Linear combination of Normal Random Variables

Linear Function of a Normal Random Variable

If \(X \sim N(\mu, \sigma^2) \) and \(a \) and \(b \) are constants, then

\[
Y = aX + b \sim N(a\mu + b, a^2 \sigma^2)
\]

Linear Combinations of Independent Normal Random Variable

If \(X_i \sim N(\mu_i, \sigma_i^2) \), \(1 \leq i \leq n \), are independent variables and if \(a_i, 1 \leq i \leq n \) and \(b \) are constants, then

\[
Y = a_1X_1 + \ldots + a_nX_n + b \sim N(\mu, \sigma^2)
\]

Where

\[
\mu = a_1\mu_1 + \ldots + a_n\mu_n + b
\]

and

\[
\sigma^2 = a_1^2\sigma_1^2 + \ldots + a_n^2\sigma_n^2
\]

Average Independent Normal Random Variable

If \(X_i \sim N(\mu, \sigma^2) \), \(1 \leq i \leq n \), are independent variables, then their average \(\overline{X} \) is distributed

\[
\overline{X} \sim N(\mu, \frac{\sigma^2}{n})
\]

The Central Limit Theorem

If \(X_1, \ldots, X_n \), is a sequence of independent identically distributed random variables with a mean and a variance, then the distribution of their average \(\overline{X} \) can be approximated by a

\[
N(\mu, \frac{\sigma^2}{n})
\]

distribution. Similarly, the distribution of the sum \(X_1 + \ldots + X_n \) can be approximated by a \(N(n\mu, n\sigma^2) \) distribution.

The Chi-Square Distribution

A Chi-square random variable with \(v \) degrees of freedom, \(X \) can be generated as

\[
X = X_1^2 + \ldots + X_v^2
\]

Where \(X_i \) are independent standard normal random variables. A chi-square distribution with \(v \) degrees of freedom is a gamma distribution with parameter values and , it has an expectation of \(v \) and a variance of \(2v \)

The t-Distribution

A t-Distribution with \(v \) degrees of freedom, \(X \) is defined to be

\[
t_v \sim \frac{N(0,1)}{\sqrt{\chi^2 / v}}
\]
Where $N(0,1)$ and χ^2_v random variables are independently distributed. The t-distribution has a shape similar to a standard normal distribution but is a little flatter. As $v \to \infty$, the t-distribution tends to a standard normal distribution.

Sample Mean

If X_1,\ldots,X_n, are observations from a population with a mean μ and a variance σ^2, then the central limit theorem indicates that the sample mean $\hat{\mu} = \bar{X}$ has the approximate distribution

$$
\hat{\mu} = \bar{X} \sim N(\mu, \frac{\sigma^2}{n})
$$

Sample Variance

If X_1,\ldots,X_n, are normally distribution with a mean μ and a variance σ^2, then the sample variance S^2

$$
S^2 \sim \sigma^2 \frac{\chi^2_{n-1}}{n-1}
$$

t-Statistic

If X_1,\ldots,X_n, are normally distribution with a mean μ then

$$
\frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t_{n-1}
$$

This result is very important since in practice an experimenter knows the value of n and the observed sample mean \bar{X} and sample variance S^2, and so knows everything in the quantity $\frac{\sqrt{n}(\bar{X} - \mu)}{S}$ except for μ. This allows the experimenter to make useful inferences about μ.