
References
1. Object-Oriented Software Engineering---Practical software development using UML

and Java, T.C. Lethbridge and R. Laganiere, McGraw-Hill, 2005.

2. Object-Oriented Systems Analysis and Design using UML, Bennett, McRobb,

Farmer, McGraw-Hill, second edition, 2002.

3. Object-Oriented Software Engineering---Conquering Complex and Changing

Systems, Bernd Bruegge and Allen H. Dutoit, Prentice-Hall International, Inc., 2000.

Information Systems

informs and enables

Business Strategy

Information System
Strategy

Information
Technology Strategy

system requirements

What must be done

hardware capabilities

What IS can help

drives and sets goals

The relationship between business, IS, and IT strategies

Poor systems

• Poor interface design

• Inappropriate data entry

• Incomprehensible error messages

• Unhelpful ‘help’

• Poor response time

• Unreliability in operation

An end-user’s perspective

• What system? I haven’t seen a new system

Object-Oriented Analysis and Design 1 Peraphon Sophatsathit

• It might work, but it’s dreadful to use!

• It’s very pretty, but does it do anything useful?

A client’s perspective

• If I’d known the real price, I’d never have agreed

• It’s no use delivering it now—we needed it last April!

• OK, so it works—but the installation was such a mess my staff will never trust it

• I didn’t want it in the first place

• Everything’s changed now—we need a completely different system

A developer’s perspective

• We built what they said they wanted

• There wasn’t enough time to do it any better

• Don’t blame me—I’ve never done object-oriented analysis before!

• How can I fix it?—I don’t know how it’s supposed to work

• We said it was impossible, but no-one listened

• The system’s fine—the users are the problem

Why things go wrong

Type of failure Reason for failure

The wrong problem is addressed

Wider influences are neglected

Analysis is carried out incorrectly

Quality problems

Project undertaken for wrong reason

Users change their minds (requirements drift)

External events change the environment

Implementation is not feasible

Productivity

problems

Poor project control

Object-Oriented Analysis and Design 2 Peraphon Sophatsathit

Prototyping

Pros

• Early demonstrations of system functionality help identify any misunderstandings

between developer and client

• Client requirements that have been missed are identified

• Difficulties in the interface can be identified

• The feasibility and usefulness of the system can be tested, even though, by its very

nature, the prototype is incomplete

Cons

• The client may perceive the prototype as part of the final system, may not

understand the effort that will be required to produce a working production system

and may expect delivery soon

• The prototype may divert attention from functional to solely interface issues

• Prototyping requires significant user involvement

• Managing the prototyping life cycle requires careful decision making

Incremental development

• The production of high-value to low-cost increments

• The delivery of usable increments of 1% to 5% of total project budget

• A limit to the duration of each cycle (e.g. one month)

• A measure of productivity in terms of delivered functionality or quality improvements

• An open-ended architecture that is a basis for further evolutionary development

Example of incremental development: Boehm’s Spiral Model

Object-Oriented Analysis and Design 3 Peraphon Sophatsathit

The Unified Development Process

• Inception—scope and purposes of the project

• Elaboration—requirements capture and determining the structure of the system

• Construction—build the software system

• Transition—product installation and rollout

 Requirements Analysis Design Implement test

XXX XX X X X Inception

XXXX XXX X X X

XXXX XXXX XX X X Elaboration

XXX XXX XXXX XX X

XX XXX XXXX XXXX XXX

X XX XXX XXXX XXX

X X XXX XXXX XXXX

Construction

 X XX XXX XXXX

 X X XX XX Transition

 X X XX

Managing IS Development

• User involvement

• Methodological approaches

• CASE (Computer-Aided Software Engineering)

Object: ID, state, behavior

UML diagrams
Class diagrams: describe the system in terms of objects, classes, attributes, operations,

and their associations.

Sequence diagrams: formalize the behavior of the system and visualize the communication

among objects.

Object-Oriented Analysis and Design 4 Peraphon Sophatsathit

Statechart diagrams: describe the behavior of an individual object as a number of states

and transitions between these states (A state represents a particular set of values for an

object)

Activity diagrams: describe a system in terms of activities, which are states that represent

the execution of a set of operations. The completion of these operations triggers a

transition to another activity.

Relationships: include, extend, generalization, specialization

Associations: role, multiplicity, aggregation

Requirements elicitation concepts

• Functional requirements

• Nonfunctional requirements

• Levels of descriptions

• Correctness, completeness, consistency, clarity, and realism

• Verifiability and traceability

• Greenfield engineering, reengineering, and interface engineering

Levels of description

1. work division: users and the system

2. application-specific system functions: system functions relate to application domain

3. work-specific system functions: supporting functions that are not directly related to

application domain, e.g., management, grouping, undo, …, which will be extended

during system design

4. dialog: interactions between users and UI

correctness: complete, consistence, unambiguous, realistic

verifiability: good UI, error free, respond in 1 sec in most cases

Greenfield: from scratch, triggered by a user’s need or a new market

Reengineering: redesign and reimplementation of an existing system triggered by

technology enablers or new information flow

Interface engineering: …

Object-Oriented Analysis and Design 5 Peraphon Sophatsathit

Requirement elicitation activities

• identify actors

• identify scenarios

• identify use cases

• refining use cases

• identify relationships among use cases

• identify participating objects

• identify nonfunctional requirements

scenarios: a narrative description of what people do and experience as they try to make

use of computer systems and applications, consist of as-is, visionary, evaluation, training
gathering requirements

• observation

• interview (and recorded interview)

• brainstorming

• prototyping

factors affecting requirements document Reviewing requirements
• size of the system

• need to interface to other systems

• target audience

• contractual arrangements for development

• stage in requirements gathering

• level of experience with the domain and the

technology

• cost incurred if the requirements are faulty

 • have benefits that outweigh the costs of development

• be important for the solution of the current problem

• be expressed using a clear and consistent notation

• be unambiguous

• be logically consistent

• lead to a system of sufficient quality

• be realistic with available resources

• be verifiable

• be uniquely identifiable

• not over-constrain the design of the system

• doc should be sufficiently complete, well-organized, clear

reasoning, and agreed to by all the stakeholders

relationship among actors and use cases

• communication relationships between actors and use cases

Object-Oriented Analysis and Design 6 Peraphon Sophatsathit

• extended relationships between use cases

• include relationships between use cases (facto out redundancies)

• extend (condition extension) VS include (condition initiator) relationships

use extends for exceptional, optional, or seldom occurring behavior

use include for behavior that is shared across two or more use cases

participating objects

• correspond to the main concepts in the application domain

• initial analysis objects

o terms that developers/users need to clarify in order to understand the use

cases

o recurring nouns in the use cases

o real world entities that the system needs to keep track of

o use cases

o data sources or sinks

o interface artifacts

o always use application domain terms

which use cases create this objects?

which actor can access this information?

which use cases modify and destroy this object?

which actor can initiate these use cases?

Is this object needed?

Nonfunctional requirements

• UI and human factors

• Documentation

• Hardware

• Performance characteristics

• Error handling and extreme conditions

• Quality issues

Object-Oriented Analysis and Design 7 Peraphon Sophatsathit

• System modifications

• Physical environment

• Security issues

• Resource issues
Managing requirement elicitation

• Elicit requirements from users (domain/knowledge)

• Negotiating a spec with clients (joint application design)

• Validating requirements (usability testing)

• Documenting requirements elicitation
Managing changing requirement

• Business process changes

• Technology changes

• Better understanding of the problem

• (beware of requirements creep)
Knowledge Analysis of Tasks (KAT)

• Identify objects and actions

• Identify procedures

• Identify goals and subgoals

• Identify typicality and importance

• Construct a model of a task

Analysis Model
consists of

(use case) (class) (statechart, sequence,…)

functional model object model dynamic model

• Entity, boundary, control objects

• Association multiplicity

• Qualified associations (technique for reducing multiplicity by using keys)

• Generalization

Object-Oriented Analysis and Design 8 Peraphon Sophatsathit

Identify entity objects

• Object proper noun

• Class common noun

• Operation verb (do)

• Inheritance verb (has, includes)

• Constraints verb (modal, must be)

• Attributes adjective

Modeling integration (diagram)

• Collaboration (communication) diagram

• Sequence

• Timing

• Interaction overview

Behavior: class, activity, statechart

Structure: class, object, component, composition structure, package, deployment

System Design

analysis results: (from author’s point of view) “WHAT”

• A set of nonfunctional requirements and constraints

• A use case model

• An object model

• A sequence diagram

Not “HOW”

• No internal structure of the system

• How the system should be realized

Aspects of software design

• Architecture

• Detailed: class, UI, algorithms

• Database

• Network/protocol

Object-Oriented Analysis and Design 9 Peraphon Sophatsathit

Design principles

1. divide and conquer

2. increase cohesion where possible

3. reduce coupling where possible

4. keep the level of abstraction as high as possible

5. increase reusability where possible

6. reuse existing designs and code where possible

7. design for flexibility

8. anticipate obsolescence

9. design for portability

10. design for testability

Products:

• A list of design goals (qualities of system that developers should optimize)

• Software architecture (system decomposition into subsystem responsibilities,

dependencies, mapping to hardware, control flow, access control, data storage)

Details:

1. hardware mapping

2. data management

3. access control

4. control flow

5. boundary condition

software architecture

• repository architecture

• model/view/controller

• client/server

• pipe and filter

design approaches: model driven, aspect-oriented

software architecture contents

• logical breakdown into subsystems

• dynamics of interaction among component at run-time

Object-Oriented Analysis and Design 10 Peraphon Sophatsathit

• data sharing

• components exist at run-time

system design activities

• identify design goals from nonfunctional requirements

• design initial subsystem decomposition

• map subsystem to processors and components

• select a control flow mechanism

• identify boundary conditions

design issues

• design goals: reliability, fault tolerance, security, modifiability

• performance criteria: response time, throughput, memory

• dependability criteria: robustness, reliability, availability, fault tolerance, security,

safety

• cost criteria: development, deployment, upgrade, maintenance, admin

• maintenance: extensibility, modifiability, adaptability, portability, readability,

traceability (to requirements)

• end user criteria: utility, usability

design goal trade-offs: space VS speed, delivery time VS (functionality, quality, staffing)

example

 files VS database

 when to choose a file?

• voluminous data (images)

• temp data (core)

• low information density (archival, history logs)

when to choose a database?

• Concurrent access

• Access at a fine level of details

• Multiple platforms

• Multiple applications over the same data

Object-Oriented Analysis and Design 11 Peraphon Sophatsathit

when to choose relational DB?

• Complex queries over attributes

• Large datasets

when to choose OODB?

• Extensive use of associations to retrieve data

• Medium-sized data set

• Irregular associations among objects

Example cases

1. multi-layer architectural patterns

2. client-server and other distributed architectural patterns

3. broker architectural patterns

4. transaction processing architectural patterns

5. pipe and filter architectural patterns

6. model-driven controller architectural patterns

7. service-oriented architectural patterns

8. message-oriented architectural patterns

characteristics of good design

-hierarchical organization

-modular

-abstraction (data & process)

-independent functional characteristic

-simple interface

-repeatable

issues concerning modular design:
objectives: architectural design

 module design

 debugging

 testing

 maintenance

Object-Oriented Analysis and Design 12 Peraphon Sophatsathit

 team programming

 reuse

modularity: -how big should a module be? (size)

 -how complex is this module? (complexity)

 -how can we minimize interactions between modules? (low coupling)
Modularization criteria

1. cohesion

• coincidental: brought together into a single component

• logical: similar functionality (output to screen/printer/file)

• temporal: activated at a single time (initialization)

• procedural: components make up a single control sequence

• communicational: operate on same input/output data

• sequential: output of one component becomes input of the next

• functional: each part is necessary for the execution of a single function

2. coupling

• content: one module modifies local data values or instructions in another

module (assembly programs)

• common: tightly coupled – shared variables, interchange control information

(global)

• control: tightly coupled – (flag)

• stamp: loosely coupled – within parameter list, sharing in the form of package

(struct)

• data: loosely coupled – (single data)

3. understandability

• cohesion

• naming

• documentation

• complexity

4. adaptability: (easy to make design change) high level of visibility, clear relationship

between different levels of design

Object-Oriented Analysis and Design 13 Peraphon Sophatsathit

Design Patterns
1. abstraction-occurrence pattern

Context: Often in a domain model you find a set of related objects (occurrences).

The members of such a set share common information, but also differ from each

other in important ways.

2. general hierarchy pattern

Context: Objects in a hierarchy can have one or more objects above them

(superiors), and one or more objects below them (subordinates). Some objects

cannot have any subordinates (not inheritance hierarchy)

3. player-role pattern

Context: A role is a particular set of properties associated with an object in a

particular context. An object may play different roles in different contexts.

4. singleton pattern

Context: It is very common to find classes for which only one instance should

exist (singleton)

5. observer pattern

Context: When an association is created between two classes, the code for the

classes becomes inseparable. If you want to reuse one class, then you also have to

reuse the other.

6. delegation pattern

Context: You are designing a method in a class. You realize that another class

has a method which provides the required service. Inheritance is not appropriate,

E.g. because the isa rule does not apply

7. adapter pattern

Context: You are building an inheritance hierarchy and want to incorporate it into

an existing class. The reused class is also often already part of its own inheritance

hierarchy.

8. façade pattern

Context: Often, an application contains several complex packages. A

programmer working with such packages has to manipulate many different classes

Object-Oriented Analysis and Design 14 Peraphon Sophatsathit

9. immutable pattern

Context: An immutable object is an object that has a state that never changes

after creation.

10. read-only interface pattern

Context: You sometimes want certain privileged classes to be able to modify

attributes of objects that are otherwise immutable.

11. proxy pattern

Context: Class diagrams show how aspects of the architecture of a system will

be implemented. Often, it is time-consuming and complicated to create instances

of a class (heavyweight classes). There is a time delay and a complex mechanism

involved in creating the object in memory

12. factory pattern

Context: A reusable framework needs to create objects as part of its work.

However, the class of the created objects will depend on the application.

Object design

1. service spec

2. component selection

3. restructuring

4. optimization

during analysis attrib, operation (together form object type) visibility (used by other

classes: pub, pro, pri)

contracts: invariants (predicate that is always true for all instances of a class),

preconditions, postconditions

object design (Object Constraint Language)

• spec -attrib and operations

-type signatures and visibility

-constraints

-exceptions

Object-Oriented Analysis and Design 15 Peraphon Sophatsathit

• component selection

-identify and adjust class libraries

-identify and adjust application frameworks

• restructuring

-realizing associations

-Increasing reuse

-removing implementation dependencies

• optimization

-revisiting access paths

-collapsing objects (tuning object into attrib)

-caching the result of expensive computations

-delaying expensive computations

Managing object design

• increase communication complexity

• consistency with prior decisions and document

Documenting object design

• restrictiveness

• generality

• clarity

• self-contained object design document (ODD) generated from model

• ODD as extension of the RAD

• ODD embedded into source code

Testing
failure, defect, error, WB/BB (all possible paths, all possible edges, all nodes), equivalent

partitioning, combinations of equivalence classes

program defects:

1. incorrect logical operations

2. loops

3. recursion

Object-Oriented Analysis and Design 16 Peraphon Sophatsathit

4. preconditions

5. null conditions

6. singleton/non-singleton conditions

7. off-by-one errors

8. operator precedence errors

9. use in appropriate standard algorithms

defect numerical algorithm

• not using enough bits or digits to store max values

• using insufficient places after decimal point or too few significant figures

• ordering operations poorly so that errors build up

• assuming a floating point value will be exactly equal to some other values

timing and coordination

• deadlock and livelock

• critical races

stress unusual conditions

• insufficient throughput or response time on minimal configurations

• defects in handling peak loads or mission resources

• inappropriate management of resources

• defects in the process of recovering from a scratch

document defects

• writing formal test cases and test plans

• strategies: TD, BU, Big-bang, Sandwich, test-fix-test, cycle/regression, alpha, beta,

acceptance

inspection: author, moderator, secretary, paraphrasers

peer review: quality assurance, root cause analysis, continuous improvement, post-mortem

analysis, process standards

Object-Oriented Analysis and Design 17 Peraphon Sophatsathit

Project management

• process models

1. waterfall

2. phased-release

3. spiral

4. evolutionary

5. concurrent engineering

6. rational unified process

7. agile

8. aspect-oriented software development

9. open source

• reengineering, cost estimation, team structures

members: architect, project manager, CM and build specialist, UI specialist, technology

specialist, HW and third-party, SW specialist, user documentation specialist (technical

writer), tester.

Techniques: GANTT, CPM, PERT, Earned value charts.

Object-Oriented Analysis and Design 18 Peraphon Sophatsathit

	Modularization criteria

