorithms
• Doing even better – non-comparison-based
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Objective

• Be able to explain the usage of sorting in 
various problem

• Track the algorithm performance
• Analyze various sorting algorithms
• Compare sorting algorithms with respect to 

asymptotic notation
• Explain the limitation of comparison-based 

sorting algorithms
• Explain why some sorting algorithms can 

achieve a better running time

 7

The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements
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The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements

We make the following assumptions:

– Each element has an associated key: k
i
 = key(e

i
)

– There is a linear order defined on the keys: <

– For ease of notation we write: e < e' ↔ key(e) < key(e')
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The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements

We make the following assumptions:

– Each element has an associated key: k
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 = key(e
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)

– There is a linear order defined on the keys: <

– For ease of notation we write: e < e' ↔ key(e) < key(e')

• Output:A sequence s' = ‹e'1, ..., e'n›

 where s' is a permutation of s and e'
1
 < ... < e'

n
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The problem of sorting
• Input:A sequence s = ‹e1, ..., en› of n elements

We make the following assumptions:

– Each element has an associated key: k
i
 = key(e

i
)

– There is a linear order defined on the keys: <

– For ease of notation we write: e < e' ↔ key(e) < key(e')

• Output:A sequence s' = ‹e'1, ..., e'n›

 where s' is a permutation of s and e'
1
 < ... < e'

n

• Sorting as a formal postcondition:

     For all i, j, 0 < i < j < n => s'[i] < s'[j] & bag(s) = bag(s') 
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Aside:Bags or Multisets
• Two informal definitions of a bag or multiset:

– A bag is like a set, but a member of a bag can have more 
than one membership

– A bag is like a sequence with the order thrown away

• Intuitive analogy: think of coins in your pocket

• An element is either in a set or it isn’t

• An element belongs to a bag zero or more times

• The number of times an element belongs to a bag is its 
multiplicity

• The total number of elements in a bag, including repeated 
memberships, is its cardinality
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Motivation
• Sorting is standard fodder for an introduction to algorithms course

• Good for teaching algorithm analysis, lots of alternative algorithms 
to compare, different algorithmic concepts (divide-and-conquer, 
randomised algorithms etc)

• This is all good, but beyond this, is sorting very important in the 
real world?

• Answer: yes, definitely!

• According to Skiena, computers spend approx. 25% of their time 
sorting, so doing this efficiently is hugely important

• New developments are still being made in this area (library sort in 
2004)

• There are a huge number of applications of sorting – it makes lots 
of other tasks possible or easier or more efficient
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Applications of Sorting
• Search preprocessing: we saw last time that sorting an array 

reduces searching from O(n) to O(log n)

• Selection: what is the kth largest element in a sequence? If it’s 
sorted, just pick element k.

• Convex hulls: what is the smallest polygon that encloses a set 
of points? (useful in geometric algorithms – computer graphics 
and vision). To solve, sort points by x-coordinate, add from left 
to right, delete points when enclosed by polygon including new 
point.

• Closest pair: given a set of numbers, find the pair with the 
smallest difference between them. To solve: sort, then just do a 
linear scan through the sequence, keeping track of smallest 
distance so far.

• Interesting note: IBM was formed principally on being able to 
sort US census data
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Hedgehog Diagram (1)
• A useful visualization of our data:

Position in sequence

Key Value
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Hedgehog Diagram (2)
• We can visualise the precondition and postcondition of the 

sorting problem in terms of these diagrams:

    Precondition Postcondition

• It can also be helpful to visualise the intermediate states of 
sorting algorithms using these diagrams – visualise the invariant 
preserved
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Selection sort concept
• Our first sorting algorithm is selection sort.

• The idea is to maintain the following invariant:

– The partially sorted sequence consists of two parts:
• The first part, which is already sorted.
• The second part, which is unsorted.

– Moreover, all elements in the second part are larger than all 
those in the first part
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Selection sort graph (1)

0 n
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Selection sort graph (2)

0 n0 ni

Still to be sortedSorted
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Selection sort graph (3)

0 n0 ni

Still to be sortedSorted

All elements still to be 
sorted are greater than 
the largest sorted 
element



 33

Selection sort graph (4)

0 n0 ni

All elements still to be 
sorted are greater than 
the largest sorted 
element

• Selection sort works by repeatedly selecting the smallest 
element from the unsorted part and adding it to the top of the 
sorted part

Still to be sortedSorted
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Selection sort algorithm (1)
    Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2.       Invariant A[1] < … < A[i]

3.       min := i

4.       for j := i+1 to n do

5.           if A[j] < A[min] then

6.               min := j

7.          endif

8.       endfor

9.       swap(A[i], A[min])

10.     invariant max(A[1..i]) < A[i+1..n]

11. endfor
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Selection sort algorithm (2)
    Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2.       Invariant A[1] < … < A[i]

3.       min := i

4.       for j := i+1 to n do

5.           if A[j] < A[min] then

6.               min := j

7.          endif

8.       endfor

9.       swap(A[i], A[min])

10.     invariant max(A[1..i]) < A[i+1..n]

11. endfor

Min stores the index of the
Minimum element found so

Far in A[i+1..n]
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Selection sort algorithm (3)
    Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2.       Invariant A[1] < … < A[i]

3.       min := i

4.       for j := i+1 to n do

5.           if A[j] < A[min] then

6.               min := j

7.          endif

8.       endfor

9.       swap(A[i], A[min])

10.     invariant max(A[1..i]) < A[i+1..n]

11. endfor

Min stores the index of the
Minimum element found so

Far in A[i+1..n]

This loop finds the
Minimum element in A[i+1..n]
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Selection sort algorithm (4)
    Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2.       Invariant A[1] < … < A[i]

3.       min := i

4.       for j := i+1 to n do

5.           if A[j] < A[min] then

6.               min := j

7.          endif

8.       endfor

9.       swap(A[i], A[min])

10.     invariant max(A[1..i]) < A[i+1..n]

11. endfor

Min stores the index of the
Minimum element found so

Far in A[i+1..n]

This loop finds the
Minimum element in A[i+1..n]

This puts the newly found
minimum into position i
restoring the invariant
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Selection sort animation



 45

Asymptotic analysis of the selection sort 

• What is the complexity of selection sort?
• The main body consists of two nested loops
• We know how to analyze nested loops
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Selection sort analysis (1)
    Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2.       Invariant A[1] < … < A[i]

3.       min := i

4.       for j := i+1 to n do

5.           if A[j] < A[min] then

6.               min := j

7.          endif

8.       endfor

9.       swap(A[i], A[min])

10.     invariant max(A[1..i]) < A[i+1..n]

11. endfor

Inside the inner loop we do O(1) 
of work

Total work for loop:∑
j=i+1

n

1=n−(i+1)
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Selection sort analysis (2)
    Function SelectionSort(A[1:n]:array of elements)

1. for i := 1 to n – 1 do

2.       Invariant A[1] < … < A[i]

3.       min := i

4.       for j := i+1 to n do

5.           if A[j] < A[min] then

6.               min := j

7.          endif

8.       endfor

9.       swap(A[i], A[min])

10.     invariant max(A[1..i]) < A[i+1..n]

11. endfor

Inside the outer loop we do 
O(1) work plus the inner 
loop:

∑
i=1

n−1

n−(i+1)=Θ(n2
)
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O(n2) Selection sort

• So selection sort is an O(n2) algorithm
• We know such algorithms are useable for up to 

about a million items
• If we relax the invariant slightly, we obtain 

another O(n2) algorithm
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Insertion sort concept
• The insertion sort algorithm also maintains 

the invariant that the first part of the 
sequence is sorted.

• But this time we insert the next unsorted 
element rather than the smallest unsorted 
element
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Insertion sort graph (1)

0 n
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Insertion sort graph (2)

0 ni

Still to be sortedSorted
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Insertion sort graph (3)

0 ni

Still to be sortedSorted

Unsorted elements 
may be smaller than 
the sorted ones



 61

Insertion sort algorithm (1)
    Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2.       Invariant A[1] < … < A[i-1]

3.       value := A[i]

4.       j := i - 1

5.       while j > 0 and A[j] > value do

6.               A[j + 1] := A[j]

7.               j := j – 1

8.       endwhile

9.       A[j+1] = value

10. endfor
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Insertion sort algorithm (2)
    Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2.       Invariant A[1] < … < A[i-1]

3.       value := A[i]

4.       j := i - 1

5.       while j > 0 and A[j] > value do

6.               A[j + 1] := A[j]

7.               j := j – 1

8.       endwhile

9.       A[j+1] = value

10. endfor

value contains the value
of the element to insert
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Insertion sort algorithm (3)
    Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2.       Invariant A[1] < … < A[i-1]

3.       value := A[i]

4.       j := i - 1

5.       while j > 0 and A[j] > value do

6.               A[j + 1] := A[j]

7.               j := j – 1

8.       endwhile

9.       A[j+1] = value

10. endfor

value contains the value
of the element to insert

This loops down through the 
sorted part of the sequence, 
shuffling elements up and 
stopping when we find an 
element less than the element 
to insert
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Insertion sort algorithm (4)
    Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2.       Invariant A[1] < … < A[i-1]

3.       value := A[i]

4.       j := i - 1

5.       while j > 0 and A[j] > value do

6.               A[j + 1] := A[j]

7.               j := j – 1

8.       endwhile

9.       A[j+1] = value

10. endfor

value contains the value
of the element to insert

This loops down through the 
sorted part of the sequence, 
shuffling elements up and 
stopping when we find an 
element less than the element 
to insert

We can then insert the element
restoring the invariant
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Insertion sort example (1)
8    2    4    9    3    6
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Insertion sort example (2)
8    2    4    9    3    6
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Insertion sort example (3)
8    2    4    9    3    6

2    8    4    9    3    6
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Insertion sort example (4)
8    2    4    9    3    6

2    8    4    9    3    6
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Insertion sort example (5)
8    2    4    9    3    6

2    8    4    9    3    6

2    4    8    9    3    6
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Insertion sort example (6)
8    2    4    9    3    6

2    8    4    9    3    6

2    4    8    9    3    6
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Insertion sort example (7)
8    2    4    9    3    6

2    8    4    9    3    6

2    4    8    9    3    6

2    4    8    9    3    6
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Insertion sort example (8)
8    2    4    9    3    6

2    8    4    9    3    6

2    4    8    9    3    6

2    4    8    9    3    6
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Insertion sort example (9)
8    2    4    9    3    6

2    8    4    9    3    6

2    4    8    9    3    6

2    4    8    9    3    6

2    3    4    8    9    6
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Insertion sort example (10)
8    2    4    9    3    6

2    8    4    9    3    6

2    4    8    9    3    6

2    4    8    9    3    6

2    3    4    8    9    6
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Insertion sort example (11)
8    2    4    9    3    6

2    8    4    9    3    6

2    4    8    9    3    6

2    4    8    9    3    6

2    3    4    8    9    6

2    3    4    6    8    9 Done
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Insertion sort algorithm (5)
    Function InserionSort(A[1:n]:array of elements)

1. for i := 2 to n do

2.       Invariant A[1] < … < A[i-1]

3.       value := A[i]

4.       j := i - 1

5.       while j > 0 and A[j] > value do

6.               A[j + 1] := A[j]

7.               j := j – 1

8.       endwhile

9.       A[j+1] = value

10. endfor

We don't know in advance 
how many times this loop 
will iterate
Q:In the worst case?
Q:What is happening in this 
case?
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Insertion sort algorithm (6)
    Function InserionSort(A[1:n]:array of elements)
1. for i := 2 to n do
2.       Invariant A[1] < … < A[i-1]
3.       value := A[i]
4.       j := i - 1
5.       while j > 0 and A[j] > value do
6.               A[j + 1] := A[j]
7.               j := j – 1
8.       endwhile
9.       A[j+1] = value
10. endfor

We don't know in advance 
how many times this loop 
will iterate
Q:In the worst case?
Q:What is happening in 
this case?

A:The worst case occurs when the element to be inserted is 
smaller than all the elements sorted so far
In this case the loop will executed i-1 times: ∑

j=0

i−1

1=i−1
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Insertion sort algorithm (7)
    Function InserionSort(A[1:n]:array of elements)
1. for i := 2 to n do
2.       Invariant A[1] < … < A[i-1]
3.       value := A[i]
4.       j := i - 1
5.       while j > 0 and A[j] > value do
6.               A[j + 1] := A[j]
7.               j := j – 1
8.       endwhile
9.       A[j+1] = value
10. endfor

For the total complexity we 
then substitute the worst 
case for the inner loop into 
the outer loop:

So in the worst case, insertion sort is also an n2 algorithm
Q:When does the worst case occur?
Q:When does the best case occur? What is the complexity in that 
case?

∑
i=2

n

i−1=Θ(n2
)
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Insertion sort worst case
• Insertion sort's worst case occurs when given a reverse sorted 

sequence

• In this case, each insertion requires shuffling all the way down 
the sorted part of the sequence

• Insertion sort's best case occurs when given a sorted sequence

• In this case it is linear

• It is also good on a partially sorted sequence

• In practice it is more efficient than other simple quadratic 
sorters (Selection sort)

• For small datasets, because of a small leading constant on the 
running time, it is a good choice of sorting algorithm

• Nevertheless, we can do better
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Divide-and-conquer sorting (1)
• Q:Try to think about sorting in terms of divide-and-

conquer. Express sorting as a divide-and-conquer 
algorithm in the way that seems most natural to you.
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Divide-and-conquer sorting (2)
• Q:Try to think about sorting in terms of divide-and-

conquer. Express sorting as a divide-and-conquer 
algorithm in the way that seems most natural to you.

• A:Here's one answer which seems natural:

• Split the input sequence into two halves. Recursively 
sort each of those halves and then merge the two sorted 
halves into one.

• This is merge sort.

• An elegant idea which is easy to express, but is it 
efficient?
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Merge sort algorithm
    Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2.    return A
3. else
4.    A1 = MergeSort(A[1..n/2])
5.    A2 = MergeSort(A[n/2..n])
6.    return merge(A1, A2)
7. endif
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Merge sort Example
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Merge sort analysis
    Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2.    return A
3. else
4.    A1 = MergeSort(A[1..n/2])
5.    A2 = MergeSort(A[n/2..n])
6.    return merge(A1, A2)
7. endif

To calculate the complexity of merge sort, we need to answer 
two questions:
1. What is the complexity of the merge subroutine?
2. What is the solution to the recurrence relation resulting from 
the recursive call?
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Merge 2 ordered lists (1)

20

13

7

2

12

11

9

1

2 ordered lists
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Merge 2 ordered lists (2)
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7

2
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9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest



 113

Merge 2 ordered lists (3)
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1
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Merge 2 ordered lists (4)
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Merge 2 ordered lists (5)
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Merge 2 ordered lists (6)
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Merge 2 ordered lists (7)
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Merge 2 ordered lists (8)
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Merge 2 ordered lists (9)
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Merge 2 ordered lists (10)
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Merge 2 ordered lists (11)

20

13

7

2

12

11

9

1

2 ordered lists

Strategy: examine front of both lists, repeatedly remove smallest

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

 130

 131

Merge 2 ordered lists (12)
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Merge 2 ordered lists (13)
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Merge 2 ordered lists (15)
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Strategy: examine front of both lists, repeatedly remove smallest

Q: How many comparisons? Complexity of merging?
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Merge 2 ordered lists (16)
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Strategy: examine front of both lists, repeatedly remove smallest

n steps for n items = Θ(n)
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Merge sort asymptotic analysis (1)
    Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2.    return A
3. else
4.    A1 = MergeSort(A[1..n/2])
5.    A2 = MergeSort(A[n/2..n])
6.    return merge(A1, A2)
7. endif

So merging requires O(n) work
How about the recurrence relation?
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Merge sort asymptotic analysis (2)
    Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2.    return A
3. else
4.    A1 = MergeSort(A[1..n/2])
5.    A2 = MergeSort(A[n/2..n])
6.    return merge(A1, A2)
7. endif

Recursive case:
T(n/2)
T(n/2)
Θ(n)

Base case: Θ(1)

Recurrence relation:

As for Towers of Hanoi, we'll solve using a recursion tree

T (n)={ Θ(1)  if n=1
2T (n /2)+Θ(n)  if n>1
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Merge sort asymptotic analysis (3)
    Function MergeSort(A[1:n]:array of elements)
1. if n = 1 then
2.    return A
3. else
4.    A1 = MergeSort(A[1..n/2])
5.    A2 = MergeSort(A[n/2..n])
6.    return merge(A1, A2)
7. endif

Recursive case:
T(n/2)
T(n/2)
Θ(n)

Base case: Θ(1)

Recurrence relation:

As for Towers of Hanoi, we'll solve using a recursion tree

T (n)={ Θ(1)  if n=1
2T (n /2)+Θ(n)  if n>1
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Merge sort asymptotic analysis (4)
    Solve: T(n) = 2 T(n/2) + cn

   T(n)
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Merge sort asymptotic analysis (5)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          T(n/2)   T(n/2)
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Merge sort asymptotic analysis (6)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 T(n/4)       T(n/4)  T(n/4)         T(n/4)
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Merge sort asymptotic analysis (7)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 c(n/4)       c(n/4)  c(n/4)         c(n/4)

    Ɵ(1)
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Merge sort asymptotic analysis (8)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 c(n/4)       c(n/4)  c(n/4)         c(n/4)

    Ɵ(1)

Depth

Total work per level?
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Merge sort asymptotic analysis (9)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 c(n/4)       c(n/4)  c(n/4)         c(n/4)

    Ɵ(1)

Depth

= log
2
n

Total work per level?
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Merge sort asymptotic analysis (10)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 c(n/4)       c(n/4)  c(n/4)         c(n/4)

    Ɵ(1)

Total work per level?

= cn

Depth

= log2n

 159

Merge sort asymptotic analysis (11)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 c(n/4)       c(n/4)  c(n/4)         c(n/4)

    Ɵ(1)

Total work per level?

= cn

= cn

= cnDepth

= log2n

Number of leaves?
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Merge sort asymptotic analysis (12)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 c(n/4)       c(n/4)  c(n/4)         c(n/4)

    Ɵ(1)

Total work per level?

= cn

= cn

= cnDepth

= log2n

Number of leaves? = n = Θ(n)
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Merge sort asymptotic analysis (13)
    Solve: T(n) = 2 T(n/2) + cn

   c(n)

          c(n/2)   c(n/2)

 c(n/4)       c(n/4)  c(n/4)         c(n/4)

    Ɵ(1)

Total work per level?

= cn

= cn

= cnDepth

= log2n

Number of leaves? = n = Θ(n)

So we have log n sets of Θ(n) work

T(n) = Θ(n log n)
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Merge sort versus Quadratic sort (1)
Conclusion: Merge sort is o(n2)

Merge sort asymptotically beats insertion sort or 
selection sort

In practice, merge sort is more efficient than insertion 
sort approx. when n > 30
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Merge sort versus Quadratic sort (2)

Conclusion: Merge sort is o(n2)

Merge sort asymptotically beats insertion sort or 
selection sort

In practice, merge sort is more efficient than insertion 
sort approx. when n > 30

Obvious question:can we do any better?

Is there a sorting algorithm that is o(n log n)?
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Limits of Comparison-based sorting
Think about the algorithms so far

The only way they learn anything 
about the sequence is by 
comparing elements

The number of comparisons 
required to put a set of elements 
in order is:

Ω(n log n)

So if our algorithm performs 
comparisons we can do no better

Q: Do we have to perform 
comparisons?
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Dutch National Flag (1)
• We're going to finish with a kind of thought 

experiment

• Consider the following problem:

Input is a sequence of elements which can be one of three 
colors:

Output is sorted according to the Dutch national flag:
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Dutch National Flag (2)
• The algorithm to solve this maintains the following 

invariant:

Algorithm sketch for n element sequence:

1. Initialize r=1, w=1, b=n+1

2. Repeatedly perform the following until w=b:

    If A[w] = red, swap(A[r], A[w]) and increment r and w

    If A[w] = white, increment w

    If A[w] = blue, swap(A[w], A[b-1]), decrement b

Still to sort

r w b
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Dutch National Flag (3)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?
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Dutch National Flag (4)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?

For each iteration of the loop, we either increment w or 
decrement b, bringing us one step closer to our 
termination criteria: w=b

The algorithm is therefore linear in n

We appear to have just seen a Θ(n) sorting algorithm!
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Dutch National Flag (5)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?

For each iteration of the loop, we either increment w or 
decrement b, bringing us one step closer to our 
termination criteria: w=b

The algorithm is therefore linear in n

We appear to have just seen a Θ(n) sorting algorithm!

Q: Any explanation?
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Dutch National Flag (6)
Q: Do you believe this algorithm sorts the flag?

Q:What is the complexity?

For each iteration of the loop, we either increment w or decrement 
b, bringing us one step closer to our termination criteria: w=b

The algorithm is therefore linear in n

We appear to have just seen a Θ(n) sorting algorithm!

Q: Any explanation?

A:If we know where to put elements by just looking at them, we 
can sort them in linear time.

Similar idea can be used to any number of potential elements, 
putting them into “buckets” according to their value

We must know the potential values beforehand
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Conclusion
• We've seen some important sorting algorithms:

– Selection sort and insertion sort (asymptotically 
quadratic – with insertion sort being better in 
practice)

– Merge sort – an elegant application of divide and 
conquer giving us an O(n log n) sorting algorithm

– But we've seen when we know in advance what 
values we might get, we can have linear 
performance


