Course syllabus 2301694 Special topics in applied mathematics Data Mining research essentials

1.	Course Number	2301694			
2.	Course Credit	3			
3.	Course Title	Special topics in applied mathematics: Data Mining research essentials			
4.	Faculty of Science	Department of Mathematics			
5.	Semester	First			
6.	Academic Year	2007			
7.	Instructors	Assistant Professor Krung Sinapiromsaran, Ph. D., Tel:02-218-5225, krung.s@chula.ac.th			
8.	Condition				
	8.1. Prerequisite	-			
	8.2. Corequisite	-			
	8.3. Concurrent	-			
9.	Status	Elective			
10.	Curriculum	Computational Science			
11.	Degree	Master			
12. Hours/week					
	Lecture	2 hours/week			
	Lab	2 hours/week			
	Self-study	6 hours/week			

13. Course Description

Database concept; SQL language; data preparation; statistics for data mining; knowledge representation: tables, trees, rules, instance-based, clusters; credibility and comparing data mining methods; the minimum description length principle.

14. Course Outline

14.1.Learning Objectives/Behavioral objectives: Student can

- create and design a database for given data analysis tasks
- write the SQL statements to request data from the DBMS
- apply the data preparation techniques such as feature (attributes) selections, discretization
- apply statistics to mine data
- describe and explain the use of given knowledge representation
- evaluate the data mining models via train-validation-test, cross-validation and other techniques
- compare the data mining models using different criteria

14.2.Learning Contents

Chapter 1: Database concepts and Data Manipulation Language

- Database design Entity/Relationship Model
- Relational Databases
- SQL language
- Queries and Reports

Chapter 2: Data Preparation

6 hours

- Data Cleaning: Missing value, Noisy data
- Data Integration and Transformation
- Discretization and Concept Hierarchy generation
- AOI: Attribute-Oriented Induction

Chapter 3: Statistics

- Descriptive Statistics
- Bivariate Statistics
- Multiple regression and correlation
- Principle Component Analysis

Chapter 4: Knowledge representation

- Decision tables
- Decision trees
- Classification rules
- Association rules
- Instance-based representation
- Clusters

Chapter 5:Credibility and comparing data mining methods

- Training, validation and testing
- Predicting performance
- Cross-validation
- Other estimates: Leave-one-out, Bootstrap
- Predicting probabilities: Quadratic loss function, Informational loss function
- Cost matrix: Lift charts, ROC curves, Recall-precision curves
- Cost curves
- The minimum description length principle

14.3.Method

Week	Date	Detail
1		Database design Entity/Relationship Model Relational Databases
2		SQL language Queries and Reports
3		Data Cleaning: Missing value, Noisy data Data Integration and Transformation
4		Discretization and Concept Hierarchy generation
5		AOI: Attribute-Oriented Induction
6		Descriptive Statistics and Bivariate Statistics
7		Multiple regression and correlation
8		Midterm week
9		Principle Component Analysis
10		Decision tables and Decision trees
11		Classification rules and Association rules
12		Instance-based representation and Clusters
13		Training, validation and testing Cross-validation

9 hours

9 hours

12 hours

Week	Date	Detail	
		Other estimates: Leave-one-out, Bootstrap	
14		Predicting probabilities: Quadratic loss function, Informational loss function	
15		Cost matrix: Lift charts, ROC curves, Recall-precision curves	
16		Cost curves The minimum description length principle	
17		Final exam weeks	

14.4.Media	Board, LCD projector, computer with Internet connection
14.5.Assignment through Network System	
14.6.Evaluation	
14.6.1.Assessment of academic knowledge	Midterm 50 points
	Final 50 points
14.6.2. Assessment of work or classroom activities	-
14.6.3. Assessment of the assigned tasks	Project 10 points.
15. Reading List	
15.1.Required Text	

1. Ian H. Witten and Eibe Frank, DATA MINING: Practical Machine Learning Tools and Techniques, second edition, Morgan Kaufmann publishers, 2005.

15.2.Supplementary Texts

- 1. Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann publishers, 2001.
- Christopher J. Date, An Introduction to Database Systems, fifth edition, Addison-Wesley Publishing Company, 1990.

15.3.Research Articles/Academic Articles

Any related research articles or papers

15.4. Electronic Media or Websites

- 1. http://en.wikipedia.org/wiki/
- 2. http://www.kdnuggets.com/
- 3. http://www.autonlab.org/tutorials/

16. Teaching Evaluation

16.1.Teaching type

Lecture 4