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ABSTRACT OF DISSERTATION

A THEORETICAL AND EXPERIMENTAL STUDY OF ADAPTIVE WOOD

COMPOSITES

A piezoelectric material is introduced to use with a wood element and produce
an adaptive wood composite in a form of multilayered laminated plate. Steady-state
and transient behaviors of the laminate are investigated under the coupled effects of
mechanical, electrical, thermal and moisture fields. To analyze such a structure, a
mathematical model in three dimensions, namely a discrete-layer model, is developed,
treating the displacements, electric potential, temperature, and moisture concentra-
tion as primary unknowns. One-dimensional Lagrange linear interpolation functions
are employed for the variation in the through-thickness direction. The variation in
the two-dimensional in-plane domains is approximated by two approaches: analytical
and finite element functions.

Numerical examples verify the accuracy of the discrete-layer model by comparing
with available exact solutions as well as demonstrate the behavior of adaptive wood
composites subject to various types of excitations. The capability to actuate the
composites and counter-balance unfavorable deformation by applying an electric field
to the piezoelectric layer is then discussed. Also, representative experiments are
conducted on adaptive wood composites in order to examine the degree of actuation
induced by the piezoelectric phenomena and confirm the validity of the discrete-layer

model.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since being discovered in the late nineteenth century, piezoelectricity has fascinated
those who have encountered it. The direct piezoelectric effect (the generation of
an electric field in response to applied stress) provides sensing capability, whereas
the converse piezoelectric effect (an induced strain in response to applied electric
field) provides actuation capability. Piezoelectric materials have been used to develop
electromechanical devices such as ultrasonic generators, sensors, and actuators. In
structural applications, piezoelectric materials, when attached on or embedded into
structural systems as a composite, provide the capability of self-monitoring and self-
controlling. The terms smart, intelligent or adaptive are often used to denote such
structures. Studies of adaptive composites have been explored in structures involving
many types of material: steel, aluminum, graphite-epoxy, glass-epoxy, and so on.
In this study, the effects of piezoelectric layers on wood composite structures are
investigated.

Wood is a highly nonhomogeneous, anisotropic, and porous material. It is one of
the materials in which temperature and moisture can have strong influence especially
concerning shape change. These effects are often not small, and significant errors
in analysis of these structures can occur if they are ignored. When adaptive wood

composite structures, composed of wood and piezoelectric materials, are exposed to



changes in environmental conditions, their structural behavior is under the effects of
the mechanical, electrical, thermal, and moisture fields. A solid under the coupled
effects of these four fields is denoted as a hygrothermopiezoelectric medium.

In this study, adaptive wood composite structures are investigated through the
use of piezoelectric elements integrated with wood layers in the form of laminated
plates. Adaptive elements have the advantage of changing their physical characteris-
tics (primarily dimensions) under a change in environment. Piezoelectric materials al-
low composites to achieve the capability of self-monitoring and actuation. Therefore,
with the piezoelectric elements, the structural response caused by external excitations

(e.g., temperature, moisture, and load) can be sensed, countered, or supplemented.

1.2 Objectives

The overall purpose of this study is to develop a mathematical model for a hygrother-
mopiezoelectric laminated plate, apply this model to representative adaptive wood
composites to determine the basic behavior and what levels of actuation strain can
be imposed, and to construct several prototypical adaptive composites to assess their
limitations and the differences between theory and experiment. These objectives are

next discussed in more detail.

1. Develop a mathematical model for a hygrothermopiezoelectric laminated plate.

Adaptive wood composites can be influenced by mechanical, electrical, ther-
mal, and moisture fields, conditions for a material describable as a hygrother-
mopiezoelectric medium. The coupled effects of these four fields for laminated
media have never been studied before; therefore, it is necessary to create a
new mathematical model for such a structure. A discrete-layer plate theory

and computational model in three dimensions will be developed for analyzing



the steady-state and transient behavior of hygrothermopiezoelectric laminated
plates. This model will be capable of solving the equations of motion and
Maxwell’s equation for electrostatics along with the equations of heat conduc-
tion and moisture diffusion simultaneously in the composite. The interrelations
(or coupled effects) of the mechanical, electrical, thermal, and moisture fields
within the linear range of the material properties will also be taken into account.
By employing the discrete-layer theory, this model can represent an accurate
variation through the thickness of the laminate for all the primary unknowns
taken as displacement, electric potential, temperature, and moisture concen-
tration. This model will also specifically account for the dissimilar material
properties between the different layers. Excitation to the composites can be
specified as imposed traction, displacement, normal electric displacement, elec-
tric potential, normal heat flux, temperature, normal moisture flux, or moisture
concentration on the bounding surfaces. Then, the accuracy of the discrete-layer

model will be verified by comparing with available exact solutions.

. Analyze representative examples of adaptive wood composites to describe the

basic behavior.

The developed discrete-layer model will be applied to analyze representative
problems of adaptive wood composite plates. Steady-state and transient re-
sponses of the laminates will be investigated subject to the influences of applied
load, applied electric field, applied temperature, and applied moisture concen-
tration. In the steady-state analyses, the levels of deformation in the adaptive
wood composites caused by the external excitations (applied load, temperature,
and moisture) will be calculated. Also, the degree of actuation to the laminates

produced by appling the electric field to the piezoelectric layer will be evaluated.



Such information is critical in the application of these solids, as it gives an idea

of ranges of operating behavior for these materials.

In the transient analyses, the time required for the effects of applied temper-
ature and moisture to dissipate or propagate in the adaptive wood composites
along with the variations of these fields in the composites at various times will

be examined.

3. Construct physical samples of adaptive wood composites and measure levels of

adaptive actuation.

Representative samples of adaptive wood composites will be constructed
and studied experimentally to determine the degree of actuation that can be
obtained by including the piezoelectric elements in the wood systems. The
composite laminates which are composed of layers of wood and piezoelectric
materials will be tested for the responses (e.g., strains and/or displacements)
subject to the applied electric fields on the piezoelectric layer. Then, from these
experimental data, the agreement between the theory and experiment can be

determined and also the limits in their construction can be assessed.
1.3 Structure of Dissertation

Past researches and studies concerning the behavior of solids under some coupled ef-
fects among the mechanical, electrical, temperature, and moisture fields are outlined
in Chapter 2, Literature Review, along with wood composite and multilayered lami-
nated plate structures. Mathematical formulation for the weak form of the governing
equations and a general analytical model for a homogeneous anisotropic solid sub-
ject to elastic, electric, thermal, and moisture fields simultaneously are developed in

Chapter 3, Theory. Next, the proposed theoretical plate model (discrete-layer model)



for analyzing multilayered hygrothermopiezoelectric laminated plates are presented
along with several numerical examples are demonstrated in Chapter 4. Chapter 5
presents the experimental studies of the adaptive wood composite plates. These re-
sults are also compared with those predicted by the discrete-layer model. Finally, the

conclusions and some recommendation for future studies are discussed in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

The study of adaptive wood composites involves the knowledges of the following four
fields on a deformable body: elastic, electric, temperature, and moisture fields. Al-
though the coupled effects of all of these fields together have not previously been
studied simultaneously, there exists some reports on the interrelations among these
fields. Piezoelectricity is a study of the interaction between elastic and electric fields.
When the effect of temperature is included, the theory is called thermopiezoelectric-
ity. The theory of hygrothermoelasticity describes the behavior of solids under the
influences of temperature and moisture fields.

The adaptive wood composite structures considered in this study are in the form
of multilayered laminated plates. Several techniques have been developed for ana-
lyzing such laminated structures. The following sections will review the historical
background of the research and studies involving the theories of piezoelectricity, ther-
mopiezoelectricity, and hygrothermoelasticity along with the wood composite struc-

tures and the analysis methods for multilayered composite plates, repectively.
2.1 Piezoelectricity and Thermopiezoelectricity

The history of piezoelectricity started with the paper published in 1880 by Pierre
and Jacques Curie [17]. The paper reported their experimental measurement of the

electrical charges on the surface of the dielectric crystals when subjected to mechan-



ical stress. This phenomenon was named piezoelectricity. In 1881, Lippmann pre-
dicted the converse piezoelectric effect (i.e., the stress in response to applied electric
field) as deduced mathematically from fundamental thermodynamic principles. The
mathematical foundations and governing equations for piezoelectricity as obtained by
applying the knowledge of solid mechanics and electricity appeared in the work by
Voight [89] which later became accepted as a standard reference. The other classical
works of Cady [8] and Mason [43] about piezoelectricity illustrated the physical prop-
erties of crystals and practical applications. One of the most comprehensive study
of piezoelectric plates was the work by Tiersten [81]. The governing equations for a
linear piezoelectric media were developed and applied to various wave and vibration
problems.

The study of piezoelectricity has been extended to incorporate the effect of tem-
perature in thermopiezoelectricity. The governing equations for a linear thermopiezo-
electric medium in three dimensions, considering the coupled effects of elastic, elec-
tric, and thermal fields, were given by Mindlin [45] and appeared also in the work by
Nowacki [49]. Also, the equations for high frequency vibrations of crystal plates in
two dimensions has been derived [46]. Altay and Dokmeci [1] later expressed these
governing equations in a variational form as the Euler-Lagrange equations for the
discontinuous thermopiezoelectric fields.

Recently, a number of research works have been carried out in order to study the
thermopiezoelectric effects on the behavior of composite plate and shell structures.
Tauchert [79] examined the static behavior of a laminated piezothermoelastic plate
subject to the thermal and electric fields using the classical lamination theory. Tang
and Xu [78] extended the work by Tauchert to analyze the dynamic problems. The

use of the first-order shear deformation theory to solve the problems of thermopiezo-



electric composite plates was discussed by Jonnalagadda et al. [35], and by Kapuria
et al. [36]. An analytical solution in three dimensions for the static behavior of
multilayered thermopiezoelectric composite plates was presented by Xu et al. [92].
Furthermore, the problems of thermopiezoelectric cylindrical shells have been studied
by Chen and Shen [10], and by Kapuria et al. [37, 38]. The application of thermopiezo-
electricity to structural control problems has been a subject of considerable interest
[53, 77, 84, 86, 87]. The nonlinear behavior of laminated piezothermoelastic plates

due to both material and geometrical nonlinearity has also been discussed [85, 88].
2.2 Hygrothermoelasticity

Hygrothermoelasticity is a study of the effects of temperature and moisture to the
elasticity of a solid. Temperature and moisture can induce significant strains which
are of concern to many structural applications. These environmental effects on the
structural behavior have received remarkable amount of attention, especially for mod-
ern composite materials. The effects of the environmentally-induced strains on the
bending, buckling, and vibrations of layered composite plates have been presented
by Whitney and Ashton [90], and later also by Sai Ram and Sinha [61, 62, 63, 64].
Bouadi and Sun studied these hygrothermal effects on stress field [5] and on the
structural stiffness and structural damping of laminated composites [6]. A vibration
problem of a laminated plate under unsteady temperature and unsteady moisture en-
vironment was presented by Eslami and Maerz [21]. Besides the studies in laminated
plate structures, Doxsee [19] and Doxsee and Springer [20] have developed a theory
for describing the hygrothermal behavior of laminated composite shells. However, the
effects of temperature and moisture on the structures were considered independently,
without any coupled effects.

In some porous composite materials, the coupling effects of temperature and mois-



ture fields are significant and cannot be neglected [9]. Shen and Springer [68] studied
the diffusion of moisture in composite materials. Shirrell [69] and Springer [76] inves-
tigated the combined effects of temperature and moisture fields in some composite
materials experimentally. A theory of diffusion including the interaction between
temperature and moisture was described by Hartranft et al. [25]. The theory was
applied to the problem of heat and moisture diffusion into a thick plate from its sur-
faces in the paper by Hartranft and Sih [24]. Sih et al. [72] investigated the transient
stresses in composites under the coupled effects of heat and moisture.

A very complete mathematical theory of hygrothermoelasticity was shown in the
work by Sih et al. [71]. The coupled and uncoupled effects of temperature, moisture,
and elasticity were shown. Also, the finite element technique was applied to solve
problems of hygrothermoelasticity. Later, a numerical procedure obtained from com-
bining the finite element method, Laplace, and inverse Laplace transform techniques
was employed to analyze problems of coupled heat and moisture by Chen and Hwang

[11] and Chen et al. [12].
2.3 Wood Composite Structures

Wood materials are widely used in structural applications in the form of composite
structural elements. The studies of wood composite structures have been discussed
by many authors, including in the text books by Bodig and Jayne [4], Breyer [7], and
the references cited therein. The properties and the utilization of wood have also been
demonstrated by Haygreen and Bowyer [26], Tsoumis [83], and Desch and Dinwoodie
[18]. However, only purely elastic effects have been the major focus in most studies
involving wood. Hygroscopic deformation has been separately considered [40, 91],
and other studies regarding wood-cement composites [48], general wood composites

[67], and dynamic panel measurements [60, 66] have all been based on elements of



laminated wood mechanics. The problems of wood drying have received a considerable
amount of attention from many researchers. The effects of moisture and temperature
in wood have been investigated in the studies by Choong et al. [13], Cloutier and
Fortin [15], Cloutier et al. [16], Gui et al. [23], Irudayaraj et al. [33], McMillen [44],
Morgan et al. [47], Plumb et al. [52], Siau [70], Simpson [73], Skaar [74], Thomas et
al. [80], and Tremblay et al. [82].

It is possible for piezoelectric materials, which have the capability of both sensing
and actuation, to be integrated into wood composites. This results in what can
be termed an adaptive wood composite structure. Wood has also been reported
to exhibit some piezoelectric effects [22, 39]. When adaptive wood composites are
exposed to changes in environment, temperature and moisture can have significant
effects on the structural behavior and need to be taken into account along with the
mechanical and electrical effects. In this research, the effects from these four fields
to the composites are considered simultaneously. The discussion in more details are

shown in the following chapters.

2.4 Analyses of Laminated Plates

Many theories have been developed for analyzing multilayered laminated composite
plates. Equivalent-single-layer (ESL) theories in two-dimensions, such as classical
lamination theory (CLT) first- and higher-order shear deformation theories, simplify
the analysis by making kinematic assumptions through the thickness of the laminate
[32, 34, 59]. In the CLT, it is assumed that the laminated plates are thin, and the
effects of through-thickness shear strain and the transverse normal strain are ignored.
Hence, some errors are inevitable in the CLT solutions. The use of first- and higher-
order shear deformation theories can help to obtain better solutions. However, the

results from these ESL theories yield very good approximations only when applying to

10



relatively thin plate problems. More accurate results, when needed, can be obtained
by employing 3-D theories. Recently, many 3-D theories, both exact and approximate,
have been developed to solve the laminated plate problems.

An exact solution in three-dimensions for a simply-supported rectangular lami-
nated elastic plate was derived by Pagano [50]. Years later, the exact solutions were
found for the laminated plates under the effects of piezoelectricity by Ray et al. [54],
Heyliger [27, 28], and Heyliger and Saravanos [30], and thermopiezoelectricity by Xu et
al. [92]. Besides these exact solutions, approximate solutions in three-dimensions have
also been developed using a layerwise theory by discretizing the through-thickness di-
mension into several sublayers. Pauley and Dong [51] first introduced this concept
and applied it to analyze the free vibration of infinite laminated piezoelectric plates.
A similar approach also appeared in the papers by Reddy [56, 57] for elastic lam-
inates. The limitations of those theories which model the laminated plate as an
equivalent-single-layer plate (ESL theories) were overcome since the layerwise theory
takes into account the variation in the through-thickness behavior of the laminates
when material properties among the layers are different. Later, discrete-layer mod-
els using the layerwise theory were developed for analyzing laminated piezoelectric
plates by Heyliger et al. [29] and Saravanos et al. [65]. Furthermore, Lee and Sar-
avanos [41, 42] extended the use of discrete-layer technique for solving the problems
of laminated piezoelectric composites to incorporate the effects of temperature. The
coupling of mechanical, electrical, and thermal effects was considered for layered com-
posite beams and plates. However, none of these studies has considered the combined
effects of elasticity, moisture, temperature, and electric field.

Adaptive wood composites, composed of wood and piezoelectric layers, are such

structural elements that all the mechanical, electrical, temperature, and moisture

11



fields can have strong influences on their structural behavior. It is an objective of this
research to study these effects on the composite structures using a new computational
model. A discrete-layer technique is employed to obtain an approximate solution to

the laminated plate problems.
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CHAPTER 3

THEORY

3.1 Problem Statement

This research addresses the behavior of adaptive wood composites. Structures of
interest are in the form of multilayered laminated plates as shown in Figure 3.1.
Laminated plates composed of layers of wood, graphite-epoxy, and/or piezoelectric
materials (e.g., PZT and PVDF) are discussed. The layers of the laminated plates
are assumed perfectly bonded together with an adhesive of very thin and negligible
thickness. In such structures, elastic, electric, thermal, and moisture fields can have
strong influence on the structural behavior. The effects of these fields when all are
applied simultaneously, both steady-state and transient, on the composites are con-
sidered. Since the coupled effects of elastic, electric, temperature, and moisture fields
have never been studied before, here we combine the theory of thermopiezoelectricity
and hygrothermoelasticity together. A theory of hygrothermopiezoelectricity is in-
troduced with the assumptions that all materials have linear properties, that is, the
changes of strain, electric field, temperature, and moisture in the solid are considered
to be within their individual linear range. Also, the residual effect of permanent de-
formation is ignored. (That is, in the volume of solid at the reference temperature Tj
and the reference moisture concentration Hy, all the strain components S;; = 0 when
all the electric field components E; = 0.)

The domains of investigation are treated as z- and y-coordinates in the plane of

13



Figure 3.1: Geometry of the laminated composite plate.

the laminates, and z-coordinate in the direction through the thickness. The descrip-
tions used in this document are based on the material coordinates where the spatial
variables z, y, and z are measured in the undeformed configuration. Indicial notation
is employed in writting equations with spatial variables (i.e., z1 = x, x5 =y, 23 = 2,
a; = ag, ay = ay, and a3 = a,). The comma notation represents the derivatives with
respect to the spatial variables (i.e., a; = da/0z;, and a;; = 0%a/dx;0z;). Also, the
symbols dot "and double dots over a variable represent its first and second derivatives

with respect to time (i.e., @ = da/0t, and a = 0%a/0t?).
3.2 Governing Equations

A theory of hygrothermopiezoelectricity in this research is based on work presented by
Mindlin [46], Nowacki [49], Reddy [59], and Sih et al. [71]. The governing equations
in three-dimensions for a linear anisotropic hygrothermopiezoelectric medium defined
pointwise in the solid volume €2 at any time ¢ > 0 can be shown in two categories:
conservation equations and constitutive relations. Then, the boundary and initial
conditions necessary for solving the problems are discussed. All variables introduced

in this section are defined in the List of Symbols.

14



3.2.1 Conservation Equations

The equations of motion in the absence of body forces are

Tijj = Pl (3.1)

The Maxwell’s equation for electrostatics (conservation of charge) in the absence of
free charge is

D;; =0 (3.2)

)

The heat conduction equation in the absence of heat source/sink is

Dii = —Ton (3-3)

The moisture diffusion equation (conservation of mass of moisture) in the absence of

moisture source/sink is
Qi = =7 (3.4)
Equations (3.1) to (3.4) are in general forms and will be used for transient prob-

lems. For steady-state problems, these equations turn out to be the following equi-

librium equations:

oij;j = 0
Dii = 0
pii = 0
¢G; = 0

where 7,7 = 1,2, 3.
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3.2.2 Constitutive Relations

The stress tensor, electric displacement vector, and entropy density constitutive rela-

tions are assumed to be linear and have the following relations:

oij = CijrSi — enjbr — Nigh — pigy (3.5)

D; = eySu+enE + 1+ xiy (3.6)
pey

n = MaSwk+riE+ ?9 — dyy (3.7)
0

The strain-displacement relations for infinitesimal deformation are given by

1
Sij = §(Ui,j + ;) (3.8)

The relationship between the electric field vector and electrostatic potential is defined
as

Ei=—¢, (3.9)

The heat flux and moisture flux vectors are assumed to be dependent on the gradients

of strain tensor, electric field, temperature, and moisture as

pi = FigaSug — ki B — 05— K557 (3.10)
G = C%dskz,j - ngEz,j - CE}G,J- - 57,]- (3.11)

where ¢, 7, k, 1 = 1,2, 3.

Here the electric-moisture coefficients (x;) in equation (3.6) are assumed for the
moisture field in a similar manner as the temperature field. The equations (3.10) and
(3.11) for the heat flux and moisture flux vectors are deduced from Sih et al. [71]
p. 147 and the constitutive equation (3.5). Also, to help visualize all the coupling
parameters among the mechanical, electrical, temperature, and moisture fields, see

the diagram in Figure 3.2.
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FROM

MECH. ELEC. TEMP. MOIST.
TO
MECH. P, Cijki €lij Aij Hij
ELEC. €ikl €il Ty Xi
TEMP. (ToAkt), Hf\;{kz (Tor), HiEjz (pcy), /‘fiTj (Tody), Hg
M E T H
MOIST. ijkl ijl ij ij

in the following forms:

u; = U;(z,y, 2,t) on

17

3.2.3 Boundary and Initial Conditions

the solid volume €2 and are of initial-boundary-value problem type.

Uy
Ty

Figure 3.2: Diagram showing the interrelation parameters among the mechanical,
electrical, temperature, and moisture fields.

The governing equations, as shown in the previous section, are stated pointwise in

boundary and initial conditions must be specified so that there exists a unique solution
to the system. The boundary conditions for the mechanical, electrical, thermal, and

moisture fields are specified on the bounding surface I of the solid body at time ¢ > 0

Appropriate



oijn; = ti(v,y,2,t) on Iy (3.13)

o= qAﬁ(x, y,2,t) on r? (3.14)
Din; = Dy(x,y,2,t) on I} (3.15)
0 =0(x,y,21t) on I? (3.16)

pini = pu(z,y, 2,t) on T} (3.17)
v=4(z,y,2,t) on I (3.18)

qin; = gn(x,y,2,t) on T3 (3.19)

where the overhat symbol " above a variable denotes a specified value or function. I'{
and I'§ are parts of the boundary for variable a, and they constitute the entire solid
boundary I' (i.e., 'Y + 'S = I'). The boundary conditions specified on I'; are the
essential boundary conditions, which are the Dirichlet conditions. Those specified
on ['y are the natural boundary conditions, which are the Neumann conditions. No
mixed boundary conditions are considered in this study.

Steady-state problems are special cases in which only the specified boundary con-
ditions are needed. In general or for the case of transient analysis, initial conditions
are also needed to be specified pointwise in the entire solid body in order for a unique
solution to exist. The initial conditions for the mechanical, electrical, thermal, and

moisture fields are specified in the solid volume 2 at time ¢t = 0 as follows:

u = ul(z,y,2) (3.20)
w = uy(z,y,2) (3.21)
¢ = ¢(z.y,2) (3.22)
0 = 0°x,y,2) (3.23)
v = P y,2) (3.24)
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3.3 Material Symmetry

Here we note that the stress and strain tensors are always symmetric [75]. Along with

the symmetry of material properties, the following properties of symmetry also hold:
Oij = Oji
Skl = Stk

Cijii = Cijik = Cjiitr = Chij

€ikl = €ilk
€il = €15

)\ij == )\ji
Hij = Hji

Using the above properties of symmetry, the unknowns for stress and strain com-
ponents can be reduced from nine to six unknowns. Then, we can redefine the stress

and strain vectors using the contracted notation as follows:

( 01 W 011 W
02 022
o, = 03 _ 033
04 023
05 013
( 06 ) L 012 )
Si ) (S )
Sy So2
Sq _ Sy _ S33
54 2523
S 2513
[ S6 ) [ 2512 )

Similarly, the indices of the coefficients can be transformed using the following

rules:

11—1,22-52,33—53,23—>4,13—>5, 126
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Then, the constitutive relations may be rewritten as:
op = CpgSq— ek — A — pipy
Di = €iqu + EilEl + Tig + XiY
c
n = ANSq+nE + %9 — dyy
0

where p,g = 1,...,6 and 7,/ = 1,...,3. In the above equations, we may write the
elastic, piezoelectric, dielectric, stress-temperature, stress-moisture, pyroelectric, and

electric-moisture coefficients in matrix forms as:

[ Cll C112 013 Cl4 C115 C116 1

022 023 024 C125 C126

C - 033 034 C135 C136
rq

sym. Css Chss

€11 €12 €13 €14 €15 €16
€ip — €21 €22 €23 €24 €35 €26
€31 €32 €33 €34 €35 €36

€11 €12 €13
€1 = €22 €23

20



In general, there are 21 independent elastic constants, 18 independent piezoelec-
tric constants, 6 independent dielectric constants, 6 independent stress-temperature
constants, 6 independent stress-moisture constants, 3 independent pyroelectric con-
stants, and 3 independent electric-moisture constants. In reality, most materials
exhibit symmetric properties in some directions in such a way that the number of
material constants can be reduced to a fewer numbers. However, for the generality
of the numerical calculation, the computer programs developed for this research will

have the capability to take into account all of these material constants.
3.4 Transformation of Tensors

In the laminated plate structures composed of layers of anisotropic materials, the
lamina are rarely aligned in the same angle. We usually construct the composites with
their lamina in different angles in order to achieve the composite’s best performance.
For an anisotropic material with symmetric properties in some directions, the material
properties are often specified by a local coordinate system corresponding to their
directions of symmetry. The material properties in the coordinate system other than
their local coordinates (see Figure 3.3) can be computed using the transformation

rules for tensors. These rules for the tensors of order one to order four are as follows:

L= ApnTm for order one
€ = QimOnj€mn for order two
€kl =  QimOkpQigEmpq for order three
ikt = QimOinOrpigCrnpg for order four

21



Figure 3.3: Transformation of coordinates

where a;; are the cosines of the angles between = and z; directions, and for such case

can be written in matrix form as

cosf) —sinf O
a;j = | sind cosf 0
0 0 1

3.5 Mathematical Formulation

The problems of adaptive composite plates involve the solving of the governing equa-
tions (3.1) to (3.4) subject to the boundary and initial conditions (3.12) to (3.19). Our
intent is not to solve for an exact solution in a pointwise sense (or closed form), but
instead to seek for an approximate solution (or numerical solution) to these governing
equations. In doing so, the governing equations are needed to be first formulated in
a weak form. Then, any solution which satisfies the weak form will be an approxi-
mate solution to the actual problem. Different types of approximate solutions will be
sought here in this study, and they will be shown later in the next section and the

next chapter.
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3.5.1 Weak Formulation

In order to seek an approximate solution to the system of partial differential equations
as shown ealier, a weak formulation of these equations is needed. First we rewrite the
constitutive equations (3.5) to (3.11) by substituting the strain-displacement relation
and the relation between electrostatic field and electrostatic potential. Along with
the properties of material symmetry, the constitutive equations for the stress tensor,

the electric displacement vector, and the entropy density become

oij = Cijpitkg + euj®y — Nijt — pijy (3.25)

D; = eigur; — eqpy + il + iy (3.26)
pey

no= Ak — 1o+ ?9 — dyy (3.27)
0

Similarly, the heat flux and the moisture flux may be rewritten as

Pi = Kigwteg + ki — kpb — KD (3.28)
G = (e +Choa — G5 — v (3.29)

Next, the weak form of the governing equations (3.1) to (3.4) for a homogeneous

medium can be formulated using the method of weighted residuals as follows:
0= /Q[fsui(aij,j — piiz) + 8¢ Di i + 00(pii + Ton) + 0v(qi; + 7)]dQ (3.30)
where du;, d¢, 66, and oy are arbitrary and independent weight functions. After
integrating this equation by parts, we get
/Q(Mz'm'lz‘ — 00Tyn — 67y)dQ + /Q(5Ui,j0z'j +0¢,;D; + 60 ;p; + 67,¢;)dS2
= [ [Gui05),5 + (66D + (60p1) + (9745) 12 (3.31)
Now, after we apply the divergence theorem to the right side of the equation, the

equation becomes
/Q((Su,pu, — (59T077 — (S’Y’Y)dQ + /Q((Sui,jaij + 5¢,ZDZ + 59,ipi + (5’)/,1(]1)(19
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= f}‘((SU/iUijnj + d¢Din; + 60p;n; + dygin;)dl (3.32)

The terms on the boundary may be rewritten using Cauchy’s formula for the stress
tensor (¢; = o;jn;), and by substituting the normal electric displacement (D,, = D;n;),
normal heat flux (p, = p;n;), and normal moisture flux (g, = ¢;n;). The equation

then becomes

/Q(6uz-pilz- — 00Ty — 6v7)dQ + /Q((SU/i’jO—Z'j + 8¢ ,D; + 60 ;p; + §v,q;)dS2

— f (Sust; + 6Dy + 00py + 6vq,)dl (3.33)
T

Now, after substituting the constitutive equations (3.25) to (3.29) for o;;, D;, 0, p;

and ¢;, we reach the final weak form as

C'u A . .
pT 0 — diy) — 6v)dS
0

+ /Q[5Ui,j(cijkzuk,z +eijd — it — Mz‘ﬂ)

/Q[éuipili — 80Ty (Artigy — 1y +

+00 i (eiriun,y — €ady + 10 + Xi7)
+597i(m?fkluk,lj + 551¢,lj — ng,j — Iig’yyj)
+07,(Cimtuns + Cdas — G505 — G 7.4)1dQ

- 7( (Sugt; + 66D, + 60p, + 67g,)dT (3.34)
r

If we let u; = u, up = v, ug = w, t, =y, to = t,, and t3 = t,, then the weak form

equation may be rewritten as

/Q[éu,mi + dvpi + Jwpw]dS2
+ /SZ[59T0(—)\11U,1 — gy — Aty + 7yhy — %9 + diy) — 6v7]dQ2
+ /Q[(Su,j(ouuu,z + Cjvy + Crjmwy + epjdg — A — )

+0v j(Cojriuy + Cojorvy + Cojyiw ; + eppjd — Aot — pio;y)

+ow ;(Csjyuy + Csjovy + Csjzwy + €350, — A3 — pis7y)

24



+0pi(€mu + evy + eigw — €qdy + 10 + XiY)
+507i(/<o£‘fuuylj + H?J{IZZUJ]' + nf\f?,lw,lj + /ﬁ}iEﬂ(b,lj — /iz;e’j — /fgv,j)
+07,i (G + Gl + Ciwag + Gy — G505 — G419

= ﬁ(éutw + ovt,, + dwt, + 6¢D,, + 60p,, + §vq,,)dl’ (3.35)

or in matrix form as

/(6upil + dvpt + dwpw)dQL
Q

+ /9(5'9T0(*{/\m Yrva) — (Vo) - (YT {Va} + {r}T{Vé} — p;; 0+ diy) — 677)dQ

+ /Q({WU}T([C”]{VU} +[CTV{Vo} + [CT* Y Vw} + [*]T{V} — (A"} — {1"}y)
HVeu} T ([CY*{Vu} + [CY{V} + [CV{Vw} + [e*]{Ve} — {A}0 — {u¥}7)
HVow}T ([C**[{Vu} + [C*V{Vo} + [C*{Vw} + [e*]T{Ve} — {X*}0 — {i*}7)
Vo ([ ]{Vu} + ["]{V} + [ {Vw} — []{Ve} + {r}0 + {x}7)

HVoYT (KM IV Vu} + [V VY + [V VW) + [KP{V V) — T V0} — [K7T{V7})

Ve (M"Y Vu} + MYV VUL + [PV VW) + [PV Ve — [CT{VO} — [CF1{V7}))dQ

= 7{(5utm + dvty + 6wt + §¢Dy + 60pp + §vgn )dD (3.36)
r
where
g
{Va} =4 ay
a
( Qg )
Qyy
a
{(VVa} =4 % )
20y,
20 4,
204y )

and the coefficient matrices or vectors are

Cll C’16 C’15
ijlx = C1j1l = 016 C’66 C’56
015 C56 C55
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Ty __ _
le = Clj2l =
Trz __ —
gl — CljSl -
yTr __ _
le = CZjll =
vy __ _
Ojl — C2j2l -
yz __
Ojl — C2j3l -
zZT
il = 03]‘1[ =
2y __ _
le = C3j2l =
ZZ __ —
= C3j3l =
€11
Tr __ J—
€1 — €l — | €21
| €31
€16
vo_
€1 = €21 = | €26
L €36
€15
z __ _
€1 = €zl = | €25
L €35
A1
xr
A=A =1 A
As
A6
y
A= =14 A
A4

26

— (Y
ly

Tz

ly

ly



¢

)

M
= Ciju

As
A4
A3
M1
He
M5
He
M2
4
Hs
M
M3
r Mz Mz Mz
e
xr xr xr
xr xr xr
L k317 K32~ Kss
My My My
H}\} K}VZI Ii}\;[
y Y Y
Ko1” Koo~ Kog
My My My
L K31~ K3~ Kag
r Mz Mz Mz
V4 V4 V4
Ko1™ Ko™  Kag
I R
E E E E
Ko1 Koy Koz Koy
E E E E
K31 K3a Rzz Ry
T T 7
Kio Kis
T T
Koo Kas
T T
K3g “33J
H L H T
Kio  Kis
H L H
K3y K33 |
r ~Mx Mx Mx
11 12 13
Mz Mx Mx
21 22 23
Mz Mx Mx
| O31 32 33
r ~My My My
11 12 13
My My My
21 22 23
My My My
L G Gae 33
r ~Mz Mz Mz
11 12 13
Mz Mz Mz
21 22 23
Mz Mz Mz
31 32 33
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Cii

C{i:@-?z: Cﬁ
Gt

Ch Gl

Gi=1 G G
G G

Cii Cis

G = | G
G Gaz

E E E E E
R
Zauan
<32 C33 <34 <35 <36
%
o
Ca3
&
Ca3

G35

|

Also, since du, dv, dw, d¢, 66, and v are arbitrary and independent, we can

rewrite the final weak statement in component form as

/Q Supiid) + /Q (VoulT([C™){Vu} + [C™){Vo) + [0%]{Vuw)

(3.37)

eIV = {N}0 = {u}1)d = § dut,dr

/Q SupidS + /Q (VYT ([C¥]{Vu} + [CW]{Vo} + [C¥]{Vw)

H{VO} = (N0 — {17} d2 = § dvt,dr

/Q SwpindS + /Q (Vo ([C=){Vu} + [C{Vv} + [C*]{Vw)

T IV} = {0 = {u*})d2 = § dwt.dT
| AV36} (K Vu} + (] Vo) + [ Vur}

[V} + {}0 + {x}7)d2 = § 36D,
[ SOy (N Wik = (VTV} = (YT Vi)

T (V) — %9‘ + dyy)dQ

+ /Q (V0VT ([M1{VVu) + [KM{VVe) + [M{VVw)

(3.38)

(3.39)

(3.40)

PV — KTV} — [kT]{V~})dQ = 7? 50p.dl (3.41)

[ (=07 + [ (VT (VYU + (VT + [V V)

HCPHTV6) — [CTV0) ~ [C"{(V))d2 = § 57g,dr

(3.42)

Now, we can seek an approximate solution to the system of partial differential

equations of the hygrothermopiezoelectric medium. Any solution that satifies these
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final weak form equations is an approximate solution. In the next section, an ana-
lytical model which is the most general form of these solutions is demonstrated first.
Then, the more specific solution (or model) suitable for laminated plate problems will

be developed further in the next chapter.

3.5.2 Analytical Model

The weak form equations (3.37) to (3.42) can yield approximate solutions to the ac-
tual problems. In fact, there can be an infinite number of such solutions depending
on the approximation functions (or shape functions) used. Here we seek the solution
to the weak form in the most general form namely an analytical model for a homoge-
neous medium in three dimensions. Essential (or primary) variables to be sought are
displacement components (u, v, and w), electric potential (¢), temperature (¢), and
moisture concentration (). We note that once these essential variables are solved,
all the non-essential (or secondary) variables can be obtained from the constitutive
relations (3.5) to (3.11).

For an analytical model, the approximations of variables u, v, w, ¢, #, and v, and

the weight functions du, dv, dw, d¢, 60, and dy can be assumed in the following forms

[55]:
a(z,y,z,t) = N§(z,y,2,t) + i Ni(z,y,2)a;(t)
= No(z,y,2,t) + [N*(z,y,2) [{a(t)} (3.43)
ba = |[N(z,y,2)|" (3.44)
where

LNG(]I,y,Z)J = LN{I(JI,Q,Z) te -N]‘-l(x,y,z) o 'Nsa(xvyvz)J
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fa®} =4 a0

[ 0. (1) )

In the above equations, a represents the variables u, v, w, ¢, 6, and v, N§ is
the approximation function with the lowest order possible which satisfies the exact
form of the essential boundary condition (i.e., N§ = a on I'{), and N7 is the j-th
term of approximation function which satifies the homogeneous form of the essential
boundary condition (i.e., Nf = 0 on I'f.) The number of terms of approximation for

variable a is denoted by n,. Then, their derivatives are

{Va} = {VNZ} + [VN*|{a} (3.45)
{VVa} = {VVN¢} + [VVN{a} (3.46)
a=N¢+ | N|{a} (3.47)
i = N¢+ |N“|{d} (3.48)
{Va} = {VN¢} + [VN{a} (3.49)
{Véa}T = [VN*T (3.50)

where

VN ={VIN*]} = [{VN}]

= [{VN{}---{VNj}---{VN, }]

a a a
Nl,x - Nj,:v - Nna,:v
- a - a . a
- Nl,y Ny,y Nna,y
a a a
Nl,z - Nj,z - Nna,z

[VVN]={VV[N*]} = {VVN}]

= {VVN'}- - {VVN]} - {VVN }
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N{I,mc e N]a;:v:v e Nr‘;a,axv
Nﬁyy Nﬁyy Nga,

_ N, -+ NO, .- N&
2NY,, -+ 2N}, - 2Ng
2NY,, -+ 2N7., -+ 2Ng

L 2N1a’CDy e 2N]a,:L‘y e 2Nga,my =

weak form equations, we obtain

N7 p( + [N {ii}a

+ /Q VN ([C™]({V N} + [VNU{u})
HO™({VNG} + [VN"]{0})
HC™){ VNS + [VN"{w})
He TP {VNS} + [VN?){¢})
—{A"HNg + [N"{6})
—{u"H(Ng + [N [{7}))d2

- 7? |N*|Tt,dl

/Q IN|Tp(Ng + [NV |{5})dQ

+ [ [N (CP({T NG} + [V {u})
HCW({VNS} + [VN"{v})
+[CY){VNZY + [VN]{w})
T ({VNG} + [VN?]{o})
—{MWHNE + [N?]{6})
—{uHNG + [N7]{}))dQ

_ 7% [NV |Tt,dT

/Q [N T p(NG + |NY | {i})dQ2

+ /Q VN2 ([C2=)({VNEY + [VNY{u})
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After we substitute these functions for the variables u, v, w, ¢, #, and 7 into the

(3.51)

(3.52)



+HCH{VNG} + [VN"{v})

HCZ|({VNEY + [VNU{w})

+He " ({VNG} + [VN?{¢})

—{NH(NE + [N?){6})

{1 HNG + [N7[{y}))dQ
:%FLNWJthdF (3.53)
LIVN (NG} + [N {u))

+eJ({VNG } + [VN']{v})

+[eF ] ({VNS} + [VN"{w})

—[[{VNS} + [VN{o})

Hr}(Ng + [N?]{60})

HOG NG + [N7]{7}))dQ
= § [N*) Dydr (3:54)
/QLN"JTTO(—{)\’”}T({VNS‘} +[VN"]{a})

YT {VNEY + [VNY){0))

—{ N {VNEY + [VNY{ir})

HrT({VNEY + [VN?){$})

LN+ LN){6))

+dy(N§ + [N7]{3}))d2
+ /Q VNI (6] ({VV Ny} + [VVN"]{u})

HEM{VVNGY + [VVNY]{0})

+[EM) (VNG + [VVN“]{w})

+HEEJ{VVNG} + [VVN?]{6})
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(3.55)
(3.56)

—["]J({VNG } + [VNT{7}))dC2

$ LN | puar
LI + N7 {39
HPNIVING} + VN Hu})

—[k"J{VNg} + [VN){0})

HCM{VVNG} + [VVN"{v})

HCPI{VVNG} + [VVN?{o})

—[C"J{V NG} + [VN?}{6})

—[¢C"I{VNG} + [VN]{7}))dQ
AU

+ (VN (VNG + (VN fu))

These equations may be written in a matrix form as

— A
TR R R KRR

........
000000

— e e e e

]]]]]] — $ T T EEE
SNERENEREN) MMWWW = XK KK e
]]]]]]

e — 0 — | I [y S—
SELEEER O —
— > > I
> 3 > 3 < el

— o —_ 3 > 3 < Il

s S2.2.2.29, =2

L E5EEE ST e T T TS
1 L

_ + +




where

{F"} )
{F"}
{F}
{F°}
{F’}

[ {F7} )

] = [ VN C VN
1) = [ VNG TN
(1) = [ VN[O VAR
(K9] = [ [V (e [V N
(1) = — [ [VN“7 {7} [N
(1) = = [ (VN {ur} N7 2
) = [ [N VNS = [T
(K] = [ [V [C7] [V N0
(1] = [ [V 107V N ]
1) = [ VN e [VA]aQ
(1) = = [ (VN7 {0} Va2
(K] = = [ VN (i} (N7 a2
1) = [ (VN C VA = ()T
) = [ VN[OV N2 = (K
(K] = [ [VN]T[C*][VN]a0
1] = [ VN[ [V N2
(K] = = [ VN7 {3} N0

() = = [ VN7 (e} N7 a2
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(%] = [ [VN] ][ T N*dQ = (K]
(K] = [ (VN[ VNI = [1]"
0] = [ [N e[V = [
(%] = = [ VN[V N]d2

(K] = [ VN {r} [N

(K] = [ [N (N

(K] = /Q [V N7 [6M) [V V N*]dQ)

(K] = /Q [V N [MY][VV N]dD2

(K] = [ [VN] 5[V VN
(K%)= [ VN [k][V VN0

(1) = — [ [VN][s ][V N2

(7] = = [ [VN]"[s"][V A7)0

() = [ VNV VN

(7] = [ VAV N0

) = [ [V YN
(K] = [ [VNTCP[V TN

(1) = = [ VN ¢TIV N]d

(K7 = = [ VNGV N0

a0 = [ N7 N fag

0] = [ pN"JT|N"Jd2

2] = [ p[ )TN

(€7 = = [ TIN|T(E}T[VAaQ = T[]

[C%] = — /Q Ty [ N®| TNV [VNY]AQ = Ty[K*]T
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€)= = [ TN TNy [V NI = Tyl K]
€)= | T[N {r} [N} = o[
€)= = [ pe|N?J7|N?]d2
(07 = [ Todi [N?)"[N7]d0
€7 == [ [N7]7|N7]ag
Also, the elements of the force vector {F'} are computed from the specified essential

and natural boundary conditions (3.12) to (3.19). The natural boundary conditions

are the specified surface traction components (fx, fy, and fz), normal electric displace-

A

ment (D,), normal heat flux (p,), and normal moisture flux (g,). We let {F}'}, {F{},
{FwY, {FPY, {FP}, and {F]'} represent the effects of the specified essential boundary
conditions to the force vector of the variables u, v, w, ¢, 6, and ~, respectively. Then,

we can write
()= § N Tear — () = [ LV — ()
(F'} = $ LN Ttdr = (R} = [ N[ dyal ~ (F)
(F"} = $IN"Jtedl — {(Fy} = || IN"JTédl — (R}
(F%) = $ NI Dydr = {Ff} = [ [N*]7 Dyl — ()}
(F} = ALN) podl = (R} = [ IN7)" ol = ()
(F7) = $ LN qudl — (B} = [ IN7)7 Gl = ()
where
{Fy} = [ plN*J" Ry
+ [ [VNUT(C VNG } + [CPHVNG} + [C™HING )
HETT{VNG Y = {NING = {0} NG )2
{F3} = [ 7|7 Kpae
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+ [[VNT(C NG} + [CPHVNG} + (O}
HeT{VNG} — (NN — {4} )2
(R} = [ pIN")Ryan
+ [ [N (CHTNG} + [CPHVNG Y+ [CH AR}
HeEIT{YNG} — (AJN] — {7} N3)d2
Ry = [ [ON (TN} + [PHING} + [ NG}
—[H{VNG} + {r} V¢ + {x} VG2

{F} = /QTo (NI (Y TH{VNG Y = QA T{VNG Y = (Y V)

+H{r}{VNgY - f;::: N¢ + d, N7 )dQ
+ [ VN (R VNG + [ VYN + VI )
HEPHVVNGY = [ HVNG} = [V NG 1)
(F]} = / [N TN )d
+ [ [V (CUH TN} + [CVHT TN} + [CHT VAR

HCPUVVNGY = [PV NG} = [CT{ VNG })dQ

The equation (3.57) is written in a standard matrix form for transient problems.
For a steady-state problem, the first two terms are zero, and we solve a linear system
equation [K]{X} = {F} for the unknown vectors {u}, {v}, {w}, {¢}, {0}, and
{~}. For a transient problem, the system of ordinary differential equations cannot be
uncoupled (i.e., the coefficient matrices [K] and [C] are not diagonalizable) because
of the non-symmetric forms of the coefficient matrices. Therefore, in this research,
we choose to employ a direct step-by-step integration method (the Newmark-beta
method) [2, 14, 31] to solve the transient problem subject to the specified initial
conditions (3.20) to (3.24).

The analytical model just shown is developed for a homogeneous anisotropic hy-
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grothermopiezoelectric medium in three-dimensions. The model which is applicable to
solve our problems of multilayered laminated plates is needed to be developed slightly
further. In this research, a discrete-layer model is developed and implemented to solve
problems of adaptive composite plates. In the discrete-layer model, the structural
behavior in 3-D space is approximated by products of in-plane shape functions and
through-thickness shape functions. The shape functions of all unknowns in the direc-
tion through the thickness of the plate are assumed piecewise linear and separated
from the ones in the perpendicular plane. The in-plane variables are approximated
by different types of shape functions, and they are shown in details in the following

chapter.
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CHAPTER 4

NUMERICAL MODEL AND EXAMPLES

In problems of multilayered composite plates, the laminated structures are composed
of layers of different material properties, either different materials or different align-
ments of the same material. Unlike the homogeneous plate structures, the response of
the laminate in the direction through the thickness is not completely continuous, for
example, strains. This is due to the continuous stresses but different (or discontin-
uous) material properties in this direction. As a result, the transverse shear strains
and the transverse normal strains cannot be continuous at the interfaces of these
layers of different properties. These through-thickness effects cannot be described by
any of those equivalent-single-layer theories (e.g., classical lamination theory, first-
and higher-order shear deformation theories) which are analysis methods in two di-
mensions. Therefore, to overcome these limitations, a discrete-layer model in three
dimensions is developed here in this research. This model is capable of representing
the discontinuity behavior in the through-thickness direction, and a more accurate
result to the laminated plate problem can be obtained.

In this chapter, we first derive the discrete-layer model for solving the laminated
plate problems under the effects of elastic, electric, temperature, and moisture fields
simultaneously. Then, the model is applied to solve several example problems of
laminated composite plates subject to various types of excitations in both steady-

state and transient cases.
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4.1 Discrete-Layer Model

In the previous chapter, an analytical model has been developed for a homogeneous
anisotropic hygrothermopiezoelectric medium. Now, to be able to apply it to problems
of laminated plates, we modify the previous model by imposing the layerwise theory
[51, 56, 57|, yielding a discrete-layer model. This new model is capable of representing
the variation in the direction through the thickness of a multilayered composite plate.
By applying the method of separation of variables, the approximation functions (or
shape functions) in three dimensions are separated to be products of 1-D functions
in the through-thickness direction z and 2-D functions in z-y plane.

The approximate solutions for the displacement components (u, v, and w), electric
potential (¢), temperature change (), and moisture change () are sought in the

following form:

Maq Na

a(z,y, 2, 1) = 3 3 Nig(@,y, 2)an(t) = [N(z,y,2) {a(t)} (4.1)

k=11=1
and the weight functions are used as
Sa = |[N“(z,y,2)|T (4.2)

where

LN“(x,y,z)J = LNfl(iU,y,Z) "'ngl(xayaz)"'N;fzana(xayaz)J (43)
( an(t) )

fa®=1{ au) (4.4)

( Wmana () )

It is noted that a and da represent the variables u, v, w, ¢, 6, and v and the

associated weight functions. Their derivatives then become

{Va} = [VN*{a} (4.5)
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{VVa} = [VVN{a}
a=|N*[{a}
i=|N*[{a}
{Va} = [VN*[{a}

{Véa}T = [VN*E

where

(VN = [{VN1}-- AV NG} AV NG, 3

Nfl,w Nl(cll,m Ngzana,m
N{ll,y ngl,y gzana,y
N{ll,z ngl,z Nr?zana,z
[VVN = [{VVN} - {VVNG} - {VVNG 0,3
I Nfl,mc Nl?l,:v:v Nr(;zana,:v:v |
Nfl,yy Nl‘cll,yy Nranana,yy
— fl,zz Nl?l,zz Nr(;zana,zz
2N{L1,yz 2Nl?l,yz 2Nr(;zana,yz
2N{Ll,wz 2N;cll,wz 2N7‘711ana Tz
L 2N{11,my 2Nl(cll,my 2N7?zana Ty -

(4.10)

(4.11)

(4.12)

In the discrete-layer model, the approximation function Ng(z,y, z) in 3-D space

is separated to be a product of a 2-D function in the z-y plane and a 1-D function in

the z-direction as

Nig(,y, 2) = Wi(z, y) =i (2)

(4.13)

where U¢(z,y) is the k-th term of the approximation function in the z-y plane, and

=a

derivatives are

ngl,w
{VNG} =4 Niwy

a
Nkl,z
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Figure 4.1: Discrete-layer model in the through-thickness direction.
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In the through-thickness direction (z-direction), since only CP%-continuity is re-
quired, the approximation functions are assumed as layerwise Lagrange interpolation
functions (see Figure 4.1). The same functions are used for all variables u, v, w, ¢, 0,
and v, that is, 2%(z) = Z(2) = Z¥(z) = Z0(2) = Z(z) = Z](2) = Z;(2). Employing
the linear interpolation functions, a laminated plate of N layers constitutes a number

of planes n = N + 1. In each layer, there are two non-zero shape functions, and the

ones for j-th layer are

Z — Z]’

h;

Zja(2) = (4.17)

where j = 1,..., N, N is the total number of layers, and h; = z; 11 — z;.

For the domains in the z-y plane of the laminated plate structure, the approx-
imation functions are employed as two approaches: the use of analytical functions
(e.g., trigonometric or polynomial functions) and the use of the finite element func-

tions. These two approaches each have some advantages over the other. The use of
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analytical functions can provide a far more accurate solution than the finite element
functions. The problem is that this approach can be applied only to the laminated
plates with simple geometry and boundary conditions, for example, a rectangular
plate with simple supports. Unfortunately, many actual plate structures we have
to deal with do not have those simple characteristics, and the analytical function
approach is therefore not applicable. Hence, the second approach, using the finite
element functions, which has no limitation on the types of geometry and boundary
conditions, is needed to solve such structures.

In the analytical function approach, the domains of investigation are 0 < x < L,
0<y<UL, 0<2z<h,and ¢t > 0. Here a limitation is made so that the essen-
tial boundary conditions, if any, in the z-y plane are allowed only in homogeneous
forms. The approximation functions in the x-y plane ¥¢(x,y) must satisfy the ho-
mogeneous form of the in-plane essential boundary conditions. These functions can
be used as trigonometric or polynomial functions. They are selected differently for
each particular problem depending on the prescribed in-plane boundary conditions.
These procedures are shown in details for each of the numerical examples in the next
section.

For the finite element function approach, the variables in the in-plane domains
(z- and y-directions) are approximated by 2-D finite element functions. With the use
of such functions, the problems of laminated plates with any type of geometry (i.e.,
irregular shape or with a cutout) and boundary conditions can now be modeled. In
this method, the domains in the z-y plane are discretized into meshes of nodes and
elements. Here, identically for all variables u, v, w, ¢, €, and =y, the in-plane shape
function Wy (x,y) is used as an 8-noded serendipity quadrilateral element. For more

details of these elements and their shape functions, see Reddy [58]. Accuracy of the
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finite element method depends strongly on the domain discretization process. That
is, better accuracy can be obtained by refining the finite element meshes.

After substituting these approximation functions (or shape functions) into the
final weak form equations (3.37) to (3.42), the discrete-layer model yields a matrix
equation in the same general form as those for the analytical model, equation (3.57).
Furthermore, the matrices [K], [M], and [C], and the vector {F'} share the same
general forms with those of the analytical model except that the vectors {F{'}, {F}'},
{FwY, {F2Y, {F0Y, and {F]} are all zeroes for the discrete-layer model. Imposing
the boundary conditions and initial conditions allows us to solve for the primary
unknowns {u}, {v}, {w}, {4}, {6}, and {v}. The transient problems are solved by a
direct step-by-step integration using the Newmark beta method [2, 14, 31].

Once the essential variables are obtained, the non-essential variables can be com-
puted from the constitutive relations. Normally, the weak form equations (3.37) to
(3.42) yield the solutions which satisfy only the essential boundary conditions. The
natural boundary conditions are relaxed and hence are satisfied only in an average
sense, not pointwise on the solid boundary. Moreover, in the discrete-layer model,
the essential variables are C°-continuous through the thickness. As a result, the non-
essential variables, which are products of the derivatives of the essential variables,
are not continuous; the continuity is violated at the layer interfaces. Therefore, the

values for these non-essential variables are computed only at mid-height of each layer.
4.2 Numerical Results Using In-Plane Analytical Functions

We demonstrate three numerical problems using the discrete-layer model with in-
plane analytical functions. The first two problems compare the results of the discrete-
layer model with available exact solutions. The steady-state problem of a simply-

supported laminated piezoelectric plate with applied load and applied electric po-
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tential is investigated first. Next, the transient problem of coupled diffusion of heat
and moisture fields in an infinite plate is examined. The last example problem il-
lustrates the behavior of a simply-supported graphite-epoxy/PZT-4 laminated plate
under specified steady-state and transient conditions of surface traction, electric po-
tential, temperature, and moisture.

4.2.1 Example 1: Simply-Supported Laminated Piezoelec-

tric Plate

This problem is intended to verify the discrete-layer model developed in this study
by comparing the results with the exact solutions by Heyliger [28]. Two-layered lam-
inated composite plates with rectangular geometry L, = 2L, and simply-supported
boundary conditions are considered. The laminates are composed of piezoelectric
materials, PVDF at the bottom and PZT-4 on the top with same thickness of 0.0025
m for both layers. Aspect ratios of L,/h = 4 and 10 are examined. The essen-
tial variables of interest here are displacement components (u, v and w) and electric
potential (¢). Each geometry is subjected to two types of steady-state excitation:
applied transverse load of ¢, = sin(mz/L,)sin(ry/L,) on top surface with electric
potential held at zero on top and bottom surfaces, and applied electric potential
of ¢ = sin(rx/L,)sin(ry/L,) on the top surface with the electric potential held at
zero on the bottom surface. The material properties of PVDEF are as follows: elastic
constants (in GPa) Cy; = 238.0, Cy = 23.6, C33 = 10.6, Cjo = 3.98, (13 = 2.19,
Coz = 1.92, Cyy = 2.15, Cs5 = 4.4, Cgs = 6.43; piezoelectric constants (in C/m?)
e15 = ey = —0.01, e3; = —0.13, e3o = —0.14, e33 = —0.28; and relative permittivities
€11/€0 = 12.5, €39/€g = €33/€p = 11.98. PZT-4 has the following properties: elastic
constants (in GPa) C1; = Cy = 139.0, C33 = 115.0, C1o = 77.8, C13 = Co3 = 74.3,

Cu = Cs5 = 25.6, Cg = 30.6; piezoelectric constants (in C/m?) e;5 = ey = 12.72,
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e31 = e3p = —5.20, ez3 = 15.08; and relative permittivities €11/ey = €22/€g = 1475,
€33/€0 = 1300, where the permittivity of free space is g = 8.85 x 1072 F/m.
The essential boundary conditions of the simply-supported laminates are given as

follows:

u(@,0,2) = u(z, Ly, 2) =0 (4.18)
(0,9, 2) = v(Lg,y, 2) =0 (4.19)

w(0,y,2) = w(Ly, y, 2) = w(z,0,2) = w(z, Ly, z) =0 (4.20)
¢(0,y,2) = ¢(Ls,y, 2) = ¢(2,0,2) = ¢(z, Ly, 2) =0 (4.21)

Because of the nature of all the loadings applied, one-term in-plane approximations
can be used. The shape functions for the discrete-layer model satisfying the above

essential boundary conditions are taken as

X Y

¥ (r,4) = cos(7)sin( 7) (4.22)
W (a,y) =sin( ) cos(7) (4.23)
Y (z,y) = sin(%) sin(%) (4.24)
e (2, y) = sin(%) sin(%) (4.25)

First, a convergence study of the discrete-layer model is examined for the case
of applied load on the laminate with L,/h = 4. The through-thickness domain z
is discretized into various numbers of sublayers of equal thickness. Results for the
cases of 2, 4, 8, 16, 32, and 64 sublayers are shown in Table 4.1. Maximum values
for both essential variables (u, v, w, and ¢) and nonessential variables (o, oy, 0.,
Ouys Oyz, Oxzy and D,) are given at the top, bottom, and mid-plane levels. Since the
discrete-layer model has C°-continuity (i.e., only the essential variables are enforced,

whereas the nonessential variables are relaxed) in the through-thickness direction, the
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Number of sub-layers 2 4 8 16 32 64
At top surface:
u (x1071) -5.0585 | -5.8069 | -6.1322 | -6.2269 | -6.2516 | -6.2578
v (x1071) -7.3863 | -8.8216 | -9.4128 | -9.5846 | -9.6293 | -9.6406
w (x1071?) 2.9327 | 3.1508 | 3.2501 | 3.2796 | 3.2873 | 3.2893
Oy 1.4073 | 3.0015 | 3.1373 | 3.1975 | 3.2155 | 3.2207
Oy 0.9527 | 4.1115 | 4.3222 | 4.4289 | 4.4621 | 4.4719
Oy -0.2536 | -0.9488 | -1.0149 | -1.0499 | -1.0611 | -1.0643
D, (x10719) 2.3092 | 2.6158 | 2.4872 | 2.3885 | 2.3543 | 2.3446
At bottom surface:
u (x1071) 1.7753 | 2.9844 | 3.3912 | 3.5101 | 3.5411 | 3.5490
v (x1071) 5.4989 | 8.2796 | 9.1717 | 9.4252 | 9.4908 | 9.5074
w (x10713) 2.4204 | 2.6945 | 2.8053 | 2.8378 | 2.8463 | 2.8485
Oz -1.4628 | -0.8280 | -1.2474 | -1.3763 | -1.4180 | -1.4299
oy -0.9666 | -0.4511 | -0.6413 | -0.6951 | -0.7113 | -0.7158
Oy 0.2259 | 0.1007 | 0.1479 | 0.1618 | 0.1661 | 0.1674
D, (x1071?) -791.29 | -2.7778 | -1.9758 | -1.8601 | -1.8600 | -1.8652
At mid-plane:
[0) (><10*5) 1.7393 | 1.2688 | 1.1484 | 1.1175 | 1.1096 | 1.1077
o, 0.3611 | 0.2921 | 0.2514 | 0.2376 | 0.2337 | 0.2327
Os 0.3186 | 0.3965 | 0.3900 | 0.3763 | 0.3671 | 0.3619
Oyz 0.4773 | 0.5652 | 0.5135 | 0.4634 | 0.4325 | 0.4156

Table 4.1: Convergence study of the discrete-layer model by varying the number of
sub-layers used in analyzing a laminated plate.

results for nonessential variables are discontinuous, and they do not satisfy the natural
boundary conditions at the sublayer interfaces, nor at the top and bottom surfaces.
Therefore, these values are first computed at the mid-height of each sublayer. Then,
the values elsewhere through the thickness are calculated by linear interpolation and
extrapolation. From Table 4.1, doubling the number of sublayers from 32 to 64 results
in less than 0.3% and 0.9% changes in all the essential and nonessential variables,
respectively, except for 1.4% in o,, and 3.9% for o,,. Thus, the discretization of 64
subayers is used for the bulk of the examples.

For this simply-supported laminate problem, using the discretization of 64 sublay-

ers yields 260 unknowns in the discrete-layer model. Results from the discrete-layer
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L,/h =4 L,/h =10
Exact DLM Exact DLM
At top surface:
u (x1071) -6.2574  -6.2578 | -87.000 -87.036
v (x10714) -9.6408  -9.6406 | -111.86 -111.91
w (x10713) 3.2885 3.2893 | 66.004 66.021
Oy 3.2246 3.2207 13.142  13.124
oy 4.4761 4.4719 | 18.397 18.385
Oy -1.0649  -1.0643 | -5.4961 -5.4982
D, (Xl()*w) 2.3409 2.3446 2.0111 2.0100
At bottom surface:
u (x1071) 3.5524 3.5490 | 70.679  70.687
v (x1071) 9.5134 9.5074 | 200.57  200.60
w (x10713) 2.8503 2.8485 | 65.167 65.178
Og -1.4347  -1.4299 | -11.463 -11.460
oy -0.71755 -0.71583 | -6.0339 -6.0329
Oy 0.16785 0.16737 | 1.3814  1.3812
D, (x10713) -1.7048 -1.8652 | 82.096 81.268
At mid-plane:
[0) (><10_5) 1.1147 1.1077 11.675 11.696
o, 0.23228 0.23268 | 0.35705 0.35733
Oz 0.35629 0.36192 | 1.1491 1.1573
Oyz 0.39776  0.41562 | 1.3367 1.3601

Table 4.2: Comparison of exact and discrete-layer model results for the case of applied
load on the laminated piezoelectric plates.

model and the exact solutions are compared in Table 4.2 and 4.3. Table 4.2 shows
the results for the applied load case, and Table 4.3 for the applied potential case.
Maximum values of displacement, in-plane stresses, and normal electric displacement
are given at the top and bottom surfaces, with the electric potential and transverse
stresses at mid-plane. In the discrete-layer model, stresses and electric displacement
are computed at the mid-level of each sublayer. The values at top, bottom, and mid-
plane are then obtained from linear interpolation or extrapolation of the two adjacent
levels. The results from the discrete-layer model are in excellent agreement with the

exact solutions. The agreements of the primary unknowns are within 0.63% for the
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L,/h =4 L,/h =10
Exact DLM Exact DLM
At top surface:
u (x1071h) -6.7845 -6.7978 | -3.5347 -3.5426
v (X107 -13.885 -13.908 | -7.6708 -7.6851
w (XlO_IO) -2.3409 -2.3422 | -2.0111 -2.0083
Oy -1941.7 -1953.2 | -364.25 -366.30
oy 74.713  66.822 | 89.578  88.489
Oy -1319.6  -1321.7 | -283.40 -283.97
D, (x1077) ~46.248  -46.254 | -9.5036 -9.5042
At bottom surface:
u (x10711) -1.8380 -1.8352 | -1.6402 -1.6382
v (x1071) 45792 -4.5729 | -4.2402 -4.2343
w (x10710) -1.6239 -1.6222 | -2.0599 -2.0578
Oy 721.50 718.75 | 237.96 237.61
oy 325.25  324.24 | 95.501  95.385
Oy -83.379  -83.094 | -30.384 -30.335
D, (><10_8) -2.6329 -2.6344 | -4.1175 -4.1195
At mid-plane:
) 0.65943 0.65977 | 0.92243 0.92253
o, -66.387 -66.248 | -3.7377 -3.7312
Oz -40.090 -39.006 | -6.9023 -6.7799
Oyz -45.704  -42.134 | -4.5247 -4.0824

Table 4.3: Comparison of exact and discrete-layer model results for the case of applied
potential on the laminated piezoelectric plates.

applied load case and 0.22% for the applied potential case.

4.2.2 Example 2: Coupled Heat and Moisture Diffusions of
an Infinite Plate

This example problem demonstrates the coupled diffusion of heat and moisture in

an infinite plate subject to changes in temperature and moisture on the top and

bottom surfaces. Only temperature () and moisture concentration () are essential

variables to be considered. A single layer of graphite-epoxy composite, 0.001 m thick,

is considered. Two types of excitation are investigated: a sudden change of a unit

moisture concentration and a sudden change of a unit temperature on the top and
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bottom surfaces (i.e., ¥ = 1.0 kg/m?®, z = 0 and h, t > 0 for the case of change in
moisture, and 6=1.0 K, z =0 and h, t > 0 for the case of change in temperature).
Material properties of graphite-epoxy are assumed as follows [71]: p = 1600 kg/m?;
¢y = 1000 Nm/kgK; xf, = ki, = kI, = 4.090 x 1077 N/sK; s = kI, = kI =
8.396 x 1078 m*/s3; (I, = (L, = (L = 3.118 x 107 kg/mKs; and ¢(# = (ll = (&L =
2.556 x 1014 m?/s.

Since there is no in-plane variation for this problem, one-term approximation is
applicable. In-plane shape functions W/(z,y) = U7(x,y) = 1 are used in the discrete-
layer model. The through-thickness domain z is divided into 64 sublayers of equal
thickness, and the direct step-by-step integration (the constant acceleration method)
is computed at a time interval of 20,000 s. Results from the discrete-layer model are
then plotted and compared with the exact solutions given by [71] in Figures 4.2 and
4.3. The variations of temperature and moisture concentration are plotted through
the thickness at various times, and the plots of transient temperature and moisture
are the values at mid-plane level. The discrete-layer model solutions agree very well

with the exact solutions, and they almost coincide with each other on the time plots.

4.2.3 Example 3: Simply-Supported Laminated Graphite-
Epoxy/PZT-4 Plate
Now, a laminated plate composed of a layer of graphite-epoxy composite at the bot-
tom and a layer of PZT-4 on the top with simply-supported boundary conditions
is considered. Both layers have the same thickness of 0.0025 m with L, = 0.05 m
and L, = 0.025 m. All the essential variables (u, v, w, ¢, 6, and 7) are studied in
this problem. Four types of excitation are investigated. The first two excitations are
applied steady-state loading ¢, = sin(wz/L,) sin(ry/L,) on the top surface with the

top and bottom surfaces of PZT-4 held at zero potential, and applied steady-state
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Figure 4.2: Infinite plate subject to change in moisture: (a) through-thickness tem-
perature, (b) through-thickness moisture, (c¢) transient mid-plane temperature, and

(d) transient mid-plane moisture.
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Figure 4.3: Infinite plate subject to change in temperature: (a) through-thickness
temperature, (b) through-thickness moisture, (c) transient mid-plane temperature,

and (d) transient mid-plane moisture.
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voltage ¢ = sin(mz/L,)sin(ry/L,) on the top surface with the bottom surface of
PZT-4 held at zero potential. For these two cases, the changes in temperature and
moisture on the top and bottom surfaces of the laminate are held at zero. In the last
two cases, the transient behavior of the laminate is examined subject to a sudden
change in temperature § = sin(rx/L,) sin(ry/L,), and a sudden change in moisture
4 = sin(nz/L,) sin(ry/L,) on the top and bottom surfaces of the laminate with the
top and bottom surfaces of PZT-4 held at zero potential.

The properties of PZT-4 in addition to the ones in Example 1 are assumed as
follows: p = 7600 kg/m?; ¢, = 420 Nm/kgK; \; = Ay = 5.822 x 10° (all in N/m?K),
A3 = 5272 x 10% ry = ry = r3 = —2.5 x 10°* C/m?K; T} = I, = kI, = 1.8
N/sK; ¢ = (B = ¢ = 2.5 x 1071 m?/s. Material properties of the graphite-
epoxy in addition to the ones in Example 2 are used as follows [32]: Cy; = 158.0
(all in GPa), Cy = C33 = 15.51, Cyy = 3.20, Cs5 = Cge = 4.40, C15 = Ci3 = 5.64,
Coz = 7.21; €11/€0 = 3.5, €22/€0 = €33/€0 = 3.0; Ay = 2.713 x 10° (all in N/m?K),
Ao = A3 = 5.52 x 10%; py = 7.687 x 107 (all in m?/s?), g = pz = 1.092 x 108. The
reference temperature of the laminate is 7 = 200 K.

Essential boundary conditions are used the same as those in Example 1 along with

the following conditions:

0(0,y,2) = 0(Ly,y,2) = 0(,0,2) =0(x, Ly, 2) =0 (4.26)

v(0,y, 2) = v(Ly, y, 2) = y(2,0,2) = y(z, Ly, 2) =0 (4.27)

The same in-plane approximations as in Example 1 are also employed here for the
discrete-layer model with additional approximation functions as follows:

T Y

U(z, y) = sin(L—I) sin(L—y) (4.28)
U (2,y) = sin(g) sin(%) (4.29)
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Each of the two layers of the laminate is discretized into 32 sublayers of equal
thickness in the discrete-layer model. Direct step-by-step integrations (the constant
acceleration method) are performed at a time interval of 200,000 and 2,000,000 s
for the transient analyses subject to the changes in temperature and moisture, re-
spectively. Steady-state results by the discrete-layer model of the applied load and
applied voltage on the laminate are shown in Figure 4.4. Normalized vaules of verti-

* *

ok, and %), and electric

cal displacement (w*), electric potential (¢*), stresses (o7, oy,

diplacement (D?) at the center point (z = 0.025 m, y = 0.0125 m) of the laminate are
plotted through the thickness. (Stresses and electric displacement are computed at
the mid-level of each layer.) These normalized values are computed from the original
values divided by their maximum values, for instance, w* = w/wyq,. The maxi-
mum values for these variables are Wy, = 8.1076 X 107'2, ¢0e = 1.3288 x 1074,
Ozmaz = 14.359, 0y mar = 20.258, 0, mae = 0.99932, and D, 0, = 6.8013 x 101
for the applied load case, with Wy, = 6.8842 X 1071%) @p0e = 1.0, 04 max = 4376.2,
Oymaz = 2943.8, 04 maz = 19.446, and D, 1,4, = 6.6171 X 10~ for the applied voltage
case.
The discrete-layer model results for the transient analyses subject to the sudden
changes in temperature and moisture are shown in Figure 4.5 and 4.6, respectively.
All these values are also computed at the center point of the laminate. The time
plots of vertical displacement (w) are the values at the mid-plane level. The electric
potential (¢), temperature (), and moisture (v) are plotted through the thickness at

various times.
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4.3 Numerical Results Using In-Plane Finite Element Func-
tions

Similar to many structural materials, one major concern in using wood as structural
elements is that wood material has a tendency to expand or contract in a changing en-
vironment, particularly changes in temperature and moisture. Thus, the wood drying
(or soaking) problem has received a considerable amount of attention from structural
engineers. However, the discrete-layer model developed in this research yields an im-
provement over some earlier studies in that the differing material properties for each
layer are all taken into account. In addition, this model allows for the application of
an electric field to further change the shape of the wood composite.

In this section, problems of an adaptive wood composite plate, composed of layers
of wood and piezoelectric material and subject to the changes in temperature and
moisture, are simulated. Both steady-state and transient behaviors of the laminate
are analyzed using the discrete-layer model with in-plane finite element functions in
Examples 4 and 5, respectively. The response of interest is the out-of-plane deflection
(or warping) of the plate. Throughout this section, we choose to represent the wood
material with the walnut species [4, 13, 18, 26, 70, 83], and piezoelectric material
with PZT-4. These materials are assumed to have the properties shown in Table 4.4.
Also, the piezoelectric effect is examined in order to evaluate the potential use of the
piezoelectric material as a distributed actuator in the composite. Voltage is applied to
the piezoelectric layer and the resulting deflection is analyzed. We can then visualize
the capacity of the piezoelectric layer to actuate the composite or counterbalance
the warping caused by the temperature and moisture changes. In our analyses, the
piezoelectric effect of the wood material is ignored since its effect is three orders

of magnitude smaller than that of the piezoelectric material (PZT-4) used in these
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Properties Wood P7ZT-4
Mass density: (kg/m?)

p 660.8 7600.0
Specific heat coefficient: (Nm/kgK)

Co 1360.0 | 420.0
Elastic constants: (GPa)

C1 12.22 139.0

Cas 0.6699 139.0

Css 1.273 115.0

Cya 0.2432 25.6

Css 0.9846 25.6

Ces 0.7182 30.6

Ci2 0.4682 77.8

Cis 0.6872 74.3

Cas 0.0905 74.3
Piezoelectric constants: (C/m?)

€15 0 12.72

€24 0 12.72

€31 0 -5.20

€32 0 -5.20

€33 0 15.08
Relative permittivities:

611/60 3.50 1475

622/60 2.33 1475

633/60 2.33 1300
Thermal expansion coefficients: (107%/K)

ap 3.5 2.0

- 40.0 2.0

a3 30.0 2.0
Moisture expansion coefficients: (m?/kg)

B1 0 0

B2 0.00016 0

P 0.00011 0
Pyroelectric coefficients: (C/m?K)

r1 0 -0.00025

ro 0 -0.00025

r3 0 -0.00025
Thermal conductivity coefficients: (N/sK)

KT 0.383 1.8

K1y 0.158 1.8

Kl 0.158 1.8
Moisture diffusivity coefficients: (107!? m?/s)

cH 1731.0 | 0.25

il 512.0 0.25

i 525.0 0.25

Note: The permittivity of free space is ¢p = 8.85 x 10712 F/m.

Table 4.4: Material properties for wood and PZT-4.
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examples.

4.3.1 Example 4: Adaptive Wood Composite Under Steady-
State Excitations

A 50-mm by 50-mm composite laminate with a layer of wood 6 mm thick on the
bottom and a layer of PZT-4 0.5 mm thick on the top is examined under three types of
steady-state excitations: applied moisture, temperature, and voltage. The boundary
conditions of the laminate, for the mechanical variables used in all these cases, are
treated as traction-free boundary conditions. Effects of environmental conditions on
the deflection of the laminate are simulated in the first and second cases. A unit
value of moisture and temperature change is assumed as a representation. In the first
case, a simulated change in moisture concentration of 1.0 kg/m? is applied at the top
and bottom surfaces of the laminate while the temperature at these surfaces is kept
constant. In the second case, a simulated change in temperature of 1.0 K is applied
at the top and bottom surfaces of the laminate while the moisture concentration at
these surfaces is kept constant. Also, the top and bottom faces of the PZT-4 layer are
grounded at zero potential. To investigate the capability of piezoelectric actuation
on the laminate, we apply an electric field to the PZT-4 layer in the third case. The
voltage of -200.0 V is applied on the top surface while the bottom face of PZT-4 is
grounded at zero voltage. The top and bottom surfaces of the laminate are kept at
constant temperature and moisture concentration.

The discrete-layer models of the laminate are discretized as six sublayers, three for
each material, in the through-thickness direction. Using the advantage of structural
symmetry, a quarter of the domain in z-y plane is modeled. Results of the three
cases of steady-state excitation are shown in Figure 4.7. Deflected shapes of the

laminate subject to the applied moisture, temperature and voltage are plotted in
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Figure 4.7: Deflected shapes of adaptive wood composite plate subject to (a) applied
moisture, (b) applied temperature, and (c) applied voltage.
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three dimensions. Deflections on only a quarter of the domain are shown where planes
x = 0 and y = 0 are the planes of symmetry. When subjecting to the changes in
moisture (Figure 4.7(a)) and temperature (Figure 4.7(b)), the composite plate under
traction-free boundary conditions behaves similarly to one-way slab structures. This
is due to the very high degree of anisotropy in z-y plane for wood material, but low
degree for PZT-4. However, for a different type of (mechanical) boundary condition
(e.g., simple support in both z- and y-directions), the laminate will no longer have
only one-way behavior. In Figure 4.7(c), the deflected shape of the composite as
a response to the applied voltage on the piezoelectric layer is plotted. This is to
show how much actuation can be obtained and to see the potential use of the PZT-4
material as an actuator in the wood structures. The composite under the applied
voltage exhibits a two-way deflection with the stiffness in the z-direction higher than
that in the y-direction.

To examine the convergence of the numerical models, the in-plane domain is di-
vided into several different grids: 2 x 2, 3 x 3, and 4 x 4. Results from these different
discretizations in the x-y plane are shown in Table 4.5, where the values of the de-
flection at plate center on the bottom surface (x =0, y = 0, 2 = 0) are given. The
maximum differences occur when the composite is subjected to the applied voltage.
These differences are 0.40% between the 2 x 2 and 3 x 3 grids, and 0.22% between

3 x 3 and 4 x 4 grids.

Cases 2x2 3x3 4x4

Applied moisture (x10~> m) -1.1325 | -1.1315 | -1.1309
Applied temperature (x107¢ m) -2.7815 | -2.7791 | -2.7775
Applied voltage (x107% m) -6.3283 | -6.3030 | -6.2891

Table 4.5: Convergence study of adaptive wood composite plate where the maximum
values of the deflection are given for the different in-plane discretizations: 2x2, 3x3,
and 4x4 elements.

62



4.3.2 Example 5: Adaptive Wood Composite Under Tran-
sient Excitations

The same laminated structure as in Example 4 is again considered under traction-
free boundary conditions and with all the initial conditions set equal to zero. The
composite plate is next examined with two types of transient excitations. First, a
change of moisture concentration at the top and bottom surfaces of the laminate is
applied as a bilinear change, first being increased linearly from zero value at time
t =0 to 1.0 kg/m? at time ¢t = 20,000 s, then kept constant with time at 1.0 kg/m3.
Temperature at the top and bottom surfaces is kept constant for this case. For
the second case, an applied temperature change at the top and bottom surfaces is
increased linearly from zero value at time ¢ = 0 to the value of 1.0 K at time ¢ = 20
s, then kept constant afterward. The moisture concentration at the top and bottom
surfaces is kept constant. In both cases, the reference temperature 7 is assumed as
300.0 K, and the top and bottom surfaces of the PZT-4 layer are fixed at zero voltage
at all times.

For these transient cases, only one type of discretization of the domain is used
for the discrete-layer models. Again, with the use of symmetry, the model consists
of a quarter of the in-plane domain with four finite elements (two in z-direction
by two in y-direction) and twelve sublayers (six for each material) in the through-
thickness z-direction. Transient responses of the laminate to the applied excitations
are then calculated using direct step-by-step integration (the constant acceleration
method) at each time interval of 1,000 s and 1 s for the cases of applied moisture
and applied temperature, respectively. Figure 4.8 shows the transient responses of
the wood laminate at the center point of the plate (x = 0, y = 0). Deflections at

the bottom level (z = 0) subject to the applied moisture (Figure 4.8(a)) and the
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applied temperature (Figure 4.8(b)) are plotted with time. As the time increases,
these transient results converge to the steady-state results. In these graphs, the
curvature is changed at the point when the excitation reaches the maximum applied
value (¢ = 20,000 s for applied moisture, and ¢t = 20 s for applied temperature).
The discontinuity of the slope of the applied moisture and temperature is the cause
of this. Figure 4.8(c) shows the moisture variation through the thickness of the
laminate at various times for the applied moisture case, and similarly Figure 4.8(d)
for the temperature variation for the applied temperature case. Wood material has
a greater value of moisture diffusivity, but a smaller value of thermal diffusivity than
PZT-4. Hence the through-thickness plots of moisture and temperature changes show

jumps at the interface between the two materials.

65



CHAPTER 5

EXPERIMENTS

5.1 Test Procedures

In order to verify our mathematical models and to generate some ideas on how much
actuation can be obtained in adaptive wood composite structures, a series of exper-
iments were completed. Our samples of adaptive wood composites were represented
by laminated composite plates consisted of wood and piezoelectric layers. The wood
layers selected were poplar and pine species, and the piezoelectric material used was
PZT-5A as manufactured by Morgan Matroc, Inc. The wood and PZT-5A layers
were bonded together with an epoxy adhesive. We assume that the laminae are per-
fectly bonded together, and that the adhesive forms a very thin layer. In the test
procedures, DC voltages were applied to the PZT-5A layer to activate the composites,
and then the deformation of the composites were measured by strain gages attached
on the top and bottom surfaces. These composites were subjected to traction free
boundary conditions. The environmental conditons of temperature and moisture were
kept constant at all times. We then compared our results to the mathematical models

developed in earlier chapters.

5.1.1 Physical Models

Two samples of composite plates were constructed: pine/PZT-5A and poplar/PZT-

5A. Figure 5.1 shows the layout of the composite samples. Each sample is composed
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Figure 5.1: Layout of experimental samples: (a) top view and (b) front view.
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Figure 5.2: Grain orientations of the selected wood pieces.

of a layer of wood at the bottom and a layer of PZT-5A on the top. These layers
are bonded together with an epoxy adhesive (Hardman) as manufactured by Harcros
Chemicals, Inc. The dimensions in the x-y plane of all samples are 51 mm by 51 mm.
The thickness of the PZT-5A layer is 0.5 mm and the wood layer is 6.1 mm for pine and
6.3 mm for poplar. The alignments of the wood materials (both pine and poplar) were
chosen to be such that the longitudinal, tangential, and radial directions coincided
with the a-, y-, and z-directions, respectively (see Figure 5.2). The 90-degree rosette
strain gages (Type CEA-06-032WT-120 by Measurements Group, Inc.) were installed
on the top surface (PZT-5A side) and bottom surface (wood side) of the composites
at the center point. These strain gages have the active gage length equal to 0.032 in
(0.8128 mm). Figure 5.3 shows the prepared samples of the adaptive wood composites.

To prevent the environmental effects from temperature and moisture change, the

composite samples were kept at constant temperature and moisture by enclosing each
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Figure 5.3: Adaptive wood composite samples.

sample within 8 layers of bubble wrap (see Figure 5.4). The experimental set-up is
shown in Figure 5.5. We monitored the strain in each strain gage one direction at a
time. The electrodes on both sides of the PZT-5A layer were connected to the DC
power supply, and the strain gage leads were attached to the strain indicator (Model
P-3500 by Measurements Group, Inc.). Voltages of 0, 50, 100, 150, and 200 V were
applied to the PZT-5A layer, and the strains were read by the strain indicator. (The
upper operating limit of the PZT-5A material is somewhere between 250 V and 500
V.) The measurements were repeated twice for the strain in each direction, and the

average values were computed.

5.1.2 Numerical Models

The pine/PZT-5A and poplar/PZT-5A composites which were experimentally subject
to applied voltages as described in the Physical Models Section were also analyzed

numerically using the discrete-layer model developed in the earlier chapter. The
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Figure 5.4: The adaptive wood composite sample covered by 8 layers of bubble wrap.

domain in the through-thickness z-direction is discretized as 16 sublayers (8 sublayers
of equal thicknesses for each material) with the approximation functions used as
Lagrange linear interpolation functions. Using the finite element method in the x-
y plane, 9 (8-noded serendipity quadrilateral) elements of equal dimensions (3 x 3
meshes) are employed. Material properties for the PZT-5A layer are assumed the
same as those given by Berlincourt et al. [3], and for pine and poplar woods given by
Bodig and Jayne [4]. These values are given in Table 5.1. The PZT-5A material has
the symmetric properties of a hexagonal crystal, whereas the woods are orthotropic
materials. All the material properties are assumed within the linear range, and all
the residual effects are ignored in these analyses. In the analyses by the discrete-layer
model, after the primary unknowns of displacements and electric potential are solved,
the results of the strains are computed at mid-level of each sublayer, and the values

elsewhere are calculated by interpolation and extrapolation.
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Figure 5.5: The experimental set-up.

5.2 Results and Discussion

Results of the strains in the pine/PZT-5A and poplar/PZT-5A composite plates as
a response to the applied voltages to the PZT-5A layer are illustrated in Figure 5.6
to 5.11. The lateral strains (S,, and S,,) as measured in the experiments are plotted
and compared with those predicted by the numerical analyses using the discrete-layer
model. Figure 5.6 and 5.7 show the results of the strains in the z-direction (S,,) and
y-direction (S,,), respectively, at the top and bottom surfaces of the pine/PZT-5A
composite at various values of applied voltages. These lateral strains through the
thickness of the pine/PZT-5A composite subject to the applied voltage of 200 V, as
predicted by the discrete-layer model, are given in Figure 5.8. Also, similar to those
for the pine/PZT-5A composite, the results of the lateral strains (S,, and S,,) for

the poplar/PZT-5A composite are shown in Figure 5.9, 5.10, and 5.11.

71



Properties PZT-5A | Pine Poplar
Mass density: (kg/m?)
p 7700 476%* 512%**
Elastic constants: (GPa)
Cny 120.0 9.185 12.04
Cy 120.0 | 0.4890 | 0.4452
Cs3 111.0 | 0.8551 | 0.9945
Cha 75.2 0.1638 | 0.1647
Cis 75.1 0.2502 | 0.2965
Cas 75.1 0.2053 | 0.2410
Clyy 21.1 0.0583 | 0.1548
Css 21.1 0.6550 | 0.6709
Ces 22.6 0.6267 | 0.4826
Piezoelectric constants: (C/m?)
€31 -5.35 0 0
€39 -5.35 0 0
€33 15.78 0 0
€24 12.29 0 0
€15 12.29 0 0
Relative permittivities:
€11/ €o 1730 3.50 3.50
€92/ €0 1730 2.33 2.33
€33/ €0 1700 2.33 2.33

Note: The permittivity of free space is ¢y = 8.85 x 1072 F/m
* Moisture content = 7.8%
** Moisture content = 6.7%

Table 5.1: Material properties of PZT-5A, and pine and poplar woods.

It can be concluded from these graphs that the results for the pine/PZT-5A com-
posite by the discrete-layer model agree to the experiments within 25.5% and 33.9%
for the lateral strains in the z-direction (S,;) and y-direction (S,,), respectively. For
the poplar/PZT-5A composite, these results agree within 25.3% in the z-direction
and 34.1% in the y-direction. All the largest discrepancies occur on the top surface
(PZT-5A face) of the composites when the applied voltage is 200 V. We note here
that the piezoelectric effect which occurred in these experiments is not perfectly lin-

ear (with the applied voltage), as it can be observed from the experimental results in
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Figure 5.6, 5.7, 5.9, and 5.10. That is, the behavior is somewhat beyond the linear
range, and this can cause an inaccuracy in the mathematical models.

In these experimental demonstrations, the level of strain generated by applying
electric field to the PZT-5A layer is in the order of 100 microstrain (on the PZT-5A
surface). The values of strains in the z-direction (S,,) are smaller than those in the
y-direction (S, ). This is clearly because of the higher value of modulus of elasticity in
the z-direction (longitudinal direction) of the wood materials. (For PZT-5A material,
the properties in the z- and y-directions are identical.) However, the poplar/PZT-5A
composite exhibits a slightly higher stiffness in the z-direction than the pine/PZT-
5A composite, but about the same value for the stiffness in the y-direction. Finally,
the adaptive composite structures investigated here have a width to thickness ra-
tio of approximately 8 and may be considered as thick plates. The deflections of
the composites generated by the applied electric field to the piezoelectric layer are
therefore small. However, for the similar composite plates with thinner layers, the
induced strain gradients will be higher and, as a consequence, larger deflections can

be obtained.

73



30

¢
20
10
06— - 0 EXP (pine face) ]
~ _ — DLM (pine face)

= RN & EXP (PZT-5A face)

< 101 ~ o - - - DLM (PZT-5A face) i

17 O~ L

o ~

L _onl ~ i

£ 20 ~ _ _

c =~ ~

£ -

(*,—') _30 — <> ~ - - R -
-40}+ NG - i
-50 o >~ 4
_60 — -
_70 | | | | | | | | |

0 20 40 60 80 100 120 140 160 180 200

Applied Voltage (V)

Figure 5.6: Strain in z-direction (S,,) of pine/PZT-5A composite subject to applied
voltage.
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CHAPTER 6

CONCLUSIONS

In this research, piezoelectric materials have been introduced to form adaptive wood
composites configured as laminated plate structures. With the capability of being uti-
lized as sensors and actuators, piezoelectric materials can be incorporated into struc-
tural elements to produce a system capable of self-monitoring and self-controlling.
When adaptive wood composite structures are exposed to changes in enviromental
conditions, temperature and moisture can cause significant effects such as warping.
This is due to the differences in the material properties, not only in the different kinds
of materials, but also in the different directions of an anisotropic material. However,
these effects can be controlled or counter-acted by adjusting the electric field ap-
plied to the piezoelectric layer. Adaptive wood composites, composed of wood and
piezoelectric materials, are structural components in which effects of elastic, electric,
temperature, and moisture fields can have strong influences. The study of these four
fields together on a solid is termed hygrothermopiezoelectricity.

Following the objectives as stated in Chapter 1, a mathematical model has been
developed for analyzing the problems of laminated hygrothermopiezoelectric plates.
The developed plate model was then employed to investigate the steady-state and
transient behaviors of the adaptive wood composite laminates. Also, experiments
have been conducted on adaptive wood composite samples in order to measure their

adaptive actuation capability and to verify the theory. A summary and the major
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conclusions of this study are described below.

The first objective of this work was to develop a mathematical model for a hy-
grothermopiezoelectric laminated plate. A discrete-layer model was developed for
analyzing such a laminate under the coupled effects of mechanical, electrical, ther-
mal, and moisture fields. By employing a layerwise plate theory, approximate solu-
tions of the primary variables taken as displacements, electric potential, temperature,
and moisture concentration were sought via the weak form of the governing equations.
The discrete-layer model allowed for a break in slope of the primary unknowns, which
is a critical feature of this approach. The solutions in three-dimensional space were
approximated by one-dimensional approximation functions in the through-thickness
direction and two-dimensional approximation functions in the plane of the plate.

In the through-thickness direction, only C°-continuity was required and the one-
dimensional approximation functions were employed as layerwise Lagrange linear in-
terpolation functions. By the use of such approximation functions, variations through
the thickness of the laminate were taken into account, and discontinuity behaviors
between layers could also be represented.

The two-dimensional approximation functions in the plane of the plate were em-
ployed as two approaches: analytical functions (e.g., trigonometric or polynomial
functions) and finite element funcions. The use of the analytical functions, when ap-
plicable, is far more accurate than that of the finite element functions. However, the
approach of analytical functions is applicable only to limited problems of simple ge-
ometry and boundary conditions, for instance, simply-supported rectangular plates.
Otherwise, the approach of finite element functions which can solve laminated plates
with any type of geometry and boundary condition is needed. In fact, the discrete-

layer model with the use of finite element functions in the plane of the plate is
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equivalent to a conventional three-dimensional finite element model. Nevertheless,
the discrete-layer model has advantages over the conventional finite element model in
that the calculation for the global matrices can be simplified. The integration in the
through-thickness domain z can be computed separately from the in-plane domains
x and y. This helps reduce the cost of computer time for running the problems and
allows our plate model a variable number of degrees of freedom.

For the sake of generality, the mathematical models developed in this study were
capable of taking into account all the material constants possible for the behavior
within the linear range (i.e., 21 elastic constants, 18 piezoelectric constants, 6 dielec-
tric constants, 6 stress-temperature constants, 6 stress-moisture constants, 3 pyroelec-
tric constants, and 3 electric-moisture constants). Also, for the transient problems,
the equations formulated in a standard matrix form were solved by a direct step-by-
step integration using the Newmark-beta method.

The numerical examples for various types of problems have demonstrated the
accuracy of our mathematical model as well as demonstrated the basic behavior of the
composite laminates under the coupled effects of the mechanical, electrical, thermal,
and moisture fields. Results obtained by the discrete-layer model have been proved

to be in excellent agreement with exact solutions.

e For the case of laminated piezoelectric plates, the accuracy of the primary un-

knowns was well within 1%.

e Plots of the results for the problem of coupled heat and moisture diffusion in

an infinite plate have also shown excellent agreement.

e Finally, the example problem of the hygrothermopiezoelectric effects on a simply-
supported laminated graphite-epoxy/PZT-4 plate demonstrated that not only

the piezoelectric effects (when subjected to applied load and applied voltage),

82



but also the environmental effects (or the changes of temperature and moisture)
can cause significant responses in the composites. The out-of-plane deflections
caused by the applied unit load, voltage, temperature, and moisture were in the

order of 8 x 107'2, 7 x 1071%, 3 x 107, and 4 x 10~° m, respectively.

The second objective was to apply the discrete-layer model to analyze representa-
tive problems of adaptive wood composites. Adaptive wood composites were selected
to consist of a layer of a piezoelectric material (PZT-4) on the top and a layer of wood
(walnut spices) at the bottom. The laminates were investigated subject to steady-
state and transient excitations of the changes in environmental conditions under a
traction-free boundary condition. Also, the actuation capability by the applied volt-
age on the PZT-4 layer was examined to see the potential use of this material as a
distributed actuator in the wood composites. The response of interest was the out-of
plane deflection (or warping) of the laminate.

These numerical examples have shown that PZT-4 is a possible candidate to be
used as an actuator for the wood laminates. Deflections caused by the moisture and
temperature changes can be controlled or counter-acted by adjusting the electric field

applied to the piezoelectric layer.

e For the laminate studied here, an applied voltage of 200 V on the PZT-4 layer

generated the out-of-plane displacement of the order 6 x 107% m.

e This level of actuation was enough to counter the deflection caused by moisture

of the order 0.5 kg/m3 or by temperature of the order 2 K.

The piezoelectric effect is instantaneous, and therefore the effect of applied voltage
to the composite was only demonstrated for the steady-state case. Moreover, even
though the effects of applied moisture, temperature, and electric field to the compos-

ite are separately shown in the examples, the combined results of these fields can be
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easily computed as a linear combination using the method of superposition. These
results therefore provide an indication of the level of response of adaptive wood com-
posites, and the model provides a means of studying any laminated wood plate where
the elastic, temperature, moisture, and electric fields influence the overall structural
response.

The third objective was to construct the physical samples of adaptive wood com-
posites and measure the levels of adaptive actuation. Experiments have been con-
ducted for the adaptive wood composite plates (composed of a layer of wood and a
layer of piezoelectric material). Wood materials were represented by pine and poplar
species, while the piezoelectric material was chosen to be PZT-5A. Steady-state volt-
ages between 0 and 200 V were applied to the piezoelectric layer in order to actuate
the composites. Strains on the top and bottom surfaces of the laminates, as re-
ponses to the excitation, were measured by strain gages. These experimental results
were plotted and compared with the numerical results predicted by the discrete-layer

model, and this can be concluded as follows:

e The levels of strains generated by applying electric field to the PZT-5A layer
were in the order of 100 microstrain, a small but significant amount that allowed

us to gage the response levels for these laminates.

e The results by the discrete-layer model were in a good agreement with the
experimental results especially when the applied voltages were small. The
discrete-layer model underpredicted the experiments, and the discrepancies be-
came larger as the applied voltage increased. At the applied voltage of 200 V,

the agreements of the strains were within 34%.

e Experimental wood composites were sensitive to temperature and required ther-

mal insulation to prevent the effects from the change in environment and keep
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the samples at constant temperature.

The experimental results have shown the degree of actuation provided by PZT-5A
layer in the adaptive wood composites, and have also confirmed the validity of the
discrete-layer model. The discrepency between the discrete-layer model prediction
and the experimental result was due to the assumption made in the discrete-layer
model and some uncertainties of the material properties used in the analysis. The
assumption that all the material properties of the composites are within the linear
range is not completely true. Some of these properties can be moderately to highly
nonlinear. For example, the piezoelectric coefficients can vary with the applied voltage
(or electric field). Also, the hygrothermal effects (from temperature and moisture) in
solids are normally nonlinear. Hence, these mathematical models which based on the
assumption of linear properties will yield good results only to problems concerning
considerably small changes in those field variables.

Finally, some of the possibly-relevant material properties are not included in the
example problems, for instance, xi, di, ki, K, Gk, and ¢fy. This is primarily
because of the lack of available data for these parameters and the desire to study the
dominant effects of the fields in the examples shown. Also, it was not an objective
of this work to determine all these properties for any specific material. Therefore,
these other coupling effects were considered secondary in this work and are neglected
in the examples. However, these effects in other materials may have a much stronger

influence, and our mathematical models can incorporate these parameters if necessary.
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