Basic Identities of Boolean Algebra

1.	X + 0	=	Х	2.	$X \cdot 1$	=	Х
3.	X + 1	=	1	4.	$\mathbf{X} \cdot 0$	=	0
5.	X + X	=	Х	6.	$\mathbf{X} \cdot \mathbf{X}$	=	Х
7.	X + X'	=	1	8.	$X \cdot X'$	=	0
9.	(X')'	=	Х				
10.	X + Y	=	Y + X	11.	XY	=	YX
12.	X + (Y + Z)	=	(X + Y) + Z	13.	X(YZ)	=	(XY)Z
14.	X(Y + Z)	=	XY + XZ	15.	X + YZ	=	(X + Y)(X + Z)
16.	(X+Y)'	=	$X' \cdot Y'$	17.	$(X \cdot Y)'$	=	X' + Y'

Note: 10-11 are referred to as commutative laws 12-13 are referred to as associative laws 14-15 are referred to as distributive laws 16-17 are referred to as DeMorgan's theorem

Consensus Theorem

	XY + X'Z + YZ	=XY + X'Z
(dual)	(X+Y)(X'+Z)(Y+Z)	= (X + Y)(X' + Z)

- **Minterm**: a product term in which all the variables appear exactly once, either complemented or uncomplemented; represents exactly one combination of the binary variables in a truth table (a function, not equal to 0, having the minimum number of 1's in its truth table).
- **Maxterm**: a sum term that contains all the variables in complemented or uncomplemented form (a function, not equal to 1, having the maximum of 1's in its truth table).

Properties of minterms

- 1. There are 2^n minterms for n Boolean variables. These minterms can be evaluated from the binary numbers from 0 to $2^n 1$.
- 2. Any Boolean function can be expressed as a logical sum of minterms.
- 3. The complement of a function contains those minterms not included in the original function.
- 4. A function that includes all the 2^n minterms is equal to logic 1.