
/*
 * This is a free program sample that may be reproduced in any form.
 * The author's information should be retained to preserve its identity.
 *
 * Date written: December 18, 2003
 * Written by: Peraphon Sophatsathit
 * Department of Mathematics, Faculty of Science, Chulalongkorn University.
 * email: Peraphon.S@chula.ac.th
 * http://pioneer.netserv.chula.ac.th/~sperapho
 *
 * Computer Systems (2301274) class supplement.
 * Description: This program demonstrates how to read input parameters
 * from the command line and issue usage information if
 * need be. The code may not compile/run on DOS platform.
 *
 * syntax of invocation:
 * program_name infile_name outfile_name
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define rmode "r"
#define wmode "w"
#define Normal 0
#define Fail_file 1
#define Fail_usage 2
#define Bsize BUFSIZ

/*
 * function prototype
 */
int process_io(char **);
int help_msg(char *);

/*
 * limit input parameters to two, i.e. input and output files.
 * Other options can be extracted by means of 'getopt'.
 */
int
main(int argc, char *argv[])
{
 int rt_code = Normal;

 switch (argc)
 {
 case 3:
 rt_code = process_io(argv);
 break;
 case 1:
 perror("missing input parameters");
 default:
 rt_code = help_msg(argv[0]);
 break;
 }
 return rt_code;
}

/*
 * If the input file is missing, 'fopen' will fail.
 */
int
process_io(char *av[])
{
 FILE *fi, *fo;
 int len;
 char tmp[Bsize-1];

 if ((fi = fopen(av[1], rmode)) == NULL ||
 (fo = fopen(av[2], wmode)) == NULL)
 {
 printf("Unable to open files %s and/or %s\n", av[1], av[2]);
 return Fail_file;
 }
 while (fgets(tmp, Bsize, fi) != NULL)
 {
 /*
 * just to demonstrate how to get rid of the newline
 * character from the read buffer, but is put back in
 * subsequent transfer (fprintf) to the output file
 * which could be done in much simpler and faster
 * approaches.
 */
 len = strlen(tmp);
 tmp[len-1] = '\0';
 fprintf(fo, "%s\n", tmp);
 }
 fclose(fi);
 fclose(fo);

 /*
 * This is a quick and dirty way to execute a system command
 * and delete a file within the program via 'system' and 'unlink'.
 * There is a better approach to do this on UNIX.
 */
 sprintf(tmp, "cat %s", av[2]);
 (void)system(tmp);
 (void)unlink(av[2]);

 return Normal;
}

/*
 * inform the user of the program usage syntax.
 */
int
help_msg(char *pname)
{
 printf("Usage: %s input_filename output_filename\n\n", pname);
 return Fail_usage;
}

