2102311 Electrical Measurement and Instruments (Part II)

$>$ Bridge Circuits (DC and AC)
$>$ Electronic Instruments (Analog \& Digital)
$>$ Signal Generators
$>$ Frequency and Time Interval Measurements
> Introduction to Transducers

อาภรณ์ ธีรมงคลรัศมี ตึกไฟฟ้า 6 ชั้น ห้อง 306

Textbook:

-A.D. Helfrick, and W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques" Prentice Hall, 1994.

- D.A. Bell, "Electronic Instrumentation and Measurements", 2nd ed., Prentice Hell, 1994.

Resistor Types

Importance parameters

*Value
$*$ Power rating

Tolerance

Temperature coefficient

Type	Values (Ω)	Power rating (W)	Tolerance (\%)	Temperature coefficient (ppm $/{ }^{\circ} \mathrm{C}$)	picture
Wire wound (power)	10m~3k	$3 \sim 1 \mathrm{k}$	$\pm 1 \sim \pm 10$	$\pm 30 \sim \pm 300$	$\begin{aligned} & 2 W 0.518 \mathrm{~K} \\ & \wedge^{46} 162 \end{aligned}$
Wire wound (precision)	$10 \mathrm{~m} \sim 1 \mathrm{M}$	$0.1 \sim 1$	$\pm 0.005 \sim \pm 1$	$\pm 3 \sim \pm 30$	\sum_{500008}
Carbon film	$1 \sim 1 \mathrm{M}$	0.1~3	$\pm 2 \sim \pm 10$	$\pm 100 \sim \pm 200$	-
Metal film	$100 \mathrm{~m} \sim 1 \mathrm{M}$	0.1~3	$\pm 0.5 \sim \pm 5$	$\pm 10 \sim \pm 200$	
Metal film (precision)	10m~100k	$0.1 \sim 1$	$\pm 0.05 \sim \pm 5$	$\pm 0.4 \sim \pm 10$	驚高
Metal oxide film	100m~100k	$1 \sim 10$	$\pm 2 \sim \pm 10$	$\pm 200 \sim \pm 500$	- iii

Data: Transistor technology (10/2000)

Resistor Values

* Color codes
* Alphanumeric

4 band color codes

Color	Digit	Multiplier	Tolerance(\%)		Temperature coefficient (ppm/ ${ }^{\circ} \mathrm{C}$)	
Silver		10^{-2}	± 10	K		
Gold		10^{-1}	± 5	J		
Black	0	10^{0}	-	-	± 250	K
Brown	1	10^{1}	± 1	F	± 100	H
Red	2	10^{2}	± 2	G	± 50	G
Orange	3	10^{3}		-	± 15	D
Yellow	4	10^{4}	-	-	± 25	F
Green	5	10^{5}	± 0.5	D	± 20	E
Blue	6	10^{6}	± 0.25	C	± 10	C
Violet	7	10^{7}	± 0.1	B	± 5	B
Gray	8	10^{8}		-	± 1	A
White	9	10^{9}	-	-		
		-	± 20	M	-	-

Data: Transistor technology (10/2000)

Least sig. fig. Multiplier of value
Ex.

$R=560 \Omega \pm \mathbf{2 \%}$

Alphanumeric

$\mathrm{R}, \mathrm{K}, \mathrm{M}, \mathrm{G}$, and $\mathrm{T}=$
$\mathrm{x} 10^{0}, \mathrm{x} 10^{3}, \mathrm{x} 10^{6}, \mathrm{x} 10^{9}$, and $\mathrm{x} 10^{12}$
Ex. $6 \mathrm{M} 8=6.8 \times 10^{6} \Omega$
$59 \mathrm{P} 04=59.04 \Omega$

Resistor Values

$\boldsymbol{R}=\boldsymbol{x} \pm \% \Delta \boldsymbol{x}$

Tolerance
Nominal value
Ex. $1 \mathrm{k} \Omega \pm 10 \% \equiv 900-1100 \Omega$

For 10% resistor

$$
10,12,15,18, \ldots
$$

where $\boldsymbol{E}=6,12,24,96$
for $20,10,5,1 \%$ tolerance

$$
\boldsymbol{n}=0,1,2,3, \ldots
$$

Commonly available resistance for a fixed resistor

$\pm 1 \%$	$\pm 2 \%$	$\pm 5 \%$	$\pm 10 \%$	$\pm 1 \%$	$\pm 2 \%$	$\pm 5 \%$	$\pm 10 \%$
100	100	10	10	316	316		
102				324			
105	105			332	332	33	33
107				340			
110	110	11		348	348		
113				357			
115	115			365	365	36	
118				374			
121	121	12	12	383	383		
124				392		39	39
127	127			407	407		
130		13		412			
133 137	133			422	422		
140	140			442	442		
143				453			
147	147			464	464		
150		15	15	475		47	47
154	154			487	487		
158				499			
162	162	16		511	511	51	
165	169			523 536	536		
174				549			
178	178			562	562	56	56
182		18	18	576			
187	187			590 604	590		
196	196			619	619	62	
200		20		634			
205	205			649	649		
215	215			681	681	68	68
221		22	22	698			
226	226			715	715		
232				732 750			
237 243	237			750	750	75	
243		24		765			
249	249			787	787		
261	261			825	825	82	82
267				845			
274	274	27	27	866	866		
280	287			887 909	909	91	
294				931			
301	301	30		953	953		
309				976			

Resistance Measurement Techniques

- Bridge circuit
 - Voltmeter-ammeter
 - Substitution - Ohmmeter

Substitution

Voltmeter-ammeter method

Pro and con:

-Simple and theoretical oriented
-Requires two meter and calculations
-Subject to error: Voltage drop in ammeter (Fig. (a))
Current in voltmeter (Fig. (b))

Fig. (a)
Measured $R_{x}: \quad R_{\text {meas }}=\frac{V}{I}=\frac{V_{x}+V_{A}}{I}=R_{x}+\frac{V_{A}}{I}$ if $V_{x} \gg V_{A} \quad R_{\text {meas }} \approx R_{x}$

Therefore this circuit is suitable for measure large resistance

Fig. (b)
Measured $R_{x}: R_{\text {meas }}=\frac{V}{I}=\frac{V}{I_{x}+I_{V}}=\frac{R_{x}}{1+I_{V} / I_{x}}$
if $I_{x} \gg I_{V} \quad R_{\text {meas }} \approx R_{x}$
Therefore this circuit is suitable for measure small resistance

Ohmmeter

-Voltmeter-ammeter method is rarely used in practical applications (mostly used in Laboratory)
-Ohmmeter uses only one meter by keeping one parameter constant

Example: series ohmmeter

Resistance to

Basic series ohmmeter
Ohmmeter scale
Basic series ohmmeter consisting of a PMMC and a series-connected standard resistor $\left(R_{1}\right)$. When the ohmmeter terminals are shorted ($R_{\mathrm{x}}=0$) meter full scale defection occurs. At half scale defection $R_{\mathrm{x}}=R_{1}+R_{\mathrm{m}}$, and at zero defection the terminals are open-circuited.

Bridge Circuit

Bridge Circuit is a null method, operates on the principle of comparison. That is a known (standard) value is adjusted until it is equal to the unknown value.

Bridge Circuit

Wheatstone Bridge and Balance Condition

Suitable for moderate resistance values: 1Ω to $10 \mathrm{M} \Omega$

Balance condition:

No potential difference across the galvanometer (there is no current through the galvanometer)

Under this condition: $V_{\mathrm{AD}}=V_{\mathrm{AB}}$

$$
\begin{array}{r}
I_{1} R_{1}=I_{2} R_{2} \\
\text { And also } V_{\mathrm{DC}}=V_{\mathrm{BC}} \\
I_{3} R_{3}=I_{4} R_{4}
\end{array}
$$

where I_{1}, I_{2}, I_{3}, and I_{4} are current in resistance arms respectively, since $I_{1}=I_{3}$ and $I_{2}=I_{4}$

$$
\frac{R_{1}}{R_{3}}=\frac{R_{2}}{R_{4}} \text { or } \quad R_{x}=R_{4}=R_{3} \frac{R_{2}}{R_{1}}
$$

Example

(a) Equal resistance

(c) Proportional resistance

(b) Proportional resistance

(d) 2-Volt unbalance

Measurement Errors

1. Limiting error of the known resistors

Using 1st order approximation: A

$$
R_{x}=\left(R_{3} \pm \Delta R_{3}\right)\left(\frac{R_{2} \pm \Delta R_{2}}{R_{1} \pm \Delta R_{1}}\right)
$$

$$
R_{x}=R_{3} \frac{R_{2}}{R_{1}}\left(1 \pm \frac{\Delta R_{1}}{R_{1}} \pm \frac{\Delta R_{2}}{R_{2}} \pm \frac{\Delta R_{3}}{R_{3}}\right)
$$

2. Insufficient sensitivity of Detector
3. Changes in resistance of the bridge arms due to the heating effect $\left(I^{2} R\right)$ or temperatures
4. Thermal emf or contact potential in the bridge circuit
5. Error due to the lead connection

3, 4 and 5 play the important role in the measurement of low value resistance

Example In the Wheatstone bridge circuit, R_{3} is a decade resistance with a specified in accuracy $\pm 0.2 \%$ and R_{1} and $R_{2}=500 \Omega \pm 0.1 \%$. If the value of R_{3} at the null position is 520.4Ω, determine the possible minimum and maximum value of R_{X}

$$
\begin{aligned}
& \text { SOLUTION Apply the error equation } R_{x}=R_{3} \frac{R_{2}}{R_{1}}\left(1 \pm \frac{\Delta R_{1}}{R_{1}} \pm \frac{\Delta R_{2}}{R_{2}} \pm \frac{\Delta R_{3}}{R_{3}}\right) \\
& R_{x}=\frac{520.4 \times 500}{500}\left(1 \pm \frac{0.1}{100} \pm \frac{0.1}{100} \pm \frac{0.2}{100}\right)=520.4(1 \pm 0.004)=520.4 \pm 0.4 \%
\end{aligned}
$$

Therefore the possible values of R_{3} are 518.32 to 522.48Ω
Example A Wheatstone bridge has a ratio arm of $1 / 100\left(R_{2} / R_{1}\right)$. At first balance, R_{3} is adjusted to 1000.3Ω. The value of R_{x} is then changed by the temperature change, the new value of R_{3} to achieve the balance condition again is 1002.1Ω. Find the change of R_{x} due to the temperature change.
SOLUTION At first balance: $\quad R_{x}$ old $=R_{3} \frac{R_{2}}{R_{1}}=1000.3 \times \frac{1}{100}=10.003 \Omega$
After the temperature change: $\quad R_{x}$ new $=R_{3} \frac{R_{2}}{R_{1}}=1002.1 \times \frac{1}{100}=10.021 \Omega$
Therefore, the change of R_{x} due to the temperature change is 0.018Ω

Sensitivity of Galvanometer

A galvanometer is use to detect an unbalance condition in Wheatstone bridge. Its sensitivity is governed by: Current sensitivity (currents per unit defection) and internal resistance.
consider a bridge circuit under a small unbalance condition, and apply circuit analysis to solve the current through galvanometer

Thévenin Equivalent Circuit
Thévenin Voltage ($V_{T H}$)

$$
V_{C D}=V_{A C}-V_{A D}=I_{1} R_{1}-I_{2} R_{2}
$$

where $I_{1}=\frac{V}{R_{1}+R_{3}}$ and $I_{2}=\frac{V}{R_{2}+R_{4}}$

Therefore

$$
V_{T H}=V_{C D}=V\left(\frac{R_{1}}{R_{1}+R_{3}}-\frac{R_{2}}{R_{2}+R_{4}}\right)
$$

Sensitivity of Galvanometer (continued)

Thévenin Resistance ($\boldsymbol{R}_{T H}$)

$$
R_{T H}=R_{1} / / R_{3}+R_{2} / / R_{4}
$$

Completed Circuit

where $I_{g}=$ the galvanometer current
$R_{g}=$ the galvanometer resistance

Example 1 Figure below show the schematic diagram of a Wheatstone bridge with values of the bridge elements. The battery voltage is 5 V and its internal resistance negligible. The galvanometer has a current sensitivity of $10 \mathrm{~mm} / \mu \mathrm{A}$ and an internal resistance of 100Ω. Calculate the deflection of the galvanometer caused by the $5-\Omega$ unbalance in arm BC

SOLUTION The bridge circuit is in the small unbalance condition since the value of resistance in arm BC is $2,005 \Omega$.

(a)

(b)

(c)

Thévenin Voltage ($V_{T H}$)

$$
\begin{aligned}
V_{T H} & =V_{A D}-V_{A C}=5 \mathrm{~V} \times\left(\frac{100}{100+200}-\frac{1000}{1000+2005}\right) \\
& \approx 2.77 \mathrm{mV}
\end{aligned}
$$

Thévenin Resistance ($\boldsymbol{R}_{T H}$)

$$
R_{T H}=100 / / 200+1000 / / 2005=734 \Omega
$$

The galvanometer current

$$
I_{g}=\frac{V_{T H}}{R_{T H}+R_{g}}=\frac{2.77 \mathrm{mV}}{734 \Omega+100 \Omega}=3.32 \mu \mathrm{~A}
$$

Galvanometer deflection

$$
d=3.32 \mu \mathrm{~A} \times \frac{10 \mathrm{~mm}}{\mu \mathrm{~A}}=33.2 \mathrm{~mm}
$$

Example 2 The galvanometer in the previous example is replaced by one with an internal resistance of 500Ω and a current sensitivity of $1 \mathrm{~mm} / \mu \mathrm{A}$. Assuming that a deflection of 1 mm can be observed on the galvanometer scale, determine if this new galvanometer is capable of detecting the $5-\Omega$ unbalance in arm BC

SOLUTION Since the bridge constants have not been changed, the equivalent circuit is again represented by a Thévenin voltage of 2.77 mV and a Thévenin resistance of 734Ω. The new galvanometer is now connected to the output terminals, resulting a galvanometer current.

$$
I_{g}=\frac{V_{T H}}{R_{T H}+R_{g}}=\frac{2.77 \mathrm{mV}}{734 \Omega+500 \Omega}=2.24 \mu \mathrm{~A}
$$

The galvanometer deflection therefore equals $2.24 \mu \mathrm{~A} \times 1 \mathrm{~mm} / \mu \mathrm{A}=2.24 \mathrm{~mm}$, indicating that this galvanometer produces a deflection that can be easily observed.

Example 3 If all resistances in the Example 1 increase by 10 times, and we use the galvanometer in the Example 2. Assuming that a deflection of 1 mm can be observed on the galvanometer scale, determine if this new setting can be detected (the $50-\Omega$ unbalance in arm BC)

SOLUTION

Application of Wheatstone Bridge

Murray/Varrley Loop Short Circuit Fault (Loop Test)

- Loop test can be carried out for the location of either a ground or a short circuit fault.

$$
\begin{array}{ll}
\text { Let } \boldsymbol{R}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}} & \\
\text { At balance condition: } & \frac{R_{3}}{R_{4}}=\frac{R_{1}}{R_{2}} \\
\begin{array}{ll}
R_{1}=R\left(\frac{R_{3}}{R_{3}+R_{4}}\right) & R_{2}=R\left(\frac{R_{4}}{R_{3}+R_{4}}\right)
\end{array}
\end{array}
$$

The value of R_{1} and R_{2} are used to calculate back into distance.

Murray/Varrley Loop Short Circuit Fault (Loop Test)

Examples of commonly used cables (Approx. R at $\mathbf{2 0}^{\circ} \mathrm{C}$)

Wire dia. In mm	Ohms per km.	Meter per ohm
0.32	218.0	4.59
0.40	136.0	7.35
0.50	84.0	11.90
0.63	54.5	18.35
0.90	27.2	36.76

Remark The resistance of copper increases 0.4% for $1^{\circ} \mathrm{C}$ rise in Temp.
Let $\boldsymbol{R}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}$ and define Ratio $=\boldsymbol{R}_{\mathbf{4}} / \boldsymbol{R}_{\mathbf{5}}$
At balance condition: Ratio $=\frac{R_{4}}{R_{5}}=\frac{R_{1}}{R_{2}+R_{3}}$

$$
R_{1}=\frac{\text { Ratio }}{\text { Ratio }+1} R+R_{3}
$$

$$
R_{2}=\frac{R-\text { Ratio } R_{3}}{\text { Ratio }+1}
$$

Example Murray loop test is used to locate ground fault in a telephone system. The total resistance, $R=R_{1}+R_{2}$ is measured by Wheatstone bridge, and its value is 300Ω. The conditions for Murray loop test are as follows:

$$
R_{3}=1000 \Omega \text { and } R_{4}=500 \Omega
$$

Find the location of the fault in meter, if the length per Ohm is 36.67 m .

SOLUTION

$$
\begin{aligned}
& R_{1}=R\left(\frac{R_{3}}{R_{3}+R_{4}}\right)=300 \times \frac{1000}{1000+500}=200 \Omega \\
& R_{2}=R\left(\frac{R_{4}}{R_{3}+R_{4}}\right)=300 \times \frac{500}{1000+500}=100 \Omega
\end{aligned}
$$

Therefore, the location from the measurement point is $100 \Omega \times 36.67 \mathrm{~m} / \Omega=3667 \mathrm{~m}$

Application of Wheatstone Bridge

Unbalance bridge

Small unbalance
occur by the external
environment

Consider a bridge circuit which have identical resistors, R in three arms, and the last arm has the resistance of $R+\Delta R$. if $\Delta R / R \ll 1$

Thévenin Voltage $\left(V_{T H}\right)$

$$
V_{T H}=V_{C D} \approx V \frac{\Delta R}{4 R}
$$

Thévenin Resistance $\left(\boldsymbol{R}_{T H}\right)$

$$
R_{T H} \approx R
$$

This kind of bridge circuit can be found in sensor applications, where the resistance in one arm is sensitive to a physical quantity such as pressure, temperature, strain etc.

Example Circuit in Figure (a) below consists of a resistor R_{v} which is sensitive to the temperature change. The plot of R VS Temp. is also shown in Figure (b). Find (a) the temperature at which the bridge is balance and (b) The output signal at Temperature of $60^{\circ} \mathrm{C}$.

(a)

(b)

SOLUTION (a) at bridge balance, we have $\quad R_{v}=\frac{R_{3} \times R_{2}}{R_{1}}=\frac{5 \mathrm{k} \Omega \times 5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega}=5 \mathrm{k} \Omega$
The value of $R_{\mathrm{v}}=5 \mathrm{k} \Omega$ corresponding to the temperature of $80^{\circ} \mathrm{C}$ in the given plot.
(b) at temperature of $60^{\circ} \mathrm{C}, R_{\mathrm{v}}$ is read as $4.5 \mathrm{k} \Omega$, thus $\Delta R=5-4.5=0.5 \mathrm{k} \Omega$. We will use Thévenin equivalent circuit to solve the above problem.

$$
V_{T H}=V \frac{\Delta R}{4 R}=6 \mathrm{~V} \times \frac{0.5 \mathrm{k} \Omega}{4 \times 5 \mathrm{k} \Omega}=0.15 \mathrm{~V}
$$

It should be noted that $\Delta R=0.5 \mathrm{k} \Omega$ in the problem does not satisfy the assumption $\Delta R / R$ $\ll 1$, the exact calculation gives $V_{\mathrm{TH}}=0.158 \mathrm{~V}$. However, the above calculation still gives an acceptable solution.

Low resistance Bridge: $R_{x}<1 \Omega$

Effect of connecting lead

The effects of the connecting lead and the connecting terminals are prominent when the value of R_{x} decreases to a few Ohms
$R_{\mathrm{y}}={ }_{R_{x}}$ the resistance of the connecting lead from R_{3} to R_{x}

At point $m: R_{y}$ is added to the unknown R_{x}, resulting in too high and indication of R_{x}
At point $n: R_{y}$ is added to R_{3}, therefore the measurement of R_{x} will be lower than it should be.

At point $p: \quad R_{x}+R_{n p}=\left(R_{3}+R_{m p}\right) \frac{R_{1}}{R_{2}}$ rearrange $\quad R_{x}=R_{3} \frac{R_{1}}{R_{2}}+R_{m p} \frac{R_{1}}{R_{2}}-R_{n p}$
Where $R_{m p}$ and $R_{n p}$ are the lead resistance from m to p and n to p, respectively.

The effect of the connecting lead will be canceled out, if the sum of $2^{\text {nd }}$ and $3^{\text {rd }}$ term is zero.

$$
\begin{gathered}
R_{m p} \frac{R_{1}}{R_{2}}-R_{n p}=0 \text { or } \frac{R_{n p}}{R_{m p}}=\frac{R_{1}}{R_{2}} \\
R_{x}=R_{3} \frac{R_{1}}{R_{2}}
\end{gathered}
$$

Kelvin Double Bridge: 1 to 0.00001Ω

Four-Terminal Resistor

Current

Current

Four-terminal resistors have current terminals and potential terminals. The resistance is defined as that between the potential terminals, so that contact voltage drops at the current terminals do not introduce errors.

Four-Terminal Resistor and Kelvin Double Bridge

- r_{1} causes no effect on the balance condition.
- The effects of r_{2} and r_{3} could be minimized, if $R_{1} \gg$ r_{2} and $R_{a} \gg r_{3}$.
- The main error comes from r_{4}, even though this value is very small.

Kelvin Double Bridge: 1 to 0.00001Ω

- 2 ratio arms: $\boldsymbol{R}_{\mathbf{1}}-\boldsymbol{R}_{\mathbf{2}}$ and $\boldsymbol{R}_{a}-\boldsymbol{R}_{\boldsymbol{b}}$
- the connecting lead between \boldsymbol{m} and \boldsymbol{n} : yoke The balance conditions: $V_{l k}=V_{l m p}$ or $V_{o k}=V_{o n p}$

$$
\begin{gather*}
V_{l k}=\frac{R_{2}}{R_{1}+R_{2}} V \tag{1}\\
\text { here } V=I R_{l o}=I\left[R_{3}+R_{x}+\left(R_{a}+R_{b}\right) / / R_{y}\right] \\
V_{l m p}=I\left[R_{3}+\frac{R_{y}}{R_{a}+R_{b}+R_{y}} R_{b}\right]-(2) \tag{2}
\end{gather*}
$$

Eq. (1) $=(2)$ and rearrange: $\quad R_{x}=R_{3} \frac{R_{1}}{R_{2}}+\frac{R_{b} R_{y}}{R_{a}+R_{b}+R_{y}}\left(\frac{R_{1}}{R_{2}}-\frac{R_{a}}{R_{b}}\right) \square R_{x}=R_{3} \frac{R_{1}}{R_{2}}$
If we set $\boldsymbol{R}_{\mathbf{1}} / \boldsymbol{R}_{\mathbf{2}}=\boldsymbol{R}_{d} / \boldsymbol{R}_{b}$, the second term of the right hand side will be zero, the relation reduce to the well known relation. In summary, The resistance of the yoke has no effect on the measurement, if the two sets of ratio arms have equal resistance ratios.

High Resistance Measurement

Guard ring technique:

(a) Circuit that measures insulation volume resistance in parallel with surface leakage resistance

$$
R_{\text {meas }}=R_{s} / / R_{v}=\frac{V}{I_{s}+I_{v}}
$$

- Volume resistance, R_{V}
- Surface leakage resistance, R_{s}

(b) Use of guard ring to measure only volume resistance

$$
R_{\text {meas }}=R_{v}=\frac{V}{I_{v}}
$$

High Resistance Measurement

Example The Insulation of a metal-sheath electrical cable is tested using $10,000 \mathrm{~V}$ supply and a microammeter. A current of $5 \mu \mathrm{~A}$ is measured when the components are connected without guard wire. When the circuit is connect with guard wire, the current is $1.5 \mu \mathrm{~A}$. Calculate (a) the volume resistance of the cable insulation and (b) the surface leakage resistance

SOLUTION

(a) Volume resistance:

$$
\begin{aligned}
& I_{V}=1.5 \mu \mathrm{~A} \\
& R_{V}=\frac{V}{I_{V}}=\frac{10000 \mathrm{~V}}{1.5 \mu \mathrm{~A}}=6.7 \times 10^{9} \Omega
\end{aligned}
$$

(b) Surface leakage resistance:

$$
\begin{aligned}
& I_{V}+I_{S}=5 \mu \mathrm{~A} \quad I_{S}=5 \mu \mathrm{~A}-I_{V}=3.5 \mu \mathrm{~A} \\
& R_{S}=\frac{V}{I_{S}}=\frac{10000 \mathrm{~V}}{3.5 \mu \mathrm{~A}}=2.9 \times 10^{9} \Omega
\end{aligned}
$$

MegaOhm Bridge

- Just as low-resistance measurements are affected by series lead impedance, highresistance measurements are affected by shunt-leakage resistance.

- the guard terminal is connect to a bridge corner such that the leakage resistances are placed across bridge arm with low resistances

$$
\begin{array}{ll}
R_{1} / / R_{C} \approx R_{C} & \text { since } R_{1} \gg R_{C} \\
R_{2} / / R_{g} \approx R_{g} & \text { since } R_{2} \gg R_{g}
\end{array}
$$

$$
R_{x} \approx R_{A} \frac{R_{C}}{R_{B}}
$$

Capacitor

Capacitance - the ability of a dielectric to store electrical charge per unit voltage

Dielectric	Construction	Capacitance	Breakdown,V
Air	Meshed plates	$10-400 \mathrm{pF}$	$100(0.02$-in air gap)
Ceramic	Tubular	$0.5-1600 \mathrm{pF}$	$500-20,000$
	Disk	1 pF to $1 \mu \mathrm{~F}$	
Electrolytic	Aluminum	$1-6800 \mu \mathrm{~F}$	$10-450$
	Tantalum	0.047 to $330 \mu \mathrm{~F}$	$6-50$
Mica	Stacked sheets	$10-5000 \mathrm{pF}$	$500-20,000$
Paper	Rolled foil	$0.001-1 \mu \mathrm{~F}$	$200-1,600$
Plastic film	Foil or Metallized	100 pF to $100 \mu \mathrm{~F}$	$50-600$

Inductor

Inductance - the ability of a conductor to produce induced voltage when the current varies.

μ_{r} - relative permeability of core material Ni ferrite:

$$
\mu_{\mathrm{r}}>200
$$

Mn ferrite: $\quad \mu_{\mathrm{r}}>2,000$

C_{d}
Equivalent circuit of an RF coil

Distributed capacitance $\boldsymbol{C}_{\boldsymbol{d}}$ between turns

Air core ${ }^{(2)}$ inductor

Iron core inductor

Quality Factor of Inductor and Capacitor

Equivalent circuit of capacitance

Parallel equivalent circuit

Series equivalent circuit

Equivalent circuit of Inductance

Series equivalent circuit

Parallel equivalent circuit

$$
R_{s}=\frac{R_{p} X_{p}^{2}}{R_{p}^{2}+X_{p}^{2}} \quad X_{s}=\frac{X_{p} R_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}
$$

Quality Factor of Inductor and Capacitor

Quality factor of a coil: the ratio of reactance to resistance (frequency dependent and circuit configuration)

$$
\text { Inductance series circuit: } \quad Q=\frac{X_{s}}{R_{s}}=\frac{\omega L_{s}}{R_{s}} \quad \text { Typical } Q \sim 5-1000
$$

Inductance parallel circuit: $Q=\frac{R_{p}}{X_{p}}=\frac{R_{p}}{\omega L_{p}}$
Dissipation factor of a capacitor: the ratio of reactance to resistance (frequency dependent and circuit configuration)

Capacitance parallel circuit: $\quad D=\frac{X_{p}}{R_{p}}=\frac{1}{\omega C_{p} R_{p}} \quad$ Typical $D \sim 10^{-4}-0.1$
Capacitance series circuit: $\quad D=\frac{R_{s}}{X_{s}}=\omega C_{s} R_{s}$

Inductor and Capacitor

$$
\begin{aligned}
& L_{S}=\frac{R_{P}^{2}}{R_{P}^{2}+\omega^{2} L_{P}^{2}} \cdot L_{P} \\
& R_{S}=\frac{\omega^{2} L_{P}^{2}}{R_{P}^{2}+\omega^{2} L_{P}^{2}} \cdot R_{P} \\
& Q=\frac{\omega L_{S}}{R_{S}} \\
& L_{P}=\frac{R_{S}^{2}+\omega^{2} L_{S}^{2}}{\omega^{2} L_{S}^{2}} \cdot L_{S} \\
& R_{P}=\frac{R_{S}^{2}+\omega^{2} L_{S}^{2}}{R_{S}^{2}} \cdot R_{S} \\
& Q=\frac{R_{P}}{\omega L_{P}} \\
& R_{S}=\frac{1}{1+\omega^{2} C_{P}^{2} R_{P}^{2}} \cdot R_{P} \\
& D=\omega C_{S} R_{S} \\
& C_{P}=\frac{1}{1+\omega^{2} C_{S}^{2} R_{S}^{2}} \cdot C_{S} \\
& R_{P}=\frac{1+\omega^{2} C_{S}^{2} R_{S}^{2}}{\omega^{2} C_{S}^{2} R_{S}^{2}} \cdot R_{S} \\
& D=\frac{1}{\omega C_{P} R_{P}}
\end{aligned}
$$

AC Bridge: Balance Condition

- all four arms are considered as impedance (frequency dependent components)
- The detector is an ac responding device: headphone, ac meter
- Source: an ac voltage at desired frequency
$\mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{Z}_{3}$ and \mathbf{Z}_{4} are the impedance of bridge arms
At balance point: $\quad \mathbf{E}_{\mathbf{B A}}=\mathbf{E}_{\mathbf{B C}}$ or $\mathbf{I}_{1} \mathbf{Z}_{1}=\mathbf{I}_{2} \mathbf{Z}_{2}$

General Form of the ac Bridge

$$
\mathbf{I}_{1}=\frac{\mathbf{V}}{\mathbf{Z}_{1}+\mathbf{Z}_{3}} \text { and } \mathbf{I}_{2}=\frac{\mathbf{V}}{\mathbf{Z}_{2}+\mathbf{Z}_{4}}
$$

Complex Form: $\quad Z_{1} Z_{4}=Z_{2} Z_{3}$

$$
\begin{gathered}
\text { Polar Form: } \\
{_{1} \mathrm{Z}_{4}\left(\angle \theta_{1}+\angle \theta_{4}\right)=\mathrm{Z}_{2} \mathrm{Z}_{3}\left(\angle \theta_{2}+\angle \theta_{3}\right)} }
\end{gathered}\left\{\begin{array}{lc}
\text { Magnitude balance: } & \mathrm{Z}_{1} \mathrm{Z}_{4}=\mathrm{Z}_{2} \mathrm{Z}_{3} \\
\text { Phase balance: } & \angle \theta_{1}+\angle \theta_{4}=\angle \theta_{2}+\angle \theta_{3}
\end{array}\right.
$$

Example The impedance of the basic ac bridge are given as follows:

$$
\begin{array}{ll}
\mathbf{Z}_{1}=100 \Omega \angle 80^{\circ} \text { (inductive impedance) } & \mathbf{Z}_{3}=400 \angle 30^{\circ} \Omega \text { (inductive impedance) } \\
\mathbf{Z}_{2}=250 \Omega \text { (pure resistance) } & \mathbf{Z}_{4}=\text { unknown }
\end{array}
$$

Determine the constants of the unknown arm.
SOLUTION The first condition for bridge balance requires that

$$
Z_{4}=\frac{Z_{2} Z_{3}}{Z_{1}}=\frac{250 \times 400}{100}=1,000 \Omega
$$

The second condition for bridge balance requires that the sum of the phase angles of opposite arms be equal, therefore

$$
\angle \theta_{4}=\angle \theta_{2}+\angle \theta_{3}-\angle \theta_{1}=0+30-80=-50^{\circ}
$$

Hence the unknown impedance \mathbf{Z}_{4} can be written in polar form as

$$
\mathbf{Z}_{4}=1,000 \Omega \angle-50^{\circ}
$$

Indicating that we are dealing with a capacitive element, possibly consisting of a series combination of at resistor and a capacitor.

Example an ac bridge is in balance with the following constants: arm AB, $R=200 \Omega$ in series with $L=15.9 \mathrm{mH} R$; arm BC, $R=300 \Omega$ in series with $C=0.265 \mu \mathrm{~F}$; arm CD, unknown; arm DA, $=450 \Omega$. The oscillator frequency is 1 kHz . Find the constants of arm CD.

SOLUTION

$$
\begin{aligned}
& \mathbf{Z}_{1}=R+j \omega L=200+j 100 \Omega \\
& \mathbf{Z}_{2}=R+1 / j \omega C=300-j 600 \Omega \\
& \mathbf{Z}_{3}=R=450 \Omega \\
& \mathbf{Z}_{4}=\text { unknown }
\end{aligned}
$$

The general equation for bridge balance states that $\mathbf{Z}_{1} \mathbf{Z}_{4}=\mathbf{Z}_{\mathbf{2}} \mathbf{Z}_{3}$

$$
\mathbf{Z}_{4}=\frac{\mathbf{Z}_{2} \mathbf{Z}_{3}}{\mathbf{Z}_{1}}=\frac{450 \times(200+j 100)}{(300-j 600)}=j 150 \Omega
$$

This result indicates that \mathbf{Z}_{4} is a pure inductance with an inductive reactance of 150Ω at at frequency of 1 kHz . Since the inductive reactance $X_{L}=2 \pi f L$, we solve for L and obtain $L=23.9 \mathrm{mH}$

Comparison Bridge: Capacitance

Diagram of Capacitance Comparison Bridge

- Measure an unknown inductance or capacitance by comparing with it with a known inductance or capacitance.

At balance point: $\quad \mathbf{Z}_{1} \mathbf{Z}_{x}=\mathbf{Z}_{2} \mathbf{Z}_{3}$ where $\mathbf{Z}_{1}=R_{1} ; \mathbf{Z}_{2}=R_{2} ;$ and $\mathbf{Z}_{3}=R_{3}+\frac{1}{j \omega C_{3}}$ Unknown
capacitance

$$
R_{1}\left(R_{x}+\frac{1}{j \omega C_{x}}\right)=R_{2}\left(R_{3}+\frac{1}{j \omega C_{3}}\right)^{3}
$$

$$
R_{x}=\frac{R_{2} R_{3}}{R_{1}} \quad \text { and } \quad C_{x}=C_{3} \frac{R_{1}}{R_{2}}
$$

- Frequency independent
- To satisfy both balance conditions, the bridge must contain two variable elements in its configuration.

Comparison Bridge: Inductance

Diagram of Inductance Comparison Bridge
Separation of the real and imaginary terms yields: $R_{x}=\frac{R_{2} R_{3}}{R_{1}}$ and $L_{x}=L_{3} \frac{R_{2}}{R_{1}}$

- Frequency independent
- To satisfy both balance conditions, the bridge must contain two variable elements in its configuration.

Maxwell Bridge

Diagram of Maxwell Bridge

- Measure an unknown inductance in terms of a known capacitance

At balance point: $\quad \mathbf{Z}_{x}=\mathbf{Z}_{2} \mathbf{Z}_{3} \mathbf{Y}_{1}$ where $\mathbf{Z}_{2}=R_{2} ; \mathbf{Z}_{3}=R_{3} ;$ and $\mathbf{Y}_{1}=\frac{1}{R_{1}}+j \omega C_{1}$

$$
\mathbf{Z}_{x}=R_{x}+j \omega L_{x}=R_{2} R_{3}\left(\frac{1}{R_{1}}+j \omega C_{1}\right)
$$

Separation of the real and imaginary terms yields:

$$
R_{x}=\frac{R_{2} R_{3}}{R_{1}} \quad \text { and } \quad L_{x}=R_{2} R_{3} C_{1}
$$

- Frequency independent
- Suitable for Medium Q coil (1-10), impractical for high Q coil: since R_{1} will be very large.

Hay Bridge

Diagram of Hay Bridge

- Similar to Maxwell bridge: but R_{1} series with C_{1} At balance point: $\quad \mathbf{Z}_{1} \mathbf{Z}_{x}=\mathbf{Z}_{2} \mathbf{Z}_{3}$
where $\mathbf{Z}_{1}=R_{1}-\frac{j}{\omega C_{1}} ; \mathbf{Z}_{2}=R_{2} ;$ and $\mathbf{Z}_{3}=R_{3}$ $\left(R_{1}+\frac{1}{j \omega C_{1}}\right)\left(R_{x}+j \omega L_{x}\right)=R_{2} R_{3}$
which expands to $R_{1} R_{x}+\frac{L_{x}}{C_{1}}-\frac{j R_{x}}{\omega C_{1}}+j \omega L_{x} R_{1}=R_{2} R_{3}$

$$
\begin{equation*}
R_{1} R_{x}+\frac{L_{x}}{C_{1}}=R_{2} R_{3} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{R_{x}}{\omega C_{1}}=\omega L_{x} R_{1} \tag{2}
\end{equation*}
$$

Solve the above equations simultaneously

Hay Bridge: continues

$$
R_{x}=\frac{\omega^{2} C_{1}^{2} R_{1} R_{2} R_{3}}{1+\omega^{2} C_{1}^{2} R_{1}^{2}} \quad \text { and } \quad L_{x}=\frac{R_{2} R_{3} C_{1}}{1+\omega^{2} C_{1}^{2} R_{1}^{2}}
$$

Phasor diagram of arm 4 and 1
Thus, L_{x} can be rewritten as

$$
\begin{aligned}
& \tan \theta_{L}=\frac{X_{L}}{R}=\frac{\omega L_{x}}{R_{x}}=Q \\
& \tan \theta_{C}=\frac{X_{C}}{R}=\frac{1}{\omega C_{1} R_{1}}
\end{aligned}
$$

$$
\tan \theta_{L}=\tan \theta_{C} \text { or } Q=\frac{1}{\omega C_{1} R_{1}}
$$

$$
L_{x}=\frac{R_{2} R_{3} C_{1}}{1+\left(1 / Q^{2}\right)}
$$

For high Q coil (>10), the term $(1 / Q)^{2}$ can be neglected

$$
L_{x} \approx R_{2} R_{3} C_{1}
$$

Schering Bridge

Diagram of Schering Bridge

which expands to $\quad R_{x}-\frac{j}{\omega C_{x}}=\frac{R_{2} C_{1}}{C_{3}}-\frac{j R_{2}}{\omega C_{3} R_{1}}$
Separation of the real and imaginary terms yields:

$$
R_{x}=R_{2} \frac{C_{1}}{C_{3}} \quad \text { and } \quad C_{x}=C_{3} \frac{R_{1}}{R_{2}}
$$

Schering Bridge: continues

Dissipation factor of a series $R C$ circuit: $\quad D=\frac{R_{x}}{X_{x}}=\omega R_{x} C_{x}$
Dissipation factor tells us about the quality of a capacitor, how close the phase angle of the capacitor is to the ideal value of 90°

For Schering Bridge: $\quad D=\omega R_{x} C_{x}=\omega R_{1} C_{1}$

For Schering Bridge, R_{1} is a fixed value, the dial of C_{1} can be calibrated directly in D at one particular frequency

Wien Bridge

Diagram of Wien Bridge

- Measure frequency of the voltage source using series RC in one arm and parallel RC in the adjoining arm

At balance point: $\quad \mathbf{Z}_{2}=\mathbf{Z}_{1} \mathbf{Z}_{4} \mathbf{Y}_{3}$

$$
\begin{gather*}
\mathbf{Z}_{1}=R_{1}+\frac{1}{j \omega C_{1}} ; \mathbf{Z}_{2}=R_{2} ; \mathbf{Y}_{3}=\frac{1}{R_{3}}+j \omega C_{3} ; \text { and } \mathbf{Z}_{4}=R_{4} \\
R_{2}=\left(R_{1}-\frac{j}{\omega C_{1}}\right) R_{4}\left(\frac{1}{R_{3}}+j \omega C_{3}\right) \tag{1}
\end{gather*}
$$

which expands to $R_{2}=\frac{R_{1} R_{4}}{R_{3}}+j \omega C_{3} R_{1} R_{4}-\frac{j R_{4}}{\omega C_{1} R_{3}}+\frac{R_{4} C_{3}}{C_{1}}<\frac{R_{2}}{R_{4}}=\frac{R_{1}}{R_{3}}+\frac{C_{3}}{C_{1}}$

Rearrange Eq. (2) gives

$$
\begin{equation*}
f=\frac{1}{2 \pi \sqrt{C_{1} C_{3} R_{1} R_{3}}} \tag{2}
\end{equation*}
$$

In most, Wien Bridge, $R_{1}=R_{3}$ and $C_{1}=C_{3}$

$$
\begin{array}{ll}
(1) \rightarrow R_{2}=2 R_{4} & (2) \rightarrow f=\frac{1}{2 \pi R C}
\end{array}
$$

Wagner Ground Connection

Diagram of Wagner ground

- One way to control stray capacitances is by Shielding the arms, reduce the effect of stray capacitances but cannot eliminate them completely.

Stray across arm

 Cannot eliminate- Wagner ground connection eliminates some effects of stray capacitances in a bridge circuit
- Simultaneous balance of both bridge makes the point 1 and 2 at the ground potential. (short C_{1} and C_{2} to ground, C_{4} and C_{5} are eliminated from detector circuit)
- The capacitance across the bridge arms e.g. C_{6} cannot be eliminated by Wagner ground.

Capacitor Values

Ceramic Capacitor

Film-Type Capacitors


```
Examples:
    152K}=15\times100=1500 pF or 0.0015 \mu\textrm{F},\pm10
    759J=75\times0.1 = 7.5 pF, \pm5%
```

Note: The letter R may be used at times to signify a decimal point, as in $2 \mathrm{R} 2=2.2(\mathrm{pF}$ or $\mu \mathrm{F})$.

Capacitor Values

Film Capacitor

Ceramic Disk Capacitors

Typical Ceramic Disk Capacitor Markings
 Ceramic Disk Capacitors

Capacitor Values

Chip Capacitor

Alternate Two-Place Code

- Values below 100 pF -Value read directly

- Values 100 pF and above-Letter/number code

Value (24 Value Symbols)-Uppercase Letters Only					
Multiplier					
A-10	F-16	L-27	R-43	W-68	$1=\times 10$
B-11	G-18	M-30	S-47	X-75	$2=\times 100$
C-12	H-20	N-33	T-51	Y-82	$3=\times 1,000$
D-13	J-22	P-36	U-56	Z-91	$4=\times 10,000$
E-15	K-24	Q-39	V-62		$5=\times 100,000$ etc.

18 Chip capacitor coding system.

Standard Single-Place Code

Examples: $\mathrm{R}($ Green $)=3.3 \times 100=330 \mathrm{pF}$ 7 (Blue) $=8.2 \times 1000=8200 \mathrm{pF}$

| Value (24 Value Symbols)-Uppercase Letters and Numerals | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | | Multiplier
 (Color) |
| :---: |
| A-1.0 | H-1.6

Capacitor Values

Tantalum Capacitor

Dipped Tantalum Capacitors

Color	Rated Voltage	Capacitance in Picofarads		Multiplier
		1st Figure	2nd Figure	
Black	4	0	0	-
Brown	6	1	1	-
Red	10	2	2	-
Orange	15	3	3	-
Yellow	20	4	4	10,000
Green	25	5	5	100,000
Blue	35	6	6	1,000,000
Violet	50	7	7	10,000,000
Gray	-	8	8	-
White	3	9	9	-

Capacitor Values

Chip Capacitor

Value (33 Value Symbols)-Upper and Lowercase Letters					Multiplier
A-1.0	H-2.0	b-3.5	f-5.0	X-7.5	$0=\times 1.0$
B-1.1	J-2.2	P-3.6	T-5.1	t-8.0	$1=\times 10$
C-1.2	K-2.4	Q-3.9	U-5.6	Y-8.2	$2=\times 100$
D-1.3	a-2.5	d-4.0	m-6.0	$y-9.0$	$3=\times 1,000$
E-1.5	L-2.7	R-4.3	V-6.2	Z-9.1	$4=\times 10,000$
F-1.6	M-3.0	e-4.5	W-6.8		$5=\times 100,000$
G-1.8	$\mathrm{N}-3.3$	S-4.7	n -7.0		etc.

