Digital Multimeter (DMM)

Digital Voltmeter (DVM)

DVM is essentially an Analog to digital converter (A/D) with a digital display

Digital MultiMeter = electronic Volt Ohm Millimeter with (DMM) digital display

Comparison of Digital and Analog Meter

Digital meter	Analog meter	
Leaves no doubt about the measured quantity.	Wrong scale might be used or might be read incorrectly.	
Superior resolution and accuracy.	Inferior resolution and accuracy.	
$(\pm 0.5\%$ or better)	$(\pm 3\%$ in common)	
Indicates a negative quantity when the terminal polarity is reversed	Pointer attempts to deflect to the left when the polarity is reversed	
No usually damaged by rough treatment	Can be damaged when dropped from bench level	

Analog to Digital Conversion

A/D converts an analog signal into the digital code which is proportional to the magnitude of the coming signal.

$$V_{in} \approx k \times \text{Digital output}$$

Where k is step size or resolution

Ex. Signal from 800-1500 mV may be converted to 8-bit binary codes starting from $01010000_2 (80_{10})$ to $10010110_2 (150_{10})$. In this case, the step size k is equal to 10 mV.

Quantization error or Conversion error of a A/D

$$\label{eq:Quantization error} Quantization error = \frac{step \ size}{full \ scale} \times 100 = \frac{1}{2^N - 1} \times 100\%$$

Where *N* is the number of bit

Analog to Digital Conversion

Conversion time, T_c time requires to convert an analog signal to the corresponding digital code.

Ramp-type Digital Voltmeter

(also called single slope)

Operation principle: The measurement of the time it takes for a linear ramp voltage to rise from O V to the level of the input voltage, or to decrease from the level of the input voltage to zero. This time interval is measured with an electronic time-interval counter.

Voltage-to-time conversion using gated clock pulses.

Comparator V+>V-; V V+<V-; V

V+>*V*-; *V*0 = *V*(1) Logic high *V*+<*V*-; *V*0 = *V*(0) Logic low

Ramp-type Digital Voltmeter

Block diagram of a ramp-type digital voltmeter.

Staircase Ramp Digital Voltmeter

Block diagram

Successive Approximation Digital Voltmeter

Ex. To determine a number between 0 - 511 (9 bit binary), given, the number to be determined is 301

No.	Estimate		Results
1	256	1 0000 0000	$V_{in} > V_{AX}$
2	256+128 = 384	1 1 000 0000	<
3	256+64 = 320	1 0100 0000	<
4	256+32 = 288	1 0010 0000	>
5	288+16 = 304	1 0011 0000	<
6	288+8 = 296	1 0010 <mark>1</mark> 000	>
7	296+4 = 300	1 0010 1100	>
8	300+2 = 302	1 0010 1110	<
9	300+1 = 301	1 0010 1101	Finished

Successive Approximation Digital Voltmeter

Compare the input voltage to the internally generated voltage

Block diagram

Clock period

Digital Ramp VS Successive approximation

Digital Ramp method

Successive approximation method

Dual-slope Digital Voltmeter

Phase 1: charging C with the unknown input for a given time.

Assume $V_c(0) = 0$ $V_{out1} = -\frac{V_{in}T}{RC}$

Phase 2: discharging *C* with the reference voltage until the output voltage goes to zero.

$$V_{out} = \frac{V_{ref}T_x}{RC} + V_{out1}$$

find T_x at which V_{out} becomes zero

Dual-slope Digital Voltmeter

Ex A dual slope A/D has $R = 100 \text{ k}\Omega$ and $C = 0.01 \mu\text{F}$. The reference voltage is 10 volts and the fixed integration time is 10 ms. Find the conversion time for a 6.8 volt input.

$$T_x = \frac{V_{in}T}{V_{ref}} = \frac{(6.8 \text{ V})(10 \text{ ms})}{(10 \text{ V})} = 6.8 \text{ ms}$$

Ans

The total conversion time is then 10 ms + 6.8 ms = 16.8 ms

Ex Find the successive approximation A/D output for a 4-bit converter to a 3.217 volt input if the reference is 5 volts.

(1) Set
$$D_3 = 1$$
 $V_{AX} = 5/2 = 2.5$ Volts
 $V_{in} > V_{AX}$ leave $D_3 = 1$
(2) Set $D_2 = 1$ $V_{AX} = 5/2 + 5/4 = 3.75$ Volts
 $V_{in} < V_{AX}$ reset $D_2 = 0$
(3) Set $D_1 = 1$ $V_{AX} = 5/2 + 5/8 = 3.125$ Volts
 $V_{in} > V_{AX}$ leave $D_1 = 1$
(4) Set $D_0 = 1$ $V_{AX} = 5/2 + 5/8 + 5/16 = 3.4375$ Volts
 $V_{in} < V_{AX}$ reset $D_0 = 0$

By this procedure, we find the output is a binary word of 1010_2 <u>Ans</u>

Typical specification of DMM

General

Maximum voltage between terminals Fuse protection Power Display Input impedance Frequency range Measuring method Over range indication

Polarity indication

:600 V :200mA/250V :9V battery :LCD 31/2 digits, updates 2-3/ sec. :10 MΩ :40-400 Hz Dual-slope integration Only figure "1" on the display "-" displayed for negative polarity

Accuracy of DMM

Indicate as \pm (% of reading + No. of digits)

Ex. \pm (0.5% of rdg + 1 digits) sometimes simplify as \pm (0.5 + 1)

Ex. For an accuracy of $\pm (0.5 + 1)$, calculate the maximum error of in the 1.800 V reading

 $error = \pm (0.5\% \text{ of } 1.800 + 0.001 \text{ V})$

 $= \pm (0.009 + 0.001 \text{ V}) = \pm 0.01 \text{ V} \text{ or } \pm 0.56\% \text{ of reading}$

Ex A 20 V dc voltage is measured by analog and digital multimeters. The analog instrument is on its 25 V range, and its specified accuracy is $\pm 2\%$. The digital meter has 3 ½ digit display and an accuracy of $\pm (0.6+1)$. Determine the measurement accuracy in each case.

